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Abstract 

Single-cell CRISPR screens (perturb-seq) link genetic perturbations to phenotypic 
changes in individual cells. The most fundamental task in perturb-seq analysis is to test 
for association between a perturbation and a count outcome, such as gene expression. 
We conduct the first-ever comprehensive benchmarking study of association testing 
methods for low multiplicity-of-infection (MOI) perturb-seq data, finding that existing 
methods produce excess false positives. We conduct an extensive empirical inves-
tigation of the data, identifying three core analysis challenges: sparsity, confound-
ing, and model misspecification. Finally, we develop an association testing method 
— SCEPTRE low-MOI — that resolves these analysis challenges and demonstrates 
improved calibration and power.

Background
Pooled CRISPR screens with single-cell readout (e.g., Perturb-seq [1]) have emerged as a 
scalable, flexible, and powerful technique for connecting genetic perturbations to molec-
ular phenotypes, with applications ranging from fundamental molecular biology to med-
ical genetics and cancer research [2]. In such screens, a library of genetic perturbations 
is transfected into a population of cells via CRISPR guide RNAs (gRNAs), followed by 
single-cell sequencing to identify the perturbations present and measure a rich molecu-
lar phenotype for each cell. The perturbations can target either genes [1] or non-coding 
regulatory elements [3–5], either repressing [1] or activating [6] these targets; the molec-
ular readouts can include gene expression [1], protein expression [7–9], or epigenetic 
phenotypes like chromatin accessibility [10]. Typically, perturbations are introduced at 
low multiplicity of infection (MOI), with one perturbation per cell. In cases where per-
turbations are expected to have weak effects (like regulatory-element-targeting screens), 
perturbations also can be introduced at high-MOI (with many perturbations per cell) to 
increase scalability [3–5, 11, 12].
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The most fundamental statistical task involved in the analysis of single-cell CRISPR 
screen data is to test for association between a perturbation and a univariate, count-
based molecular phenotype, such as the expression of a gene or protein. In our previ-
ous work on high-MOI single-cell CRISPR screen analysis, we discovered that existing 
methods for association testing are prone to an excess of false positive hits [13]. In that 
work, we proposed SCEPTRE, a well-calibrated method for association testing on high-
MOI data. Since low-MOI screens currently outnumber high-MOI screens, the low-
MOI association testing problem is even more pressing. A variety of methods has been 
deployed for association testing in low-MOI [1, 8–10, 14–17]. However, there is no con-
sensus as to which of these methods represents the “state of the art”; these methods have 
not undergone rigorous statistical validation and comparison [18], and in fact, there is 
no commonly accepted framework for quantifying the statistical validity of single-cell 
CRISPR screen association testing methods. Resolving these fundamental issues is 
essential to ensuring the reliability of biological conclusions made on the basis of single-
cell CRISPR screen experiments.

We aimed to address the aforementioned challenges through three contributions. 
First, we developed a simple framework for evaluating the calibration of association test-
ing methods for single-cell CRISPR screens. We then leveraged this framework to con-
duct the first-ever [18] comprehensive benchmarking study of association methods on 
low-MOI data, applying six leading methods to analyze six diverse datasets. We found 
that all existing methods exhibit varying degrees of miscalibration, indicating that results 
obtained using these methods may be contaminated by excess false positive discover-
ies. Second, to shed light on why existing methods might demonstrate miscalibration, 
we conducted an in-depth empirical investigation of the data, uncovering three core 
analysis challenges: confounding, model misspecification, and data sparsity. No exist-
ing method addresses all of these analysis challenges, explaining their lack of calibra-
tion. Finally, we developed SCEPTRE (low-MOI), a substantial extension of the original 
SCEPTRE [13] tailored to the analysis of low-MOI single-cell CRISPR screens. SCEP-
TRE (low-MOI) is based on the novel and statistically principled technique of permuting 
negative binomial score statistics (we often will refer to the low-MOI version of SCEP-
TRE simply as “SCEPTRE” for the sake of brevity). SCEPTRE addresses all three core 
analysis challenges both in theory and in practice, demonstrating markedly improved 
calibration and power relative to existing methods across datasets. SCEPTRE is available 
at katse​vich-​lab.​github.​io/​scept​re/.

Results
A survey of leading analysis methods

Association testing on low-MOI single-cell CRISPR screens is a variation on the clas-
sical single-cell differential expression testing problem (Fig.  1a). To test for associa-
tion between a given targeting CRISPR perturbation and gene, one first divides the 
cells into two groups: those that received the targeting perturbation and those that 
received a non-targeting (NT) perturbation (all other cells typically are ignored). 
One then tests for differential expression of the given gene across these two groups 
of cells, yielding a fold change estimate and p-value. One repeats this procedure for a 
(typically) large, preselected set of perturbation-gene pairs. Finally, one computes the 
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discovery set by subjecting the tested pairs to a multiplicity correction procedure (e.g., 
Benjamini-Hochberg).

We use the term “control group” to refer to the cells against which the cells that 
received the targeting perturbation are compared. As indicated above, the control group 
typically is the set of cells that received an NT perturbation (i.e., the “NT cells”). Certain 

Fig. 1  Comprehensive benchmarking study of single-cell CRISPR screen association testing methods on 
low-MOI data. a The standard paradigm for association testing on low-MOI single-cell CRISPR screen data. To 
test for association between a given targeting perturbation and gene, one tests for differential expression of 
the gene across two groups of cells: those containing the given targeting perturbation and those containing 
a non-targeting (NT) perturbation. One typically repeats this procedure for a large, preselected set of 
targeting-perturbation gene pairs, obtaining a discovery set by subjecting the resulting p-values to a multiple 
comparison correction procedure (e.g., Benjamini-Hochberg). b The calibration check paradigm. One 
constructs “null” or “negative control” perturbation-gene pairs by coupling each individual NT gRNA to the 
entire set of genes. One then assesses the calibration of a method by deploying the method to analyze these 
null pairs. Any p-values that survive the multiple testing correction procedure correspond to false positive 
discoveries. c, d Results of the calibration check benchmarking analysis on the Papalexi gene expression 
data. c QQ plot of the null p-values (colored by method) plotted on a negative log transformed scale. Gray 
region, 95% confidence band. d Number of false discoveries that each method makes on the null pairs after a 
Bonferroni correction at level 0.1. e, f Similar to panels c–d, but for the Frangieh IFN-γ data
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single-cell CRISPR screen methods, however, take as their control group the set of cells 
that did not receive the targeting perturbation (i.e., the “complement set”). In low-MOI 
screens, the NT cells generally constitute a more natural control group than the comple-
ment set, as we seek to compare the effect of the targeting perturbation to that of a “null” 
perturbation rather than to the average of the effects of all other perturbations intro-
duced in the pooled screen. In high-MOI screens, however, the complement set is the 
only choice, because few (if any) cells receive only NT perturbations.

We surveyed recent analyses of single-cell CRISPR screen data and identified five 
methods commonly in use: the default Seurat [19] FindMarkers() function based on 
the Wilcoxon test (Seurat-Wilcox), MIMOSCA [1], a t-test on the library-size-normal-
ized expressions [10], MAST [20], and a Kolmogorov-Smirnov (KS) test on the library-
size-normalized expressions [21]. We also considered applying FindMarkers() with 
negative binomial (NB) regression rather than the Wilcoxon test (Seurat-NB). These 
methods vary along several dimensions (Table 1; “the Existing method details” section), 
including their testing paradigm (two-sample test versus regression-based test), how 
they normalize the data, whether they make parametric assumptions, and whether they 
use the NT cells or the complement set as their control group. Most of these methods 
are popular single-cell differential expression procedures that have been adapted to the 
single-cell CRISPR screen setting.

Comprehensive benchmarking study of leading analysis methods

We sought to assess whether these methods are correctly calibrated (i.e., whether they 
yield uniformly distributed p-values under the null hypothesis of no association between 
the perturbation and gene). Methods that are not correctly calibrated can produce dis-
covery sets that are contaminated by excess false positives or false negatives. Unfortu-
nately, there does not exist a standard protocol for assessing the calibration of single-cell 
CRISPR screen association methods. The closest existing analysis [15] proceeds by 
applying methods to analyze gene-perturbations pairs for perturbations with known tar-
gets. Any pair where the gene is not the known target of the perturbation is considered 

Table 1  A summary of low-MOI single-cell CRISPR screen DE methods currently in use. The 
applications of each method to single-cell CRISPR screens are cited below the method name. The 
methods vary along several key axes, including the use (or lack thereof ) of parametric assumptions, 
the construction of the null distribution, the variables adjusted for, and the control group. NT, non-
targeting

Method Paradigm Parametric 
assumption

Null distribution Normalization/ 
adjustments

Control group

Seurat-Wilcox [7, 
9, 22]

Two-sample test No Asymptotic Library size NT cells

MIMOSCA [1, 8, 
23–26]

Regression-based No Permutation Library size, other 
covariates

Complement set

t-test [10] Two-sample test Yes Asymptotic Library size NT cells

MAST [15, 20] Regression-based Yes Asymptotic Library size, 
expressed genes

NT cells

KS test [16, 21] Two-sample test No Asymptotic Library size, batch NT cells

Seurat-NB (single-
cell DE)

Two-sample test Yes Asymptotic Library size NT cells
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null. As acknowledged by the original authors, this approach underestimates precision 
because downstream effects of perturbations are not taken into account.

To help fill this methodological gap, we designed a simple procedure to ascertain the 
calibration of a single-cell CRISPR screen association method (Fig. 1b). We constructed 
a set of “null” or “negative control” perturbation-gene pairs by pairing each NT gRNA 
to each gene. We then deployed a given method to analyze these null pairs (for methods 
that use the NT cells as their control group — the majority of methods — this check 
consists of comparing cells containing a given NT gRNA to cells containing all other NT 
gRNAs). The output of this check is a set of Ngene · NNT null p-values, where Ngene is the 
number of genes and NNT is the number of NT gRNAs. Since the null perturbation-gene 
pairs are devoid of signal, a well-calibrated association method should output uniformly 
distributed p-values on these pairs. Deviations from uniformity — and thus miscalibra-
tion of the method — can be detected by inspecting a QQ plot of the p-values. Quanti-
tatively, the number of null pairs passing a Bonferroni correction measures the extent of 
the miscalibration; well-calibrated methods should have roughly zero such pairs.

We note that there are two uses of the proposed calibration check procedure. The first 
use is for the goal of benchmarking existing analysis methods to identify which, if any, 
are suitable for broad application (the primary goal of this section). The second use is for 
the goal of testing whether a given method is well-calibrated on a given dataset. These 
two goals are distinct; a method may not be broadly well-calibrated but may perform 
adequately on a given dataset. In the context of the second goal, we recommend applying 
a modified calibration check where the set of negative control perturbation-gene pairs 
is matched to the set of pairs under consideration based on several criteria (described 
later).

We employed the above framework to systematically benchmark the performance of 
the existing methods, implementing each as faithfully as possible in a publicly available R 
package lowmoi (github.​com/​katse​vich-​lab/​lowmoi). We applied the calibration check 
procedure using six single-cell CRISPR screen datasets, five real and one simulated 
(Additional file 1: Tables S1-S2). The five real datasets came from three papers: Frangieh 
2021 [8] (three datasets), Papalexi 2021 [9] (one dataset), and Schraivogel 2020 [15] (one 
dataset). The data were diverse, varying along the axes of CRISPR modality (CRISPRko 
or CRISPRi), technology platform (perturb-CITE seq, ECCITE-seq, or targeted perturb-
seq), cell type (TIL, K562, or THP1), and genomic element targeted (enhancers or gene 
TSS). Notably, the Papalexi data were multimodal, containing both gene and protein 
expression measurements. For simplicity we analyzed the gene and protein modalities 
separately throughout.

Surprisingly, the results of our analyses (Fig.  1c-f; Additional file  1: Figs. S1, S2, S3) 
revealed substantial miscalibration for many dataset-method pairs. On the Papalexi data, 
for example, the KS test produced inflated p-values, yielding over 9,000 false Bonferroni 
discoveries. MAST was similarly inflated on the Frangieh IFN-γ data, falsely rejecting 
nearly 2000 null perturbation-gene pairs. MIMOSCA, meanwhile, exhibited noticeably 
non-uniform behavior on both datasets, outputting p-values strictly less than 0.26 across 
all pairs. Overall, the two best methods appeared to be Seurat-Wilcox and Seurat-NB, 
although these two methods still demonstrated clear signs of miscalibration. We noted 
that the calibration quality of a given method could vary significantly across datasets; 

github.com/katsevich-lab/lowmoi


Page 6 of 30Barry et al. Genome Biology          (2024) 25:124 

this is explained by the fact that different datasets posed different analysis challenges. 
Nevertheless, we concluded that none of the methods was adequately calibrated across 
all datasets tested, suggesting that existing methods may not be suitable for broad appli-
cation to single-cell CRISPR screen data.

Systematic identification of core analysis challenges

We conducted an extensive empirical investigation of the data to search for possible 
sources of miscalibration, uncovering three core analysis challenges: sparsity, confound-
ing, and model misspecification. No method that we examined addressed more than 
one of these analysis challenges (Additional file 1: Table S3), explaining their collective 
lack of calibration. This section is abbreviated to preserve space; interested readers can 
consult the “Details of the investigation into the core analysis challenges” section, which 
contains a more detailed description of this investigation.

Single-cell CRISPR screen data typically are sparse, both in terms of gene expression 
and perturbation presence. Many genes have nonzero expression in only a small frac-
tion of cells. On the other hand, due to the pooling of a large number of perturbations 
in a single experiment, the perturbation presence data are also sparse: most perturba-
tions are present in only a small fraction of cells. The latter sparsity distinguishes single-
cell CRISPR screens from other single-cell applications and is particularly pronounced 
in low-MOI. To summarize both sources of sparsity in a single number, we defined the 
“effective sample size” for a given perturbation-gene pair as the number of cells contain-
ing both the perturbation and nonzero gene expression.

We found that effective sample size had a substantial effect on the calibration of many 
methods under consideration (Additional file 1: Figs. S4-S5), especially those based on 
asymptotic approximations, such as Seurat-Wilcox. Asymptotic approximations tend to 
break down when the effective sample size is too low. For example, we compared the 
exact null distribution of the Wilcoxon test statistic (obtained via permutations) to the 
asymptotic Gaussian distribution used by Seurat-Wilcox; the latter is a computationally 
tractable approximation to the former in large samples. The Gaussian distribution pro-
vided a reasonable approximation to the exact null distribution for some pairs (Fig. 2a, 
left) but not others (2a, right). Furthermore, as the effective sample size decreased and 
the Gaussian approximation degraded in accuracy, the p-value obtained via the Gauss-
ian approximation likewise degraded in accuracy (Fig. 2b). Finally, stratifying the Seu-
rat-Wilcox null p-values by effective sample size on the Frangieh IFN-γ data revealed 
that pairs with small effective sample sizes yielded more inflated p-values than pairs with 
large effective sample sizes (Fig. 2c).

Second, technical factors, such as biological replicate, batch, and library size, impact 
not only a cell’s expression level but also its probability of receiving a perturbation, 
thereby creating a confounding effect that can lead to spurious associations [13]. 
All existing methods adjust for library size, but few adjust for other technical factors 
(Table 1). We studied how the variable of biological replicate confounded the Papalexi 
(gene modality) data (Fig.  2d). The Papalexi data were sequenced across three sepa-
rate biological replicates (which we labeled “R1,” “R2,” and “R3”). We visually exam-
ined the relationship between biological replicate and a given NT gRNA (“NTg4”) and 
gene (FTH1). We plotted the fraction of cells in each biological replicate that harbored 
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“NTg4” (Fig. 2d, left); additionally, we plotted the (library-size-normalized) expression 
level of FTH1 across biological replicate, superimposing boxplots indicating the 25th, 
50th, and 75th percentiles of the distribution (Fig. 2d, right). We observed clear visual 
evidence that biological replicate impacted both NTg4 presence or absence and FTH1 
expression level, creating a confounding effect. For example, cells in biological replicate 

Fig. 2  Sparsity, confounding, and model misspecification are core analysis challenges in single-cell CRISPR 
screen analysis. a The exact null distribution of the Wilcoxon test statistic (obtained via permutations; gray) on 
two pairs from the Frangieh IFN-γ data. The Wilcoxon test (and thus Seurat-Wilcox) approximates the exact 
null distribution using a standard Gaussian density (purple). For pair 1 (left), the Gaussian approximation 
to the exact null distribution is good (goodness of fit KS statistic = 0.008), while for pair 2 (right) the 
approximation is inadequate (goodness of fit KS statistic = 0.193). b A plot of pratio (defined as the ratio of 
the exact Wilcoxon p-value, pexact , to the asymptotic Wilcoxon p-value, pasymptotic ) vs. goodness of fit of the 
Gaussian distribution to the exact null distribution (as quantified by the KS statistic). Each point represents 
a gene-gRNA pair; pairs 1 and 2 (from panel a) are annotated. As the KS statistic increases (indicating 
worse fit of the Gaussian distribution to the exact Wilcoxon null distribution), pratio deviates more from one, 
indicating miscalibration. Points are colored according to the effective sample size of the corresponding pair. 
c Stratification of the Seurat-Wilcox p-values on the Frangieh IFN-γ negative control data by effective sample 
size. d An example of confounding on the Papalexi data. Left (resp. right), the fraction of cells that received 
a given NT gRNA (resp., the relative expression of a given gene) across biological replicates “R1,” “R2,” and 
“R3.” e Application of NB regression with and without covariates to the Papalexi data. f Stratification of the NB 
regression p-values on the Papalexi (gene expression) negative control data by effective sample size
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R1 were much more likely than cells in biological replicates R2 or R3 to contain NTg4; 
on the other hand, cells in biological replicate R1 exhibited a much lower expression 
level of FTH1 than cells in biological replicates R2 or R3. If one naively tested for asso-
ciation between NTg4 and FTH1 while ignoring batch, one would incorrectly conclude 
that NTg4 decreased the expression of FTH1. In fact, NTg4 exerted no effect on the 
expression FTH1, as NTg4 was a negative control gRNA.

To assess the utility of adjusting for technical factors beyond library size, we applied 
negative binomial (NB) regression — both with and without biological replicate included 
as a covariate — to the Papalexi negative control data (Fig. 2e). The variant of NB regres-
sion with biological replicate, though not perfectly calibrated, outperformed its coun-
terpart without biological replicate. Methods not adjusting for biological replicate on 
the Papalexi data (such as Seurat-Wilcox) exhibited worse calibration for large effective 
sample sizes (Additional file 1: Figs. S4 and S5), where there is more power to detect the 
spurious confounding-driven associations.

Third, methods that rely upon parametric models for the gene expression distribution, 
such as NB regression and MAST, can yield miscalibrated p-values when those models 
are misspecified [27]. To assess this effect, we monitored p-value calibration of the NB 
regression method on the Frangieh IFN-γ data while gradually increasing the effective 
sample size (Fig. 2f ). We found that the calibration quality improved until a point before 
plateauing; even for large effective sample sizes, noticeable miscalibration remained (the 
non-parametric Seurat-Wilcox method, by contrast, attained good calibration for large 
effective sample sizes on this dataset). This pattern was consistent with poor fit of the 
NB regression model, potentially due to inadequate estimation of the NB size parameter.

SCEPTRE (low‑MOI) addresses the analysis challenges

We next developed SCEPTRE (low-MOI), a method for robust single-cell CRISPR 
screen association testing on low-MOI data (Fig. 3a). For a given targeting perturbation-
gene pair, SCEPTRE first regresses the vector of gene expressions onto the vector of per-
turbation indicators and matrix of technical factors via an NB GLM (a given entry of the 
perturbation indicator vector is set to “1” if the corresponding cell contains a targeting 
perturbation and “0” if it contains a non-targeting perturbation). SCEPTRE then com-
putes the z-score zobs for a test of the null hypothesis that the the coefficient correspond-
ing to the perturbation indicator in the fitted GLM is zero. Next, SCEPTRE permutes 
the perturbation indicator vector B times (while holding fixed the gene expression vec-
tor and technical factor matrix) and recomputes a z-score for each of the permuted indi-
cator vectors, yielding B “null” z-scores. Finally, SCEPTRE fits a smooth (skew-normal) 
density to the histogram of null z-scores and computes a p-value by evaluating the tail 
probability of the fitted density based on the original test statistic zobs.

SCEPTRE possesses several appealing theoretical and computational properties. 
Theoretically, SCEPTRE is robust to the calibration threats of sparsity, confound-
ing, and model misspecification. A key observation is that the technical factors (e.g., 
biological replicate) may or may not exert a confounding effect on the perturbation 
indicator and gene expression (Fig. 3b). If confounding is absent for a given pertur-
bation-gene pair, then SCEPTRE is valid even when the NB model is misspecified 
or the problem is highly sparse. On the other hand, if confounding is present, then 
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SCEPTRE retains validity if the NB model is correctly specified and the problem is 
not too sparse (Fig. 3c) (in fact, in the latter case, empirical results indicate that the 
NB model need only be specified correctly up to the dispersion parameter, sidestep-
ping the difficult problem of NB dispersion parameter estimation [28, 29]). In this 
sense, SCEPTRE is the only method that addresses all three core analysis challenges 
(Additional file 1: Table S3). We empirically demonstrated the above key robustness 
property of SCEPTRE in simulation experiments (Additional file 1: Figs. S8 and S11).

Fig. 3  SCEPTRE addresses the core analysis challenges of sparsity, confounding, and model misspecification 
in theory. a The SCEPTRE algorithm. First, the gene expressions are regressed onto the perturbation indicators 
and technical factors, and the z-score zobs corresponding to the perturbation indicator is computed. Second, 
the perturbation indicators are permuted (while the gene expressions and technical factors are held fixed) 
and the z-score is recomputed, yielding B “null” z-values. Third, a smooth density is fit to the histogram of 
the null z-values. Fourth, a p-value is computed by evaluating the tail probability of the fitted density at 
zobs . b A diagram representing the relationship between the variables in the analysis. The technical factors 
often (but not always) exert a confounding effect on the perturbation indicator and gene expression. 
c A diagram illustrating the robustness properties of SCEPTRE. The circles represent analysis challenges. A 
perturbation-gene pair can be affected any subset of the analysis challenges. The color in each region of 
the diagram indicates whether SCEPTRE is valid on pairs affected by that subset of analysis challenges (blue, 
yellow, or green = valid; gray = not valid in general). For regions in which SCEPTRE is valid, the color of the 
region indicates why SCEPTRE is valid (yellow = NB model, blue = permutations). The validity of SCEPTRE is 
overdetermined on pairs unaffected by any analysis challenge (green region) due to the combination of the 
NB model and permutations
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SCEPTRE also is performant, capable of analyzing hundreds of perturbation-gene 
pairs per second. We attained this efficiency by implementing several computational 
accelerations. First, we elected to use a score test (as opposed to a more standard Wald 
or likelihood ratio test) to compute the NB z-scores; the score test enabled us to fit a sin-
gle NB GLM per perturbation-gene pair and share this fitted GLM across all permuted 
perturbation indicator vectors. Second, we derived a new algorithm for computing GLM 
score tests, which is hundreds of times faster than the classical algorithm when the per-
turbation indicator vector is sparse, as is often the case in single-cell CRISPR screen 
analysis (Additional file  1: the “Comparing the spectral decomposition algorithm to 
the QR decomposition algorithm for computing GLM score tests” section). Finally, we 
developed a novel strategy — “inductive without replacement sampling” — for recycling 
compute across permutation tests in which each test contains the same number of con-
trol units (Additional file 1: the “Inductive without replacement sampling” section).

A natural question is whether SCEPTRE is better (in some sense) than the simpler 
method that entails “regressing out” the technical factors via an NB GLM, extracting the 
residuals from the fitted GLM, and then performing a permutation test on the residu-
als (taking, for example, the difference in means across treatment and control groups as 
the test statistic). We answered this question in the affirmative, finding that SCEPTRE 
was considerably more powerful than the alternative, residual-based method on both 
real and simulated data (Additional file 1: the “Comparing the score statistic to the dif-
ference-in-residual-means statistic” section). Finally, we note that SCEPTRE (low-MOI) 
is inspired by, but distinct in several ways from SCEPTRE (high-MOI) [13]. We clarify 
similarities and differences between these two methods in the “Comparison of SCEP-
TRE (low-MOI) and SCEPTRE (high-MOI)” section.

Application of SCEPTRE to negative and positive control data

We included SCEPTRE in the calibration benchmarking analysis presented before. An 
inspection of the QQ plots revealed that SCEPTRE markedly improved on the calibra-
tion of the two best existing methods, namely Seurat-Wilcox and Seurat-NB (Fig.  4a, 
b). For example, on the Frangieh IFN-γ data, SCEPTRE made one Bonferroni rejection 
and yielded p-values that lay mostly within the gray 95% confidence band. The Seurat 
methods, by contrast, made fifteen false rejections each and produced p-values that 
fell considerably outside the confidence band. Next, we tabulated the number of Bon-
ferroni-significant false positives for each dataset-method pair (Fig.  4c; smaller values 
are better). SCEPTRE generally made the fewest number of false discoveries among all 
methods. On average over datasets, SCEPTRE made only 0.7 false discoveries, a roughly 
tenfold improvement over the Seurat methods.

Next, we assessed the power of the methods by applying them to positive con-
trol data. We constructed positive control pairs for each dataset by coupling per-
turbations targeting TSSs to the genes (or proteins) regulated by these TSSs. We 
examined the number of “highly significant” discoveries — operationally defined as 
rejections made at level α = 10−5 — made by each method on each dataset (Fig. 4d; 
larger values are better). Methods that exhibited extreme miscalibration on a given 
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dataset (defined as > 50 Bonferroni rejections on the negative control pairs of that 
dataset) were excluded from the positive control analysis, as assessing the power of 
such methods is challenging. We found that SCEPTRE matched or outperformed 
the other methods with respect to power on every dataset (while at the same time 
achieving better calibration on negative control data).

Fig. 4  SCEPTRE demonstrates improved calibration and power relative to existing methods across datasets. 
a (resp. b) QQ plot of the p-values outputted by Seurat-NB, Seurat-Wilcox, and SCEPTRE on the Frangieh 
IFN-γ (resp., Papalexi gene expression) negative control data. Gray band, 95% confidence region. c Number 
of false discoveries (at Bonferroni correction level 0.1) on the negative control data for each method-dataset 
pair. d Number of true discoveries (significant at level α = 10−5 ) on the positive control data for each each 
method-dataset pair
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Pairwise quality control and experimental design

Quality control (QC) — the removal of low-quality cells — is a key step in the analysis 
of single-cell data. In the context of single-cell CRISPR screens, it is useful not only 
only to remove low-quality cells but also low-quality perturbation-gene pairs. We term 
this latter type of QC “pairwise QC.” As discussed previously, effective sample size — 
the number of cells containing both the perturbation and nonzero gene expression 
— affects the calibration of several methods considered. It also affects power, as small 
effective sample sizes yield low power and therefore needlessly increase the multiplicity 
burden. We found that SCEPTRE rarely rejected positive control pairs with an effective 
sample size below seven (Additional file  1: Fig. S9); moreover, SCEPTRE maintained 
calibration for negative control pairs with an effective sample size of seven and above 
(Additional file 1: Figs. S4 and S5). For this reason, our pairwise QC strategy consisted 
of filtering for pairs with an effective sample size of seven or greater. We applied this 
pairwise QC throughout.

Additionally, we reasoned that our results on the power and calibration of SCEPTRE 
might inform questions related to the experimental design of single-cell CRISPR screens, 
such as the number of cells per perturbation required to ensure adequate power and cal-
ibration of SCEPTRE on a given dataset. We derived a simple mathematical expression 
for the minimum number of cells that must contain each perturbation so as to ensure 
that a specified fraction of pairs passes pairwise QC, where the pairwise QC threshold 
was selected on the basis of SCEPTRE’s calibration and power at different effective sam-
ple sizes. We concluded that, on a dataset of standard sparsity (e.g., the Frangieh IFN-γ 
dataset or the Papalexi gene modality dataset), each perturbation should be contained 
within at least 50–65 cells to ensure that 95% of pairs pass pairwise QC (see Additional 
file 1: the “Experimental design considerations” section for more details).

Application of SCEPTRE for discovery analyses

The standard workflow involved in applying SCEPTRE to analyze a new single-cell 
CRISPR screen dataset consists of three main steps. First, the user prepares the data to 
pass to SCEPTRE and defines the “discovery set,” which is the set of perturbation-gene 
pairs that the user seeks to test for association (a reasonable default choice is the set of 
all possible pairs). Second, the user runs the “calibration check” to verify that SCEPTRE 
is adequately calibrated on the dataset under analysis. The calibration check involves 
applying SCEPTRE to analyze a set of automatically constructed negative control pairs. 
These negative control pairs are “matched” to the discovery pairs in several respects. For 
example, the negative control pairs and discovery pairs are subjected to the exact same 
pairwise QC, and the number of negative control pairs is set equal to the number of 
discovery pairs. If the calibration check fails, the user can take steps to improve calibra-
tion, such as adding covariates or varying the QC thresholds. After verifying adequate 
calibration, the user runs the “discovery analysis,” which entails applying SCEPTRE to 
analyze the pairs contained in the discovery set (Fig. 5a).

To illustrate the above workflow, we applied SCEPTRE to carry out a complete trans 
analysis of the Papalexi (gene expression) and Frangieh (control) datasets. Many of the 
genes targeted for knockout in these datasets were transcription factors (TFs); thus, our 
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main biological objective was to map the TFs to their target genes. We carried out a cali-
bration check and discovery analysis on both datasets (Fig. 5b). These fairly large analy-
ses completed within a matter of hours on a single laptop processor and required a few 
gigabytes of memory.

To validate the results of the discovery analysis, we identified the downstream target 
genes of the transcription factors STAT1 and IRF1 using cell-type-relevant ChIP-seq 
data [30]. We examined the degree of concordance between the discovery set produced 
by each method and the ChIP-seq-identified targets (Additional file 1: Fig. S7). To this 
end, for each method, we constructed a two-by-two contingency table of genes con-
tained within the discovery set of the method and genes whose TSS overlapped with 
a ChIP-seq peak. We computed a p-value (via a Fisher exact test) on this contingency 
table, quantifying the extent to which the method’s discovery set was enriched for ChIP-
seq signal.

We made several observations. First, the discovery set of the KS test did not dem-
onstrate enrichment for ChIP-seq signal (enrichment p > 0.5 ), likely because the KS 
test produced a large number of false discoveries. Second, and somewhat surprisingly, 
MIMOSCA’s discovery set exhibited the greatest degree of enrichment for ChIP-seq 
signal (among all methods) on STAT1 and the lowest degree of enrichment (among all 
methods, excluding the KS test) on IRF1. However, MIMOSCA made many fewer dis-
coveries than any other method on the discovery data (in particular, 956 and 875 fewer 

Fig. 5  Applying SCEPTRE to make biological discoveries. a The standard workflow involved in applying 
SCEPTRE to a new dataset, using the Papalexi gene expression data as a running example. First, SCEPTRE 
is applied to analyze a set of automatically constructed negative control pairs (the “calibration check”). 
The resulting negative control p-values are plotted on a QQ plot to ensure uniformity (upper left), and the 
negative control log-fold changes are plotted on a histogram to ensure symmetry about zero (upper right). 
Second, SCEPTRE is applied to analyze the discovery pairs (the “discovery analysis”). The discovery p-values are 
superimposed over the negative control p-values to ensure that signal is present in the discovery set (lower 
left), and a volcano plot is created (lower right). b Computational performance metrics of SCEPTRE on the 
Frangieh (control) and Papalexi (gene expression) data. A complete trans analysis was conducted on both 
datasets. Several metrics are reported, including calibration check run time, calibration check peak memory 
usage, discovery analysis run time, and discovery analysis peak memory usage
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discoveries than the next closest method for IRF1 and STAT1), a trend consistent with 
MIMOSCA’s results on the the positive control data1 (Fig. 4). Among the methods that 
made a large number of discoveries on both the positive control data and the discov-
ery data (i.e., all methods except for MIMOSCA), SCEPTRE ranked second out of six 
for ChIP-seq signal enrichment on both IRF1 and STAT1, with the top method being 
different across the two transcription factors. Thus, SCEPTRE appeared to exhibit con-
sistently good performance on the discovery data (and more broadly across all of our 
analyses; Fig. 4), increasing our confidence in the results.

Discussion
Single-cell CRISPR screens have emerged as a powerful method for linking genetic per-
turbations to rich phenotypic profiles in individual cells. Although poised to impact a 
variety of research areas, single-cell CRISPR screens will play an especially important 
role in dissecting the regulatory logic of the noncoding genome. The bulk of genetic 
risk for diseases lies in noncoding regions, implicating dysregulation of gene expression 
[31–33]. A major challenge in genetics, therefore, is to map noncoding disease variants 
to the genes that they target, target genes to the molecular programs that they regu-
late, and — ultimately — molecular programs to disease [34]. Single-cell screens have 
enabled breakthrough progress on these tasks. For example, two recent studies lever-
aged high-MOI single-cell screens to perturb blood disease [11] and cancer [35] GWAS 
variants (in some cases at single nucleotide resolution) and link these variants to target 
genes in disease-relevant cell types (both studies used SCEPTRE (high-MOI) to analyze 
their data). Another recent study leveraged low-MOI single-cell screens to knock down 
genes regulated by heart disease GWAS variants and map these genes to downstream 
molecular programs [34]. Given the promise that single-cell screens have demonstrated 
in understanding noncoding variation, a wave of single-cell screens aiming to link non-
coding variants to genes and genes to molecular programs likely will emerge over the 
coming decade.

It is therefore crucial that reliable methods for single-cell CRISPR screen data analysis 
be made available. The broad objective of this work was to put single-cell CRISPR screen 
analysis onto a more solid statistical foundation. To this end, we devised a simple frame-
work for assessing the calibration and power of competing methods; applied this frame-
work to conduct the first-ever comprehensive benchmarking study of existing methods; 
identified core statistical challenges that the data pose; and developed a method, SCEP-
TRE, that combines careful modeling with a resampling framework to produce a well-
calibrated, powerful, fast, and memory-efficient test of association. Taken together, these 
contributions help bring statistical rigor to single-cell CRISPR screen data analysis. Fur-
thermore, given the appealing theoretical properties and empirical performance of the 
proposed method, we anticipate that the method could be extended (with some mod-
ification) to applications beyond single-cell CRISPR screens, such as single-cell eQTL 
analysis and single-cell case-control differential expression analysis [36].

1  One potentially could make more discoveries using MIMOSCA by increasing the tuning parameter B, i.e., the number 
of times that the dataset is permuted and the test statistic recomputed. However, doing so would considerably increase 
computational cost.
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We identified sparsity, confounding, and model misspecification as key challenges in 
single-cell CRISPR screen analysis. However, the data pose additional challenges that 
SCEPTRE does not currently address. First, some NT gRNAs may have off-targeting 
effects. In such cases, testing for association by comparing cells that contain a targeting 
perturbation to those that contain an NT perturbation could result in a loss of error con-
trol. At least one prior work has attempted to resolve this problem [37]. Second, some 
targeting gRNAs are ineffective, i.e., they fail to perturb their target. Including such 
defective gRNAs in the analysis can result in a loss of power. Several methods, includ-
ing MIMOSCA [1], MUSIC [38], and Mixscape [9], have been developed to address 
this issue. Third, it is challenging to distinguish between direct and indirect effects in 
the sense that perturbations can be associated with their direct targets or with targets 
further downstream. Disentangling direct from indirect effects likely admits a statisti-
cal solution, but to our knowledge, this problem remains unaddressed. Finally, genes 
often are co-expressed in “gene modules.” An exciting opportunity is to pool informa-
tion across genes within the same module to increase the power of perturbation-to-gene 
association tests; the recent method GSFA does this in a Bayesian framework [39].

Conclusions
Single-cell CRISPR screens are a promising technology for functional genomics discov-
ery. However, the analysis of single-cell CRISPR screen data presents several statistical 
and computational challenges, demanding the development of new analytic methods. 
The SCEPTRE toolkit, which now supports both low- and high-MOI CRISPR screens, 
provides practitioners with a unified solution for statistically reliable and computation-
ally efficient single-cell CRISPR screen differential expression analysis.

Methods
Dataset details

We downloaded, processed, and harmonized five single-cell CRISPR screen datasets 
(Additional file  1: Table  S1), inheriting several data-related analysis decisions made 
by the original authors. First, we used the gRNA-to-cell assignments that the original 
authors used, thereby circumventing the need to assign gRNAs to cells using gRNA 
UMI and/or read count matrices. Papalexi and Schraivogel employed a simple strategy 
for this purpose: Papalexi identified the gRNA with the greatest UMI count in a given 
cell and assigned that gRNA to the cell, while Schraivogel assigned gRNAs by threshold-
ing gRNA UMI counts. Frangieh, meanwhile, assigned gRNAs to cells via a more com-
plex approach involving a separate dial-out PCR procedure. We found the gRNA-to-cell 
assignments adequate and thus used them without modification. Next, we inherited the 
cell-wise QC that the original authors implemented. For example, Papalexi removed 
likely duplets (as determined by the Seurat function MULTIseqDemux [40, 41]) as 
well as cells with excessive mitochondrial content and low gene expression.

We generated a synthetic, negative control single-cell CRISPR screen dataset to use 
for benchmarking the calibration of the competing methods. The synthetic dataset con-
tained 5000 genes, 25 gRNAs, and 10,000 cells. We generated the matrix of gene expres-
sions by sampling counts from a negative binomial distribution, allowing each gene to 
have its own mean and size parameter (we drew gene-wise means and sizes i.i.d. from 



Page 16 of 30Barry et al. Genome Biology          (2024) 25:124 

a Gamma(0.5, 2) distribution and a Unif(1, 25) distribution, respectively). We randomly 
inserted gRNAs into cells such that the expected number of cells per gRNA was equal 
across gRNAs. The dataset was entirely devoid of signal and confounding: no gRNA 
affected the expression of any gene, and no technical factors impacted the gRNA assign-
ments or gene expressions. We also generated a synthetic positive control dataset to 
assess the power of the competing methods under known ground truth. The synthetic 
positive control dataset contained 125 genes, 25 positive control gRNAs, 100 negative 
control gRNAs, and 15,000 cells. The mean expression of each gene across “treatment” 
and “control” groups was drawn (separately) from a Gamma(0.5, 2) distribution. The 
gene-wise sizes were drawn from a Unif(1, 25) distribution. Like the negative control 
dataset, the positive control dataset was devoid of confounding.

We applied our own minimal gene-wise, gRNA-wise, and cell-wise QC uniformly to 
the datasets. We filtered for genes expressed in at least 0.005 of cells, gRNAs expressed 
in at least 10 cells, and cells with exactly one gRNA, respectively. Additional file  1: 
Table  S2 summarizes the statistical attributes (e.g., number of genes, number of cells, 
etc.) of each dataset. Finally, we obtained the set of cell-specific covariates (or technical 
factors) for each dataset, which we list below. Frangieh co-culture, control, and IFN-γ 
datasets: number of gene UMIs, number of genes expressed; Papalexi (gene modality): 
number of gene UMIs, number of genes expressed, biological replicate, and percent of 
gene transcripts that mapped to mitochondrial genes; Papalexi (protein modality): num-
ber of protein UMIs, biological replicate, and percent of gene transcripts that mapped 
to mitochondrial genes; Schraivogel: number of gene UMIs, number of genes expressed, 
sequencing lane.

Existing method details

We benchmarked the performance of six methods: Seurat-Wilcox, Seurat-NB, t-test, 
MAST, KS test, and MIMOSCA. The first five of these methods are generic single-cell 
differential expression methods that have been adapted to single-cell CRISPR screens 
(either by us or other single-cell researchers), while MIMOSCA is specific to single-cell 
screens. To facilitate benchmarking of the methods, we implemented all in an R pack-
age lowmoi (github.​com/​Katse​vich-​Lab/​lowmoi). We implemented Seurat-Wilcox and 
Seurat-NB via a call to the Seurat FindMarkers() function. In the case of Seurat-
Wilcox, we called NormalizeData() before FindMarkers() to normalize the gene 
expressions by dividing the gene expressions by library size. Next, we implemented the 
t-test via a call to t.test() in R. Following Liscovitch et al. [10], we normalized the 
gene expression vector for a given gene-perturbation pair by dividing by the library size, 
subtracting the mean, and dividing by the standard deviation. We used the implementa-
tion of MAST that Schraivogel et al. used to analyze their single-cell screen data [15]. To 
this end, we copied and pasted relevant portions of the Schraivogel et al. Github code-
base (github.​com/​argsc​hwind/​TAPseq_​manus​cript) into lowmoi. Similarly, we used the 
implementation of the KS test that Replogle et al. used to analyze their single-cell screen 
data [16], again copying and pasting relevant portions of the corresponding codebase 
into lowmoi (github.​com/​thoma​smaxw​ellno​rman/​Pertu​rbseq_​GI). Finally, we imple-
mented MIMOSCA by copying and pasting relevant sections of the MIMOSCA package 
(github.​com/​klarm​an-​cell-​obser​vatory/​Pertu​rb-​CITE-​seq) into lowmoi. Replogle et al.’s 

github.com/Katsevich-Lab/lowmoi
github.com/argschwind/TAPseq_manuscript
github.com/thomasmaxwellnorman/Perturbseq_GI
github.com/klarman-cell-observatory/Perturb-CITE-seq
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implementation of the KS test and MIMOSCA both were written in Python. Thus, we 
used the reticulate package to access these methods from within R. To ensure con-
sistency of the API across methods, we implemented the methods in such a way that 
each took the same inputs and returned the same output. Finally, to ensure correctness, 
we tested for agreement between the output of our implementations and those of the 
original methods (when possible).

Some methods have an internal QC step in which gene-perturbation pairs that are 
unpromising or low-quality (as determined by the method itself ) are removed. For 
example, Seurat DE by default filters out gene-perturbation pairs for which the log-fold 
change of the expression of the gene (across the treatment and control cells) falls below 
a certain threshold. We disabled such method-specific pairwise QC, allowing us to apply 
competing methods to the exact same set of gene-perturbation pairs on each dataset, 
facilitating head-to-head comparisons across methods.

We applied several variants of NB regression to the data. First, as described above, we 
applied Seurat-NB the negative control and positive control pairs of all datasets. Fur-
thermore, as part of our investigation into the analysis challenges (the “Systematic iden-
tification of core analysis challenges” section), we applied NB regression as implemented 
by the MASS [42] package to the Papalexi (gene expression) and Frangieh IFN-γ negative 
control data (these results are depicted in Fig. 2e–f). We used the MASS implementation 
of NB regression in exploring the analysis challenges, as MASS is slightly more flexible 
than Seurat, in particular enabling the straightforward inclusion of covariates. Within 
the context of MASS NB regression, we tested for association between a perturbation 
and the expression of a gene via a GLM score test, as implemented by the statmod [43] 
package. We elected to use a score test (as opposed to a more standard Wald or likeli-
hood ratio test) test to make our implementation of NB regression more comparable to 
SCEPTRE, as SCEPTRE uses a permutation test built upon an NB regression score test 
statistic.

Details of the calibration check procedure

We describe the calibration check procedure in greater detail. Suppose there are d dis-
tinct NT gRNAs; index these gRNAs from 1 to d. Let C1 denote the set of cells containing 
NT gRNA 1, C2 the set of cells containing NT gRNA 2, etc. Let C = C1 ∪ C2 ∪ · · · ∪ Cd 
denote the set of cells containing any NT gRNA (i.e., the “NT cells”). Next, let C \ Ci 
denote the set of cells containing any NT gRNA excluding NT gRNA i. Additionally, let 
T  denote the set of cells containing any targeting gRNA (observe that T ∪ C is the set of 
all cells). Finally, let T ∪ C \ Ci denote the set of all cells excluding the cells that contain 
NT gRNA i. Let there be p distinct genes.

Suppose we seek to check the calibration of a given method. The way in which we 
deploy the method to analyze a given negative control pair depends on whether the 
method uses the NT cells or the complement set as its control group (Table 1). Consider 
the negative control pair formed by coupling NT gRNA i to gene j. If the method uses 
the NT cells as its control group (e.g., Seurat-Wilcox, Seurat-NB, SCEPTRE, etc.), then 
we apply the method to test for differential expression of gene j across the groups of cells 
Ci and C \ Ci. By contrast, if the method uses the complement set as its control group 
(e.g., MIMOSCA), then we apply the method to test for differential expression of gene 
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j across the groups of cells T ∪ C \ Ci and Ci . The effective sample size of the given nega-
tive control pair is the number of cells in the set Ci for which the expression of gene j is 
nonzero. In carrying out our benchmarking analysis (Fig. 1c, f, Fig. 4), we restricted our 
attention to the subset of the d · p possible negative control pairs whose effective sample 
size was greater than or equal to seven.

For testing calibration on a given input dataset, the SCEPTRE software automatically 
constructs a set of negative control pairs that is matched to the pairs in the “discovery 
set” — i.e., the set of targeting perturbation-gene pairs that the user seeks to test for 
association — in several respects. First, the negative control pairs and discovery pairs are 
subjected to the same pairwise QC. Second, the number of negative control pairs is set 
equal to the number of discovery pairs (assuming the number of possible negative con-
trol pairs matches or exceeds the number of discovery pairs). Third, if the user elects to 
“group” together gRNAs that target the same site (as opposed to running an analysis in 
which singleton gRNAs are tested for significance), then the negative control pairs like-
wise are constructed by “grouping” together individual NT gRNAs. Overall, the negative 
control pairs are designed to mirror the discovery pairs, the difference being that the 
negative control pairs are devoid of biological signal.

Details of the investigation into the core analysis challenges

We describe in greater detail our empirical investigations into the core analysis chal-
lenges of sparsity, confounding, and model misspecification (as described in the 
“Systematic identification of core analysis challenges” section).

Sparsity

To explore the impact of sparsity on calibration, we deployed the two-sample Wilcoxon 
test to a randomly selected subset of 5,400 negative control gene-gRNA pairs from the 
Frangieh IFN-γ data (the pairs were selected such that each had an effective sample size 
of one or greater). Following Seurat-Wilcox, we deployed the Wilcoxon test as follows: 
first, we normalized the gene expressions by dividing the raw counts by the cell-specific 
library sizes; then, we applied the Wilcoxon test (as implemented by the wilcox.test 
function from the stats package in R) to the normalized data, comparing the treatment 
cells to the control cells. Finally, we computed the Wilcoxon p-value in two ways. First, 
we calculated the asymptotic p-value pasymptotic by comparing the Wilcoxon test statistic 
to the standard Gaussian distribution. This approach implicitly assumes that the number 
of cells with nonzero expression (across both groups) is large enough for the null distri-
bution of the Wilcoxon test statistic to be approximately Gaussian. Next, we calculated 
the exact p-value pexact by (i) computing the Wilcoxon statistic on the original data; (ii) 
permuting the gRNA indicator vector B = 200, 000 times (while holding fixed the vector 
of normalized gene expressions), resulting in B permuted datasets; (iii) computing the 
Wilcoxon test statistic on each of these B permuted datasets, yielding a permutation (or 
“null”) distribution of Wilcoxon statistics; and then (iv) calculating the p-value pexact by 
comparing the original Wilcoxon statistic to the null Wilcoxon statistics [44]. The latter 
approach, though computationally expensive (due to the slowness of computing the Wil-
coxon statistic), yields a much more accurate p-value than the asymptotic approach for 
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lowly expressed genes. Seurat-Wilcox returns the asymptotic p-value pasymptotic instead 
of the exact p-value pexact in virtually all cases2.

To study the impact of making the above approximation, we plotted the asymptotic 
null distribution of the Wilcoxon statistic (i.e., the standard Gaussian distribution) 
superimposed on top of the exact null distribution of the Wilcoxon statistic (i.e., the 
permutation distribution) for two pairs from the Frangieh IFN-γ negative control data 
(Fig. 2a). The asymptotic and exact distributions must be highly similar for the asymp-
totic p-value pasymptotic to be accurate. We measured goodness of fit of the Gaussian 
distribution to the exact null distribution by calculating the Kolmogorov-Smirnov (KS) 
statistic; this statistic ranges from zero to one, with smaller values indicating better fit of 
the Gaussian distribution to the exact null distribution. We reported the KS statistic for 
both example pairs in the panels of the plot.

Next, we calculated pratio , defined as the ratio of the exact p-value pexact to the asymp-
totic p-value pasymptotic , for each of the the 5,400 negative control pairs sampled from 
the Frangieh IFN-γ data. A pratio value of one indicates that the asymptotic and exact 
p-values coincide; a pratio value of greater than one (resp., less than one), on the other 
hand, indicates inflation (resp., deflation) of the asymptotic p-value relative to the exact 
p-value. We sought to explore visually how a small effective sample sizes lead to deg-
radation of the Gaussian approximation, thereby resulting in p-value miscalibration 
(as reflected by pratio values that deviate from one). To this end, we plotted pratio versus 
goodness of fit of the the Gaussian distribution to the exact null distribution (as quanti-
fied by the KS statistic) for each pair (Fig. 2b). We colored the points according to their 
effective sample size. Pairs 1 and 2 from Fig. 2a were annotated in Fig. 2b.

Finally, to directly assess the impact of sparsity on calibration, we applied Seurat-Wil-
cox to the IFN-γ negative control data, binning the pairs into five categories based on 
their effective sample size. The bins were defined by effective sample sizes in the ranges 
[7,10], [11,16], [17,27], [28,46], and [47,121]. The bins were constructed such that an 
approximately equal number of pairs would fall into each bin. We observed that as the 
effective sample size increased, the Seurat-Wilcox p-values converged to uniformity, 
illustrating that sparsity is a cause of the miscalibration of Seurat-Wilcox.

Confounding

We first explored how the variable of biological replicate confounded the Papalexi 
(gene modality) data. The Papalexi data were generated and sequenced across three 
independent experimental replicates, which we labeled “R1,” “R2,” and “R3” (the 
original data contained a fourth biological replicate as well, but this replicate was 
removed by the original authors, as it was deemed to be of low quality). We explored 
the relationship between biological replicate and a given NT gRNA (“NTg4”) and a 
given gene (FTH1). We plotted the fraction of cells in each biological replicate that 
received the NT gRNA (Fig.  2d, left); additionally, we created a violin plot of the 
relative expression of the gene across biological replicate (the relative expression ri 

2  The wilcox.test function on which Seurat-Wilcox relies returns pexact only if (i) there are fewer than 50 cells 
across both treatment and control groups and (ii) no two cells (in either the treatment or the control group) have the 
same normalized expression level. This condition is expected to hold rarely, if ever.
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of the gene in cell i was defined as ri = 1000 · log (ui/li + 1), where ui was the UMI 
count of the gene in cell i, and li was the library size of cell i. The violin plots were 
truncated at a relative expression level of 50). We superimposed boxplots indicating 
the 25th, 50th, and 75th percentiles of the empirical relative expression distributions 
on top of the violin plots (Fig. 2d, right). We observed clear visual evidence that bio-
logical replicate impacted both NTg4 and FTH1, creating a confounding effect.

Next, we extended the above analysis to investigate the entire set of NT gRNAs 
and genes. First, we tested for association between each NT gRNA and biological 
replicate. To this end, we constructed a contingency table of gRNA presences and 
absences across biological replicate, testing for significance of the contingency table 
using a using a Fisher exact test (as implemented in the R function fisher.test). 
Next, we tested for association between the relative expression of each gene and bio-
logical replicate. To do so, we fit two NB regression models to each gene; the first 
contained only library size as a covariate, while the second contained both library 
size and biological replicate as covariates. We compared these two models via a 
likelihood ratio test, yielding a p-value for the test of association between relative 
gene expression and biological replicate. Finally, we created QQ plots of the result-
ing p-values (Fig. S6; gRNA p-values, left; gene p-values, right). An inflation of the 
p-values across modalities suggested that the bulk of gene-NT gRNA pairs was con-
founded by biological replicate.

Finally, we directly assessed the impact of adjusting for biological replicate (along-
side other potential confounders) by applying two variants of NB regression to the 
Papalexi (gene modality) negative control data: (i) NB regression with library size 
(only) included as a covariate and (ii) NB regression with library size as well as all 
potential confounders (including biological replicate) included as covariates. We 
plotted the negative control p-values on a QQ plot (Fig.  2e). The variant of NB 
regression with confounders included as covariates exhibited superior calibration, 
demonstrating that confounding is an analysis challenge. To reduce the effect of 
sparsity (i.e., the first analysis challenge), we restricted our attention in this plot to 
gene-gRNA pairs with an effective sample size greater than 10.

Model misspecification

To explore the analysis challenge of model misspecification, we applied NB regres-
sion to the Frangieh IFN-γ  negative control data. As in Fig. 2c (in which we applied 
Seurat-Wilcox to the Frangieh IFN-γ  negative control data), we partitioned the pairs 
into five categories based on the effective sample size of each pair. As the number of 
nonzero treatment cells increased, the NB regression p-values failed to converge to 
uniformity (in contrast to the Seurat-Wilcox p-values). The key difference between 
Seurat-Wilcox and NB regression is that the former is a nonparametric method 
while the latter is parametric method. Thus, we reasoned that miscalibration of 
the NB regression p-values likely was due to misspecification of the NB regression 
model (we note that miscalibration of the NB regression p-values likely was not due 
to confounding, as Seurat-Wilcox, which does not adjust for confounding, was well-
calibrated for pairs with high expression levels).
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SCEPTRE (low‑MOI) overview

Consider a given gene and perturbation. We call the cells that contain the target-
ing perturbation the “treatment cells” and those that contain an NT perturbation 
the “control cells.” Suppose there are n cells across treatment and control groups. 
Let Y = [Y1, . . . ,Yn]

T be the vector of raw gene (or protein) expressions, and let 
X = [X1, . . . ,Xn]

T be the vector of perturbation indicators, where an entry of one 
(resp., zero) indicates presence of the targeting (resp. NT) perturbation. Finally, for cell 
i ∈ {1, . . . , n}, let Zi be the p-dimensional vector of technical factors for cell i (containing 
library size, batch, etc.). We include an entry of one in each Zi to serve as an intercept 
term. Let Z be the n× p matrix formed by concatenating the Zi s, and let [X, Z] be the 
n× (p+ 1) matrix formed by concatenating X and Z.

We model Yi as a function of Xi and Zi via an NB generalized linear model (GLM):

where NBθ (µi) denotes a negative binomial distribution with mean µi and size parame-
ter θ , and γ ∈ R and β ∈ R

p are unknown constants (in fact, SCEPTRE in theory is com-
patible with arbitrary GLMs, including Poisson GLMs, which may be more appropriate 
for highly sparse data). SCEPTRE is a permutation test that uses as its test statistic the 
z-score that results from testing the hypothesis γ = 0 in the model (1). We present the 
basic SCEPTRE algorithm in Algorithm 1. Several key accelerations speed Algorithm 1 
by multiple orders of magnitude.

Algorithm 1: Basic SCEPTRE algorithm

Acceleration 1: Score test

First, we use a GLM score test to compute the test statistics zorig , z1, . . . , zB . Consider the 
following simplified NB GLM in which the gene expression Yi is modeled as a function of 
the technical factor vector Zi only:

(1)Yi ∼ NBθ (µi); log(µi) = γXi + β
TZi,

(2)Yi ∼ NBθ (µi); log(µi) = β
TZi.
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Regressing Y onto Z by fitting the GLM (2) produces estimates β̂ and θ̂ of the coef-
ficient vector β and the size parameter θ , respectively, under the null hypothesis of no 
relationship between the gRNA indicator and the gene expression. Denote the ith fitted 
mean of the model by µ̂i = exp(β̂TZi), and let µ̂ = [µ̂1, . . . , µ̂n]

T be the vector of fitted 
means. We can test the gRNA indicator vector X for inclusion in the fitted model by 
computing a score statistic zscore , as follows.

This expression is derived in the “Derivation of the expression for the GLM score test 
statistic” section of Additional file 1. Here, W and M(Y − µ̂) are a matrix and vector, 
respectively, that depend on the fitted means µ̂ , gene expressions Y, and estimated size θ̂:

The vector M(Y − µ̂) is a quantity called the working residual. The score statistic (3) 
is asymptotically equivalent to the Wald or likelihood ratio statistic that one obtains by 
testing H0 : γ = 0 in the full model (1). However, unlike the Wald statistic, the score sta-
tistic only depends on a fit of the model under the null hypothesis. SCEPTRE (with score 
statistic; Algorithm 2) exploits this useful property of the score statistic to accelerate the 
basic SCEPTRE algorithm.

Algorithm 2: SCEPTRE (with score statistic) algorithm

Acceleration 2: A fast score test for binary treatments

Calculating the score statistic (3) is not trivial. The quadratic form

in the denominator of (3) is hard to compute, as the matrix WZ(ZTWZ)−1ZTW  is a 
large, dense matrix. The classical solution is to algebraically manipulate the score sta-
tistic so that it can be evaluated via a QR decomposition. However, the QR decomposi-
tion approach does not leverage the structure in X when X contains many zeros (as is 
the case in single-cell CRISPR screen analysis). We therefore devised an alternate strat-
egy for computing the score statistic that instead is based on a spectral decomposition; 
the proposed strategy is tens to hundreds of times faster than the QR decomposition 

(3)zscore =
XTWM(Y − µ̂)

XTWX − XTWZ(ZTWZ)−1ZTWX
.

(4)

W = diag

{

µ̂1

1+ µ̂1/θ̂
, . . . ,

µ̂n

1+ µ̂n/θ̂

}

; M(Y − µ̂) =

[

Y1

µ̂1
− 1, . . . ,

Yn

µ̂n
− 1

]T

.

XTWZ(ZTWZ)−1ZTWX
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approach when the treatment vector is sparse, as shown in the “Comparing the spectral 
decomposition algorithm to the QR decomposition algorithm for computing GLM score 
tests” section of Additional file 1.

First, observe that ZTWZ is a symmetric matrix. Thus, ZTWZ can be spectrally 
decomposed as ZTWZ = UT

�U , where U is an orthonormal matrix and � is a diagonal 
matrix of eigenvalues. Exploiting this decomposition, we can express the quadratic form 
in the denominator of (3) as follows:

where L = �
−1/2UTZTWX is a p-dimensional vector. Evaluating the above expression 

reduces to computing the vector L and then summing over the squared entries of L, 
which is fast. This observation motivates Algorithm  3, which computes the score sta-
tistics for X , X̃1, . . . , X̃B via a spectral decomposition3. The inner product and matrix-
vector multiplication operations of step 3 are extremely fast because Xcurr is sparse. 
Furthermore, we program step 3 in C++ (via Rcpp [45]) for maximum speed.

Algorithm 3: Computing the GLM score statistics for X , X̃1, . . . , X̃B  via spectral decomposition.Below, w is the 
n-dimensional vector constructed from the diagonal entries of W

Acceleration 3: Adaptive permutation testing

Computing a large number of permutation resamples for a gene-gRNA pair that yields 
an unpromising p-value after only a few thousand resamples is wasteful. To reduce this 
inefficiency, we implement a two-step adaptive permutation testing scheme. First, we 
compute the p-value of a given gene-gRNA pair out to a small number (e.g., B1 = 500 ) 
of resamples. If this initial p-value is unpromising (i.e., if it exceeds some pre-selected 
threshold of pthresh , where pthresh ≈ 0.01 ), then we return this p-value to the user. Other-
wise, we draw a larger number ( B2 = 5000 ) of fresh resamples and compute the p-value 
using this second set of resamples. As most pairs are expected to be null (and thus yield 
unpromising p-values), this procedure eliminates most of the compute associated with 
carrying out the permutation tests.

XTWZ(ZTWZ)−1ZTWX = XTWZU�
−1/2

�
−1/2UTZTWX = LTL = ||L||2,

3  A Cholesky decomposition of ZTWZ could be used in place of the spectral decomposition, but the spectral decomposi-
tion is slightly more general, as it applies to matrices with eigenvalues equal to zero, which can occur (for example) when 
columns of Z are highly correlated.
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Acceleration 4: Skew‑normal fit

The null distribution of the test statistics z1, . . . , zB converges to a standard Gaussian dis-
tribution as the number of cells increases. Thus, to compute a precise p-value using a 
small number of permutations, we fit a skew-normal distribution to the set of null sta-
tistics. We then compute a p-value by evaluating the tail probability of the fitted skew-
normal distribution at the observed test statistic zobs . If the skew-normal fit to the null 
statistics is poor (an event that happens rarely), we instead return the standard per-
mutation test p-value. We fit the skew-normal distribution via a method of moments 
estimator and evaluate the skew-normal tail probability via the C++ Boost library. All 
operations involving the skew-normal distribution are fast.

Acceleration 5: Recycling compututation across permutation tests via IWOR sampling

When carrying out a permutation test to test for association between a gene expression 
vector Y = [Y1, . . . ,Yn]

T and a perturbation indicator vector X = [X1, . . . ,Xn]
T , SCEP-

TRE (low-MOI) randomly permutes the perturbation indicator vector B times, where B 
is some large number (e.g., B ≈ 5000 ). Unfortunately, randomly permuting the perturba-
tion indicator vector B times is slow; this cost becomes prohibitive when testing many 
perturbation-gene pairs. We therefore derived a novel strategy for “sharing” a set of B 
randomly permuted indicator vectors across all perturbation-gene pairs, even pairs with 
different numbers of cells containing the targeting perturbation. This strategy — which 
we call “inductive without replacement” (IWOR) sampling — considerably reduces the 
cost associated with applying SCEPTRE to the data (in fact, this method is generic, 
compatible with any permutation-based single-cell CRISPR screen association testing 
method). IWOR sampling is described in the “Inductive without replacement sampling” 
section of Additional file 1.

Statistical robustness property of SCEPTRE

SCEPTRE empirically demonstrated a robustness property that we term “confounder 
adjustment via marginal permutations” or “CAMP.” We observed evidence of CAMP 
across our simulation studies (Fig. 4; Additional file 1: Figs. S8, and S11) and real data 
analyses. We describe CAMP in greater detail here. For simplicity, we consider the ver-
sion of SCEPTRE that does not involve fitting a skew-normal distribution to the null 
test statistics and instead computes the standard permutation test p-value by directly 
comparing the observed test statistic to the null test statistics. If at least one of the fol-
lowing conditions holds, the left-, right-, and two-tailed SCEPTRE p-values are valid: 
(i) the perturbation is unconfounded (i.e., the vector of technical factors Zi contains 
all possible confounders, and Zi is independent of Xi ); (ii) the NB GLM (1) is correctly 
specified up to the size parameter θ and the effective sample size is sufficiently large. We 
reasoned that CAMP enabled SCEPTRE to address the core single-cell CRISPR screen 
analysis challenges of sparsity, confounding, and model misspecification both in theory 
and practice. Our evidence of CAMP is empirical; we intend to derive a mathematical 
proof of CAMP in a follow-up, more theoretical work.
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CAMP simulation study details

We conducted a simulation study (Additional file 1: Fig. S8) to demonstrate the exist-
ence and utility of the CAMP phenomenon. We based the simulation study on a 
gene (namely, CXCL10) and perturbation (namely, “CUL3”) from the Papalexi data. 
Following the notation introduced in the “SCEPTRE (low-MOI) overview”  sec-
tion, let Y = [Y1, . . . ,Yn]

T  denote the vector of gene expressions of CXCL10 and 
X = [X1, . . . ,Xn]

T  the vector of perturbation indicators of “CUL3.” Next, let Zi ∈ R
p 

denote the vector of technical factors of the ith cell (for i ∈ {1, . . . , n} ), and let Z 
denote the n× p matrix formed by assembling the Zi s into a matrix. We regressed Y 
onto Z by fitting the GLM (2), yielding estimates β̂ for β and θ∗ for θ under the null 
hypothesis of no association between the perturbation and gene. An examination of 
β̂ revealed that the gene expressions Y were moderately associated with the technical 
factors Z. Letting µ̂i = exp(β̂TZi) denote the fitted mean of cell i, we sampled B i.i.d. 
synthetic expressions Ỹ 1

i , . . . , Ỹ
B
i  from an NB model with mean µ̂i and size parameter 

θ
∗ . We then constructed B synthetic gene expression vectors Ỹ j = [Ỹ

j
1, . . . , Ỹ

j
n]

T ∈ R
n 

for j ∈ {1, . . . ,B} . Next, we generated a synthetic perturbation indicator vector X̃ ∈ R
n 

such that X̃  was independent of Z. To this end, we marginally sampled synthetic per-
turbation indicators X̃1, . . . , X̃n i.i.d. from a Bernoulli model with mean π̂ , where 
π̂ = (1/n)

∑n
i=1 Xi was the fraction of cells that received the targeting perturbation 

(the observed perturbation indicator vector X was moderately associated with Z).
We assessed three methods in the simulation study: NB regression, SCEPTRE, and 

the standard permutation test. We deployed NB regression and SCEPTRE in a slightly 
different way than usual: we set the NB size parameter θ upon which these methods 
rely to a fixed value (typically, NB regression and SCEPTRE estimate θ using the data). 
This enabled us to assess the impact of misspecification of the size parameter on the 
calibration of NB regression and SCEPTRE. We set the test statistic of the standard 
permutation test to the sum of the gene expressions in the treatment cells. We then 
generated B confounded (resp., unconfounded) datasets by pairing the synthetic 
response vectors Ỹ1, . . . , ỸB to the design matrix [X, Z] (resp., [X̃ ,Z] ). We applied the 
methods to the datasets twice: once setting the SCEPTRE/NB regression size param-
eter to the correct value of θ∗ and once setting this parameter to the incorrect value 
of 5 · θ∗. We displayed the results produced by the methods in each of the four set-
tings (i.e., confounded versus unconfounded, correct versus incorrect specification of 
the size parameter; Additional file 1: Fig. S8) on a QQ plot. We sought to show that 
SCEPTRE maintains calibration in all settings, while the standard permutation test 
and NB regression break down under confounding and incorrect specification of the 
size parameter, respectively.

Positive control analysis

We grouped together gRNAs that targeted the same genomic location, referring to 
these grouped gRNAs as “gRNA groups” [5]. We constructed positive control pairs by 
coupling a given gRNA group to the gene or protein that the gRNA group targeted. 
We developed a Nextflow pipeline to apply all methods to analyze the positive control 
pairs of all datasets.
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ChIP‑seq enrichment analysis

We obtained ChIP-seq data for CD14+ monocyte cultures with MCSF (10ng/ml) and 
stimulated with IFN-gamma (100U/ml) for 24 h [30]. Peaks were screened based on 
their score, with the top 25% selected using the enrichment score as the criterion. We 
identified downstream target genes for transcription factors by identifying genes with 
transcription start sites located within 5 kb upstream or downstream of a peak. Using 
ChIP-seq as the benchmark, our objective was to assess the consistency between the 
genes associated with a given transcription factor as identified by SCEPTRE and the 
downstream target genes determined by ChIP-seq. To achieve this, we calculated 
odds ratios and their corresponding p-values using a Fisher exact test on the contin-
gency table comprised of genes found to be affected by knockout of the perturbed 
gene, as identified by SCEPTRE, and genes whose promoter regions overlapped with 
a ChIP-seq peak. We conducted this analysis for both STAT1 and IRF1. We also per-
formed this analysis across competing methods, as shown in Additional file 1: Fig. S7.

Comparison of SCEPTRE (low‑MOI) and SCEPTRE (high‑MOI)

SCEPTRE (low-MOI) is a substantial statistical and computational extension of 
SCEPTRE (high-MOI). Below, we outline the ways in which SCEPTRE (low-MOI) 
differs from SCEPTRE (high-MOI) version 0.0.2, which is the version of SCEPTRE 
(high-MOI) available on our website at the time of submission.

•	 SCEPTRE (low-MOI) carries out inference via a permutation test, while SCEP-
TRE (high-MOI) does so via a conditional randomization test. Given that the low-
MOI problem suffers from stronger sparsity, while the high-MOI problem suffers 
from greater confounding, we reasoned that permutations would yield better cali-
bration in the low-MOI setting.

•	 SCEPTRE (low-MOI) uses a full GLM score statistic as its test statistic, while 
SCEPTRE (high-MOI) uses a distilled GLM score statistic. The full score statistic 
is more powerful than its distilled counterpart, yielding a greater number of dis-
coveries. Moreover, the full score statistic used by SCEPTRE (low-MOI) is sup-
ported by a novel and fast algorithm for computing GLM score tests.

•	 SCEPTRE (low-MOI) leverages a novel algorithm for recycling computation 
across a large number of permutation tests, thereby considerably decreasing com-
putational cost. This approach — which we term “inductive without replacement 
sampling” — is described in the “Inductive without replacement sampling” section 
of Additional file 1.

•	 SCEPTRE (low-MOI) fits a skew-normal distribution to the null test statistics, 
while SCEPTRE (high-MOI) fits a skew-t distribution to the null test statistics. 
The skew-normal distribution admits a fast and numerically stable method-of-
moments estimator, while the skew-t distribution requires a slow and (relatively) 
numerically unstable maximum likelihood estimator.

•	 SCEPTRE (low-MOI) checks for goodness of fit of the fitted skew-normal distri-
bution before it uses the fitted distribution to compute a p-value. SCEPTRE (high-
MOI), by contrast, does not check for goodness of fit of the fitted skew-t distribu-
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tion, which potentially can lead to miscalibrated p-values for perturbation-gene 
pairs whose resampling distributions are not approximately skew-t-distributed.

•	 SCEPTRE (low-MOI) uses an adaptive permutation testing scheme to reduce the 
number of permutations computed for pairs with unpromising p-values. SCEP-
TRE (high-MOI), by contrast, does not leverage any sort of adaptive resampling 
scheme.

•	 SCEPTRE (high-MOI) is programmed entirely in R. SCEPTRE (low-MOI) by con-
trast is programmed in a mix of C++ and R, with the computationally intensive 
portions programmed in C++.

•	 SCEPTRE (low-MOI) uses a considerably faster method than SCEPTRE (high-
MOI) for fitting the negative binomial regression models.

•	 SCEPTRE (low-MOI) includes support for “pairwise quality control,” in which 
low-quality perturbation-gene pairs (defined as pairs whose effective sample size 
falls below some threshold) are detected and removed.

•	 SCEPTRE (low-MOI) can automatically construct negative control pairs that are 
“matched” to the discovery pairs in several respects; these negative control pairs 
can be used to assess the calibration of SCEPTRE (low-MOI) on a user-inputted 
dataset. SCEPTRE (high-MOI) does not have such functionality.

•	 SCEPTRE (low-MOI) by default uses the set of negative control cells as its control 
group; this choice is especially appropriate for gene-targeting screens. SCEPTRE 
(high-MOI), by contrast, uses the complement set as its control group, as this is the 
only option, since few (if any) cells contain exclusively non-targeting perturbations in 
the high-MOI setting.

•	 SCEPTRE (low-MOI) includes new functions for visualizing the results, including a 
function to create a volcano plot and a function to create a QQ plot with the discov-
ery p-values superimposed on top of the negative control p-values.

Taken together, these extensions make SCEPTRE (low-MOI) faster, more memory 
efficient, more statistically powerful, more statistically robust, more numerically stable, 
and more user-friendly than SCEPTRE (high-MOI). We anticipate that many of these 
extensions can be applied to improve the high-MOI functionality of SCEPTRE as well 
(important differences between the two modules, however, including the choice of con-
trol group, will remain). We intend to explore this possibility in future work.

Methods not included in the benchmarking analysis

Several methods that recently have been proposed for single-cell CRISPR screen analysis 
were not included in our benchmarking study. First, guided sparse factor analysis (GSFA; 
introduced by Zhou et al. [39]) couples factor analysis to differential expression analy-
sis to infer the effects of perturbations on gene modules and individual genes. GSFA is 
a Bayesian method, returning a posterior inclusion probability instead of a p-value for 
each test of association. Given that the methods that we studied in this work were fre-
quentist (and thus returned a p-value), we deprioritized GSFA for benchmarking. Next, 
Normalisr (proposed by Wang [17]) is a method for single-cell differential expression, 
co-expression, and CRISPR screen analysis. Normalisr non-linearly transforms the gene 
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expression counts to Gaussianity and then models the transformed counts via a linear 
model. We were unable to locate an example low-MOI single-cell CRISPR screen analy-
sis in the Normalisr Github repository (although gene co-expression, case-control differ-
ential expression, and high-MOI CRISPR screen examples are available). Given this, and 
given the complexity of the Normalisr codebase, we deprioritized Normalisr for bench-
marking. Finally, scMaGECK (proposed by Yang [14]) tests for association between 
CRISPR perturbations and gene expressions using a permutation test with a linear 
regression coefficient test statistic. Given that we carefully evaluated the high-MOI ver-
sion of scMaGECK in our prior work [13], and given that MIMOSCA — benchmarked 
in this work — also is based on a permutation test with a linear regression coefficient 
test statistic, we deprioritized scMaGECK for benchmarking.
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