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Abstract 

Multiomic droplet-based technologies allow different molecular modalities, such 
as chromatin accessibility and gene expression (scATAC-seq and scRNA-seq), to be 
probed in the same nucleus. We develop EmptyDropsMultiome, an approach that dis-
tinguishes true nuclei-containing droplets from background. Using simulations, we 
show that EmptyDropsMultiome has higher statistical power and accuracy than exist-
ing approaches, including CellRanger-arc and EmptyDrops. On real datasets, we 
observe that CellRanger-arc misses more than half of the nuclei identified by Empty-
DropsMultiome and, moreover, is biased against certain cell types, some of which have 
a retrieval rate lower than 20%.
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Background
Droplet-based assays have enabled efficient and high-throughput measurement of mul-
tiple molecular modalities at single-cell resolution, including single-cell gene expres-
sion (GEX) profiling (single-cell RNA-sequencing (scRNA-seq)) [1, 2] and single-cell 
chromatin accessibility (Assay for Transposase-Accessible Chromatin; ATAC) profil-
ing (scATAC-seq) [3, 4]. Moreover, recent advances have made it possible to assay both 
molecular modalities in the same single-cell (or technically, the same nucleus) ena-
bling study of the coupling between distinct molecular layers [5–7]. The joint profiling 
of RNA and chromatin accessibility enables direct matching of transcriptional regula-
tion to its output, achieving a more complete reconstruction of cellular processes at the 
molecular level. In a typical single-cell multiomic (sc-multiomic) ATAC + GEX experi-
ment, nuclei suspensions are incubated alongside a transposase. Subsequently, nuclei 
are loaded into droplets that contain (1) oligonucleotides with a spacer sequence that 
enables barcode attachment to transposed DNA fragments, (2) primers with a poly-
(dT) sequence to uniquely barcode poly-adenylated mRNA molecules, and (3) reagents 
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to reverse-transcribe the barcoded mRNA molecules into cDNA. Barcoded DNA and 
cDNA are then PCR amplified and used to construct ATAC and GEX libraries. After 
sequencing, reads from each library can be uniquely associated with the originating 
nucleus thanks to these added barcodes.

While loading the nuclei into droplets, some of the buffer in which they are suspended 
is also captured. Moreover, some droplets fail to capture any nuclei—and therefore only 
contain the buffer. In an ideal setting, the buffer in which the nuclei are suspended is 
completely devoid of RNA or DNA molecules, meaning that each droplet either has no 
reads or only reads originating from a single nucleus. In practice, however, the entrance 
of the transposase requires permeabilization of the nuclei, which causes fragments of 
DNA and RNA to escape, meaning that the buffer is a soup of RNA and DNA mole-
cules from different cells [1]. As a result, nuclei-free droplets can exhibit non-zero read 
counts, potentially leading them to resemble true nuclei and thereby confounding down-
stream analysis.

To the best of our knowledge, there is currently only one method for detecting nuclei-
containing droplets in sc-multiome ATAC + GEX data. This forms part of the Cell-
Ranger-arc software developed by 10x  Genomics and is tailored to its experimental 
protocol [8]. Nuclei detection is performed by CellRanger-arc in two steps: (1) filtering 
and (2) nuclei calling (which they refer to as cell calling).

Removing nuclei using the fraction of reads in peaks (FRiP)

In the filtering step, the CellRanger-arc software first identifies peaks, i.e., consensus 
regions of the genome which are present in the majority of cells (“bulk peaks”, padded 
by 2000  bp on each side). Subsequently, it tests, for each cell, whether the ATAC-seq 
fragments are concentrated within these bulk peaks. If not, the droplet is considered 
empty and removed. While this filtering approach works well for homogeneous samples, 
where all cells are expected to share the same “bulk peak” calls, it might be problematic 
for heterogeneous samples containing different cell types. In such cases, nuclei belong-
ing to low abundance cell types or those possessing distinct chromatin accessibility pat-
terns might be erroneously removed during filtering. Finally, these problems are more 
pronounced in species with smaller genomes since the (uncustomizable) padding of the 
peaks by 2000 bp on each side increases the fraction of genome in peaks, which in turn 
sets a higher bound on the FRiP of nuclei that will be accepted as valid during the filter-
ing process.

To illustrate the problems of adopting this filtering strategy, we consider real single-
nucleus multiome datasets from a recent study on human gonadal development. In 
[9], the authors generated a comprehensive map of first- and second-trimester human 
gonads using a combination of single-cell and spatial genomics assays, including 10x 
multiome. Their analyses helped elucidate the mechanisms underlying the differentia-
tion of primordial germ cells (PGCs) into either pre-spermatogonia or oocytes via sign-
aling from the surrounding somatic cells, which themselves undergo differentiation in 
two stages from coelomic epithelial to supporting to pregranulosa cells. To illustrate the 
challenges of using the default 10x approach for filtering and calling cells, we focused on 
two samples from a single female donor at 21 weeks post-conception (hereafter sample 
A and sample B) [10].
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As shown in Fig. 1A, the FRiP threshold inferred by CellRanger-arc for sample A is 
larger than the mode of the distribution. This contrasts with typical quality control rec-
ommendations for scATAC-seq data, which suggest discarding droplets where the FRiP 
is less than 3 median absolute deviations (MADs) below the median FRiP [11]. We spec-
ulated that the conservative CellRanger-arc threshold was driven by inclusion of spuri-
ous genomic peaks and the 2 kb padding, which increases the fraction of the genome 
that falls in peaks. Supporting our hypothesis, excluding the shortest 10% of “bulk” 
ATAC peaks, which are most likely to be erroneous, yields a FRiP threshold that is 0.002 
smaller, leading to the inclusion of an additional 5000 droplets.

Removing nuclei using ATAC and RNA counts

Following application of this initial filter, CellRanger-arc next uses the number of ATAC 
and RNA counts to generate a secondary filter. Specifically, droplets are clustered into 
nuclei-containing and nuclei-free populations using k-means (k = 2) clustering in the 
space of log transformed ATAC and RNA counts (see Fig. 1B, C). K-means clustering is 
a hard cut-off classifier, which is problematic in cases where the buffer has high ambient 
noise (i.e., contains many RNA and ATAC fragments that were released upon permeabi-
lization of the nuclei). In particular, this can lead to a continuous distribution of counts, 
with no clear separation between the population of nuclei-containing droplets and that 
of nuclei-free droplets (see Fig.  1B, C). Consequently, similar to the first filtering step 
employed by CellRanger-arc, this can result in the inadvertent removal of nuclei with 
few accessible regions and/or transcripts expressed.

More mathematically rigorous models exist for detecting cell-free droplets in scRNA-
seq experiments [12–14]. The key concept behind the popular EmptyDrops approach 
[12] (later also incorporated into the scRNA CellRanger pipeline [15]) is to profile the 
soup, i.e., the noise in the dataset, before testing whether the distribution of gene expres-
sion counts in putative cells deviates from this profile. This approach is agnostic to 
cell types and avoids the homogeneity assumptions of CellRanger-arc. For cell calling 
on multiome data, EmptyDrops on the RNA modality could be combined with a hard 
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Fig. 1 Evaluating the performance of CellRanger-arc (cR). A Histogram of the fraction of reads in peaks (FRiP) 
of all droplets for sample A. Nuclei containing droplets are located within the bell curve and in the right tail 
of the distribution. The CellRanger-arc threshold (vertical red line) rejects more than half of the nuclei within 
the bell curve. B CellRanger-arc count threshold. A scatter plot shows the number of log(ATAC) reads (x-axis) 
versus the unique log(RNA) reads (y-axis) for each droplet, and we observe a continuum in the distribution of 
counts. Nuclei that pass CellRanger-arc’s count threshold are plotted in blue, and those that fail this threshold 
are plotted in pink. C Histogram of a linear combination of logarithmic counts that is constant along the 
k-means line. We see a continuum at the location of the threshold (vertical red line)
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cut-off threshold on the ATAC library size. However, for the reasons outlined above, 
and as exemplified in the original EmptyDrops study, any hard cut-off method will likely 
be sub-optimal, especially for cell types with distinct and sparse chromatin accessibility 
profiles.

Here, we propose a new method for discerning nuclei-containing droplets in droplet-
based sc-multiomics data. By generalizing EmptyDrops [12, 16] to the multiomic set-
ting, we use the smallest droplets to create the RNA profile and the ATAC profile of 
the soup, and then test each droplet for statistical deviations from each of these two 
profiles, retaining droplets that are statistically significantly different from the soup. We 
combine this with an optional hard cut-off filter to ensure that barcodes with very large 
total counts are always retained. Using simulations, we demonstrate that our approach 
outperforms both any method based on library-size thresholds (like CellRanger-arc) and 
EmptyDrops. Additionally, we show that by applying our method to real datasets we can 
recover more cells, including those from cell types that are almost entirely discarded by 
CellRanger-arc.

Results
Evaluating performance on simulations based on real droplet‑based data

We evaluated the performance of EmptyDropsMultiome using simulations based upon 
a high-quality multiome (ATAC + GEX) dataset generated from peripheral blood mono-
nuclear cells (PBMCs) and published by 10x [17]. This sample is from a female donor 
aged 25 and was profiled following removal of granulocytes by cell sorting. Granulocyte 
sorting is recommended by 10x for samples with high granulocyte content since, during 
NETosis, their chromatin becomes very accessible which can both decrease the sequenc-
ing depth of other cell types as well as causing CellRanger-arc to misclassify granulo-
cytes as dead cells [18]. The simulations based on the PBMC dataset were designed to 
test the ability of CellRanger-arc and EmptyDropsMultiome to correctly call nuclei from 
cell types with little chromatin accessibility and total overall expression.

To begin our simulation, we assume that CellRanger-arc has correctly identified 
nuclei-containing and nuclei-free droplets. Subsequently, we generated simulated data-
sets as follows (see Fig. 2A):

• We sample g1 (CellRanger-arc identified) nuclei.
• We perform clustering on the population of CellRanger-arc identified nuclei, and 

then we sample g2 = 2000 nuclei from the CD14 + cluster of cells, which we identify 
as monocytes. For each of these monocytes, we randomly sample 20% of the RNA 
reads and 20% of the ATAC reads. Additionally, we randomly shuffle the identity of 
10% of the expressed genes and 10% of the region names. This is supposed to simu-
late a new cell type (because of the scrambling) with low levels of transcription and 
limited genome accessibility (due to the downsampling or reads).

• We retain all of the CellRanger-arc identified empty droplets.
• We simulate more empty droplets to create a continuum in the space of counts. We 

do this by taking droplets in the ambient cluster and multiplying their count vector 
by random integers.

• The g1 + g2 cells and the empty droplets constitute our simulated dataset.
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We generate simulations for g1ǫ{2000, 5000} to consider situations where the altered 
cell types g2 are present at different relative frequencies. Finally, we apply EmptyDrops 
and EmptyDropsMultiome (both at an FDR threshold of 0.1%) as well as CellRanger-arc 
to the simulated datasets. All three methods find the populations of small and large cells 
but only EmptyDropsMultiome does so without yielding a large number of false posi-
tives (Fig. 2B and Additional file 1: Fig. S4).

In addition to using two hard cut-offs for cell calling, another limitation of CellRanger-
arc is that the user cannot customize how conservative those cut-offs are. To assess how 
these hard cutoffs impacted the method’s performance, we implemented a customizable 
version of CellRanger-arc that allows the threshold to be altered by shifting the k-means 
line of CellRanger-arc parallel to itself. To assess the impact of using different k-means 
thresholds, as well as the choice of the False Discovery Rate (FDR) threshold, we used 
receiver operating characteristic (ROC) curves to compare the performance of Empty-
Drops, EmptyDropsMultiome, and CellRanger-arc.

As can be seen in Fig.  2C, at a given FDR threshold, EmptyDropsMultiome outper-
forms both EmptyDrops and CellRanger-arc. EmptyDropsMultiome’s systematic out-
performance of EmptyDrops shows that neglecting the ATAC modality leads to a larger 
fraction of false positive calls being made. Moreover, when focusing on the simulated 
population with low levels of transcription and chromatin accessibility, the threshold-
based approach implemented by CellRanger-arc performed more poorly than both 
EmptyDrops and EmptyDropsMultiome. This suggests that CellRanger-arc performs 
sub-optimally for cell calling in samples where the spectrum of counts varies continu-
ously from empty to nuclei-containing droplets.

Moreover, to demonstrate that the results of the simulations do not depend on the 
choice of monocytes as the basis for the simulated new cell types, we also perform simu-
lations where the new cell types generated as part of the simulation are created by down-
sampling and scrambling any CellRanger-arc identified cell population. The results of these 
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simulations are consistent with those presented above (see Additional file  1: Fig. S5 and 
Methods). Finally, to show that our findings are not dependent upon the way we add noise 
to our simulated empty droplets, we performed additional simulations where a low signal-to-
noise is achieved by downsampling 2000 real cells down to noise levels (6% of RNA and 2% 
of ATAC), without simultaneously upsampling the noise. These simulations reproduce our 
superior performance against competing methods and in fact showcase how CellRanger-arc 
can miss small cell types that lie under the k-means line (see Additional file 1: Fig. S8).

Evaluating performance on real data

Having assessed its performance on simulated data, we next applied EmptyDropsMulti-
ome to the human gonadal development datasets introduced earlier. As seen in Fig. 3A, 
B, EmptyDropsMultiome identifies groups of cells that likely correspond to the ambi-
ent clusters in both the RNA and ATAC modalities. When applying the statistical test 
to identify nuclei-containing droplets, we note that EmptyDropsMultiome finds roughly 
twice as many droplets as CellRanger-arc, even after application of stringent quality con-
trol thresholds (see Fig. 3C and the”Methods” section).

As expected, the nuclei called exclusively by EmptyDropsMultiome correspond to 
those with either a small library size or with a small fraction of fragments in peaks. 

Fig. 3 Results of the application of EmptyDropsMultiome on sample A after quality control. A, B Histograms 
of ATAC and RNA counts of all the droplets. We profile the soup using only the ambient cluster in ATAC and 
RNA. The lower and upper bound of the cluster are marked by the purple and blue line and are deduced 
via a Gaussian mixture model. C Venn diagram showcasing that the droplets selected by CellRanger-arc 
(cR) are almost a subset of those selected by EmptyDropsMultiome (eD). D Histogram of the FRiP for all 
droplets selected by CellRanger-arc or EmptyDropsMultiome after quality controls. A very large number of 
droplets retained by EmptyDropsMultiome has FRiP below the threshold imposed by CellRanger-arc. E The 
distribution of droplets selected by EmptyDropsMultiome in the space of logarithmic counts. A very small 
number of droplets selected by EmptyDropsMultiome lies below the k-means line (middle line shown) and 
is likewise excluded due to CellRanger-arc’s hard cut-off on library size. For upper and lower lines, see the 
“Methods” section. F The histogram of the linear combination of logarithmic ATAC and RNA counts that is 
constant along the k-means line. Again, we see a small number of droplets that CellRanger-arc misses due to 
this hard cut-off
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Indeed, in each of samples A and B, EmptyDropsMultiome retains thousands more cells 
below the arbitrary FRiP threshold CellRanger-arc imposes (Figs.  3D and S6). It also 
retains 28 nuclei (39 in sample B) with library size smaller than the k-means threshold 
used by CellRanger-arc (Fig. 3E, F).

Of note, before applying any explicit quality control threshold on the FRiP, the distri-
bution of FRiP for nuclei identified by EmptyDropsMultiome was bounded away from 0 
(Fig. 3D), and only 8 of the called droplets (7 in sample B) have FRiP less than 1 MAD 
below the median. Moreover, the spurious discrete peaks in FRiP of Fig. 1A have simi-
larly been eliminated. These observations suggest that application of EmptyDropsMulti-
ome acts as an appropriate and cluster-free quality control for ATAC.

To explore the characteristics of the additional set of nuclei identified by Empty-
DropsMultiome, we performed clustering and cell type annotation using the union of 
droplets called as containing nuclei by either EmptyDropsMultiome or CellRanger-arc 
and visualize the output using UMAPs (Uniform Manifold Approximation and Projec-
tion) [19] (Fig. 4). UMAPs generated using the RNA modality (Fig. 4A, B) show a clear 
separation between germ cells (right hand side) and a more homogeneous collection 
of somatic cells (left hand side; Fig.  4A, B; the “Methods” section). When contrasting 
the sets of nuclei identified by CellRanger-arc and EmptyDropsMultiome, we noted 
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that while both methods well-captured nuclei associated with a somatic cell identity 
(Fig.  4C), EmptyDropsMultiome identified a much larger fraction of cells associated 
with a germ cell identity (98.5% of germ cells found by either method were captured 
by EmptyDropsMultiome compared to 18.5% by CellRanger-arc). This difference was 
observed in both sample A and in sample B, suggesting that CellRanger-arc is systemati-
cally failing to characterize this population of cells (see the “Discussion” section).

To explore the impact of using only the RNA modality for cell calling, we applied Emp-
tyDrops on the two samples, which resulted in the identification of many more puta-
tively nuclei-containing droplets than application of EmptyDropsMultiome (12,932 
vs 5056 in sample A and 10,468 vs 5246 in sample B). Among these nuclei-containing 
droplets, we also observed those corresponding to germ cells that were omitted by Cell-
Ranger-arc. However, when focusing on droplets identified exclusively by EmptyDrops, 
we observed that they were strongly enriched for a high mitochondrial contamination 
(~ 90% of them reside in the clusters with the highest mitochondrial contamination; see 
Additional file  1: Tables S1-S2 and Fig. S7). Consequently, we speculate that many of 
these newly added cells likely correspond to false positives.

In conclusion, we observed that EmptyDropsMultiome strikes a good balance between 
being able to identify rare populations that are missed by CellRanger-arc (the oocytes) 
while avoiding calling of large numbers of false positives (the mitochondrially con-
taminated additional cells found by application of EmptyDrops). Consequently, in 
conjunction with the simulations, we infer that EmptyDropsMultiome provides a high-
performant alternative to existing approaches for calling nuclei-containing droplets 
from single-cell multiome datasets.

Discussion
Multiome ATAC + GEX single-nucleus droplet-based assays are being widely adopted in 
biology, and their increased use necessitates new computational methods to handle vari-
ous tasks, including the removal of empty droplets. Currently, to our knowledge, there is 
only one method for removing empty droplets, CellRanger-arc. However, as illustrated 
above, CellRanger-arc makes parsimonious assumptions about the homogeneity of the 
cells in the sample, both in terms of their library size and their distribution of fragments 
in peaks. This can lead it to miss specific cell types in a sample, as was observed in the 
case of oocytes during gonadal development. Oocytes have highly dynamic chromatin 
[20, 21], which can result in chromatin becoming accessible in unexpected regions of 
the genome. As a consequence, oocytes can exhibit a different FRiP distribution com-
pared to other cell types. In fact, 10x Genomics is aware of this problem in the context 
of immune cells, where granulocytes also have very broadly accessible chromatin and are 
prone to be missed [18].

An alternative approach to using the FRiP quality control for cell calling would be 
to first cluster the droplets and then apply different cut-offs in each cluster (typically 3 
MAD of the cluster away from the median of the cluster). However, clustering can be 
ambiguous, especially with large numbers of droplets, making a clustering-free method 
more desirable for cell calling.

EmptyDropsMultiome is a clustering-free cell-calling algorithm that makes minimal 
assumptions about the expected types of sought-after nuclei. It relies on modeling the 
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noise (i.e., the soup), which leads to a p-value for the RNA and ATAC of each droplet 
that does not depend on its cell type. One drawback with calling cells based on deviance 
from the background is that it can lead to the inclusion of damaged cells whose expres-
sion and chromatin accessibility profiles deviate from the background. To overcome this 
challenge, it is necessary—for all methods—to apply post hoc filtering to remove low 
quality putative cells.

Conclusions
In conclusion, we show with real data and simulations that CellRanger-arc—the 
only method currently available for cell/nuclei calling in droplet-based multiome 
(ATAC + GEX) datasets—can miss specific cell types due to the homogeneity assump-
tions it uses. In contrast, our proposed method, EmptyDropsMultiome, can detect 
these and the other cell types, while outperforming EmptyDrops both in real data and 
in simulations. We envision EmptyDropsMultiome being beneficial to the wider single-
cell community, enabling better utilization of multiome data and thus avoiding potential 
errors in downstream analysis.

Methods
Methods development section

Defining the ambient RNA and ATAC profiles

In a typical 10x multiome experiment, the majority of barcodes are associated with 
roughly a single RNA count [13]. We observe this empirically for the samples introduced 
earlier (Additional file 1: Fig. S9A & C; ~ 500,000 out of more than 736,000 barcodes are 
associated with ~ 1 RNA count, representing the leftmost peak/cluster of the distribu-
tion). Since each 10x multiome kit contains around 80–100,000 beads, the majority of 
these singleton barcode observations must arise from experimental or computational 
errors during sample processing, such as the formation of chimeric molecules and 
sequencing errors that are not properly corrected [13] during initial processing.

The second cluster of the distribution of RNA counts (Additional file 1: Fig. S9A & C) 
has a mode of around 90 unique reads associated with a barcode. This is unlikely to arise 
from the formation of chimeric reads or random sequencing errors, which are expected 
to be rare events. Nevertheless, the overwhelming majority of barcodes in this cluster 
cannot be associated with droplets containing a nucleus because no more than 16,000 
nuclei (as per 10x recommendations) are loaded and ~ 60,000 barcodes contribute to this 
second cluster. Moreover, true cells are likely to contain on the order of thousands of 
mRNA molecules. Consequently, we refer to this cluster as the ambient cluster, since it 
likely consists of cDNA fragments present in the buffer that have been encapsulated by 
droplets that are nuclei-free. A similar pattern was observed for the ATAC reads (Addi-
tional file 1: Fig. S9B & D), with the exception that the ambient cluster and the cluster 
arising from technical errors are much closer than in the RNA histogram.

Creating RNA and ATAC profiles of the soup

Before creating RNA and ATAC profiles of the soup, we wanted to exclude reads that 
likely arise from technical errors (i.e., reads associated with a barcode that is seen ~ 1 
time in the entire dataset) because they can potentially decrease the discriminatory 
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power of our method. To do this, we fit a mixture of three Gaussians (one for the tech-
nical-error cluster, another for the ambient cluster, and a third for the real population of 
nuclei) to the distribution of RNA counts (similarly for ATAC reads) and then only use 
the reads from the ambient cluster to create the RNA and ATAC soup profiles.

We use bA(bR) and lA(lR) to denote the end of the technical-error ATAC (RNA) cluster 
and the end of the ambient ATAC (RNA) cluster, respectively. The end of the technical-
error cluster is defined as the library size where the probability that a droplet consists of 
technical-error reads is equal to the probability that it consists of soup. The end of the 
ambient cluster is chosen as 1.5 sigmas away from its mean for RNA and 2 sigmas for 
ATAC; we observed that this choice of parameters performs well across several different 
samples (data not shown).

Following calculation of the above parameters, we can now define the ambient RNA 
and ATAC distributions as follows. Specifically, let t(c)A , t

(c)
R  be the counts of droplet c for 

RNA and ATAC, respectively. We use X (A)
r,c to denote the ATAC count (region-by-cell) 

matrix and X (R)
g ,c for the RNA count (gene-by-cell) matrix. We calculate the RNA and 

ATAC profiles of the soup as

Finally, we apply the Good-Turing algorithm [22] separately on each of amb
(A) and 

amb
(R) to obtain the posterior expectations p(A)

r
 and p(R)

g
 of the proportion of counts 

assigned to each feature (region or gene) in the soup.

Testing deviations from the ambient profile

Having computed the ambient RNA and ATAC profiles, we test every droplet (excluding 
those in the technical-error cluster) for statistical deviations from each of these profiles. 
The formalism for how to perform this statistical comparison was developed in [12], and 
we review it briefly here in the context of sc-multiome data.

Our null hypothesis is that all RNA and ATAC counts in a droplet are due to frag-
ments from the soup. The statistical modeling of the random process that generates the 
counts in a droplet has two parts: the capturing of the free-floating fragments of the 
soup into the droplet, which is modeled using a Dirichlet distribution, and the sequenc-
ing of a sampling of them, which is modeled using the multinomial distribution. Com-
pounding the two, the counts in a droplet under the null hypothesis follow a 
Dirichlet-multinomial distribution with parameters that are a function of p(A)

r
 or p(R)

g
 

in each case.
Given the counts X (R)

g ,c for a droplet c, and the counts in the ambient profile p(R)
g
 , we 

can compute the likelihood as the probability of the former given the latter,

where N  is the number of genes and α is used to model overdispersion in the data and is 
set equal to its maximum likelihood estimate.

amb(R)g = c:bR≤t
(c)
R ≤lR

X (R)
g ,c,

amb(A)r = c:bA≤t
(c)
A ≤lA

X (A)
r,c.

L(p(R)
g
|X

(R)

g ,c
) =

t
(c)
R !Ŵ(α)

Ŵ(t
(c)
R + α)

∏N

g=1

Ŵ(X (R)
g ,c + αp(R)

g
)

X (R)
g ,c!Ŵ(αp(R)g )

,
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Similarly for the ATAC modality,

where N ′ is the number of regions/called peaks.
We now estimate the RNA p-value for droplets c with t(c)R >bR using a Monte Carlo sim-

ulation with M(R) iterations. For each iteration, we sample from a Dirichlet-multinomial 
distribution with parameters p(R)

g
 and t(c)R  and then compute the likelihood L′ for the 

resulting RNA count vector. The RNA p-value is P(R)
c =

M
(R)
c +1

M(R)+1
 , where Mc

(R) is the num-
ber of iterations for which L′ ≤ L(p(R)

g
|X

(R)

g ,c
) [23]. The ATAC p-value for droplets c 

with t(c)A >bA is calculated with another set of M(A) iterations as P(A)
c =

M
(A)
c +1

M(A)+1
.

Modeling differences between RNA and ATAC 

Since our null hypothesis is that a droplet is empty, we are only concerned with mode-
ling the capturing and sequencing of the ambient counts, not of real nuclei. This is com-
mon in both RNA and ATAC—even if distributions of RNA and ATAC counts in real 
nuclei are vastly different. Consequently, this framework is applicable to both RNA and 
ATAC, and potentially other epigenetic assays. Of note, since chromatin accessibility in 
real nuclei is binary and ambient ATAC is continuous, the risk of classifying a nucleus-
containing droplet as empty is smaller than in RNA where a cell might happen to look 
like the soup (especially if the underlying population of cells is homogeneous). On the 
other hand, the smaller dynamic range for ATAC-seq data might mean that a larger 
number of iterations is needed to accurately estimate the p-values.

Aggregating the p‑values and correcting for multiple testing across barcodes

The two p-values are aggregated into one p-value using the arithmetic mean, which is 
known to control for dependence among the p-values [24]. The aggregated p-values are 
then corrected using the Benjamini-Hochberg method [25] to control for the false dis-
covery rate (FDR). In the following, we use a FDR threshold of 0.1%.

FDR adjustment for soup droplets and optional FDR adjustment for homogeneous samples

To avoid excluding nuclei with a large number of counts that have transcriptomic or 
chromatin accessibility profiles that are similar to the ambient distribution (a problem 
for highly homogeneous populations of cells), we apply a k-means classifier (k = 2) in the 
space of log-transformed RNA and ATAC counts. Then, we draw two lines parallel to 
the k-means line: (1) that passes through the point (log10(lA), log10(lR)) and (2) that is 2

/

3 
of the way from the k-means line to the top percentile of the distribution. The FDR for 
droplets above the second line can optionally be set to 0, to prevent the exclusion of real 
nuclei that happen to look like the ambient profile, and the FDR for droplets below the 
first line is set to 1. In the analysis of the simulations and the real data, we implemented 
EmptyDropsMultiome at FDR ≤ 0.001 without setting FDR to 0 for very large droplets.

L(p(A)
r
|X

(A)

r,c
) =

t
(c)
A !Ŵ(α)

Ŵ(t
(c)
A + α)

∏N ′

r=1

Ŵ(X (A)
r,c + αp(A)

r
)

X (A)
r,c!Ŵ(αp(A)r)

,
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Analysis section: processing, quality control and annotating detected nuclei in real 

datasets and simulations

Simulations

In simulations, where a customizable version of CellRanger-arc was needed (for 
instance to create the ROC curve), we implemented our own version of the Cell-
Ranger-arc algorithm in R. We used this R implementation to call cells on the 10 k 
PBMC dataset. We then considered as our universe of droplets (i) all the droplets 
classified by CellRanger-arc as not containing nuclei, (ii) 5000 or 2000 droplets clas-
sified as nuclei containing, (iii) 2000 droplets (either randomly sampled from Cell-
Ranger-arc identified cells or selected to be monocytes) that we downsampled to 20% 
RNA and 20% ATAC, and (iv) simulated empty droplets which were generated by 
multiplying the count vectors of droplets in the ambient peaks by random integers 
uniformly sampled from [2, 10] for RNA and [2, 40] for ATAC, in order to create a 
continuum of counts from empty droplets to nuclei-containing droplets.

For the simulations of very small cells, we sampled 4000 CellRanger-arc-identified 
real cells and then we downsampled 2000 of these cells to 6% of their RNA library size 
and 2% of their ATAC size.

Moreover, for all comparisons to EmptyDrops, we used the RNA profile of the soup 
generated from the droplets in the ambient cluster in the RNA space.

Real data

On real datasets, we used the following outputs of CellRanger-arc: unfiltered matrix, 
filtered matrix, metadata file (see data availability). We applied EmptyDropsMulti-
ome on the unfiltered count matrices to ensure that information from all droplets was 
used. For all comparisons to CellRanger-arc on real data (such as Figs. 3 and 4), we 
used the barcodes listed in the column names of the filtered count matrix. Finally, for 
the FRiP values, we used the respective column from the metadata file.

EmptyDropsMultiome vs CellRanger‑arc on real data

From the set of droplets called by CellRanger-arc or by EmptyDropsMultiome, we 
selected droplets with mitochondrial (MT-) fraction lower than 3 MAD above the 
median and with FRiP more than 1 MAD larger than the median. These droplets were 
then processed with the Seurat package as follows: normalization with SCTransform 
[26], PCA inference with RunPCA on VariableFeatures, FindNeighbors using the first 
50 PCs, then FindClusters on the RNA modality using resolution of 2, and finally 
RunUMAP using 50 PCs.

We then further removed droplets classified as doublets by scDblFinder [27] with 
default parameters and the cluster indicated by scDblFinder as containing mostly 
doublets.

We then performed sample specific quality control.
For sample A, we additionally removed three clusters with the highest mitochon-

drial fraction (a cluster characterized by high expression of ribosomal genes, a cluster 
with very clear ZP3 expression, and a cluster with some oogonia-meiotic markers) 
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and one more cluster dominated by EmptyDropsMultiome droplets with a mixture of 
gene markers.

For sample B, we removed the two clusters with the highest mitochondrial fraction.
We then processed these high-quality droplets with the Seurat package as follows: 

normalization with SCTransform, PCA inference with RunPCA on VariableFeatures, 
FindNeighbors using the first 50 PCs, then FindClusters on the RNA modality using a 
resolution of 1, and finally RunUMAP using 50 PCs. The annotation of the inferred clus-
ters was performed by reproducing the dot plots in [9] (see Additional file 1: Fig. S2).

EmptyDropsMultiome vs EmptyDrops on real data

For comparisons to EmptyDrops, we used the FDR_RNA column in EmptyDropsMul-
tiome’s output and thresholded at FDR_RNA ≤ 0.1%. This means that the EmptyDrops 
approach was applied using only the ambient cluster of droplets to profile the soup. 
Then, for consistency, we implemented the exact same quality control filters described 
above. Namely, we selected droplets with mitochondrial (MT-) fraction lower than 3 
MAD above the median, and with FRiP more than 1 MAD larger than the median, and 
not classified as doublets by scDblFinder with its default settings. Since the point of the 
comparison to EmptyDrops is to illustrate how hard downstream analysis becomes due 
to the large number of extra clusters with EmptyDrops exclusive droplets, we did not 
implement cluster specific removal. Moreover, almost all of the droplets found exclu-
sively by EmptyDrops are in the top clusters by mitochondrial contamination (Addi-
tional file 1: Fig. S7 and Tables S1 and S2) and should hence be removed.
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