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Abstract 

Inferring gene regulatory networks (GRNs) from single-cell data is challenging due 
to heuristic limitations. Existing methods also lack estimates of uncertainty. Here we 
present Probabilistic Matrix Factorization for Gene Regulatory Network Inference 
(PMF-GRN). Using single-cell expression data, PMF-GRN infers latent factors capturing 
transcription factor activity and regulatory relationships. Using variational inference 
allows hyperparameter search for principled model selection and direct comparison 
to other generative models. We extensively test and benchmark our method using 
real single-cell datasets and synthetic data. We show that PMF-GRN infers GRNs more 
accurately than current state-of-the-art single-cell GRN inference methods, offering 
well-calibrated uncertainty estimates.

Keywords:  Probabilistic matrix factorization, Variational inference, Gene regulatory 
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Background
An essential problem in systems biology is to extract information from genome wide 
sequencing data to unravel the mechanisms controlling cellular processes within het-
erogeneous populations [1]. Gene regulatory networks (GRNs) that annotate regulatory 
relationships between transcription factors (TFs) and their target genes [2] have proven 
to be useful models for stratifying functional differences between cells [3–6] that can 
arise during normal development [7], responses to environmental signals [8], and dys-
regulation in the context of disease [9–11].

GRNs cannot be directly measured with current sequencing technology. Instead, 
methods must be developed to piece together snapshots of transcriptional processes in 
order to reconstruct a cell’s regulatory landscape [12]. Initial approaches to GRN infer-
ence relied on microarray technology [13–15], a hybridization-based method to measure 
the expression of thousands of genes simultaneously [16]. This technology was biased 
as it was limited to only those genes that were annotated at the time, which in turn 
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presented challenges for inferring the complete regulatory landscape [1]. Subsequently, 
the high-throughput sequencing method RNA-seq provided a genome wide readout 
of transcriptional output, allowing for the detection of novel transcripts [17] and thus 
improving GRN inference potential. More recently, single-cell RNA-seq technology has 
enabled the characterization of gene expression profiles within heterogeneous popula-
tions [18], vastly increasing the potential for GRN inference algorithms [19, 20]. In con-
trast to bulk RNA experiments (microarray and RNA-seq) that average measurements 
of gene expression across heterogenous cell populations, GRNs inferred from single-cell 
data have the advantage of unmasking biological signal in individual cells [21].

Several matrix factorization approaches have been proposed to overcome the limita-
tions of reconstructing GRNs from microarray data [22]. These include use of statisti-
cal techniques such as singular value decomposition and principal component analysis 
[23], Bayesian decomposition [24], and non-negative matrix factorization [25–27]. More 
recently, matrix factorization approaches have been applied to integrative analysis of 
DNA methylation and miRNA expression data [28] as well as single-cell RNA-seq and 
single-cell ATAC-seq data [29]. However, to the best of our knowledge, these matrix 
factorization approaches have not yet been used to infer GRNs from single-cell gene 
expression data. Meanwhile, several regression-based methods have been proposed to 
learn GRNs from single-cell RNA-seq and single-cell ATAC-seq to capture regulatory 
relationships at single-cell resolution [30]. So far, these integrative approaches to GRN 
inference have been successfully implemented using regularized regression [31], self-
organizing maps [32], tree-based regression [33], and Bayesian Ridge regression [34].

Although regression-based methods for inferring GRNs from single-cell data are avail-
able, they still suffer from significant limitations [35]. Firstly, these methods are designed 
for specific input datasets, such as bulk or single-cell RNA-seq, causing issues when new 
data becomes available or new assumptions are required in the model. This can result 
in inaccurate predictions if the new data or assumptions are not well integrated into 
the existing model, leading to the need for a complete re-design of the algorithm, which 
can be costly and time-consuming. Additionally, these methods typically focus on infer-
ring a single GRN that explains the available data, without performing hyperparameter 
search to determine the optimal model. This can lead to heuristic model selection, with 
no justification for the approach taken or evidence that the best possible model has been 
selected. Conversely, hyperparameter search ensures the accuracy of the GRN inference 
algorithm by finding the optimal model that fits the data well while avoiding overfit-
ting. Regression-based GRN inference algorithms that do not perform hyperparameter 
search may miss important data features or overemphasize irrelevant ones, leading to 
inaccurate or incomplete models. Moreover, these methods do not provide an indication 
of their uncertainty about the predictions that they make. Finally, several regression-
based GRN inference algorithms struggle to scale optimally to the size of typical single-
cell datasets, limiting inference to small subsets of data or requiring enormous amounts 
of computational time.

In this study, we introduce PMF-GRN, a novel approach that uses probabilistic matrix 
factorization [36] to infer gene regulatory networks from single-cell gene expression 
and chromatin accessibility information. This approach extends previous methods that 
applied matrix factorization for GRN inference with microarray data, to address the 
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current limitations in regression-based single-cell GRN inference. We implement our 
approach in a probabilistic setting with variational inference, which provides a flex-
ible framework to incorporate new assumptions or biological data as required, without 
changing the way the GRN is inferred. We also use a principled hyperparameter selec-
tion process, which optimizes the parameters of our probabilistic model for automatic 
model selection. In this way, we replace heuristic model selection by comparing a vari-
ety of generative models and hyperparameter configurations before selecting the opti-
mal parameters with which to infer a final GRN. Our probabilistic approach provides 
uncertainty estimates for each predicted regulatory interaction, serving as a proxy for 
the model confidence in each predicted interaction. Uncertainty estimates can be use-
ful in the situation where there are limited validated interactions or a gold standard is 
incomplete. By using stochastic gradient descent (SGD), we perform GRN inference on 
a GPU, allowing us to easily scale to a large number of observations in a typical single-
cell gene expression dataset. Unlike many existing methods, PMF-GRN is not limited by 
pre-defined organism restrictions, making it widely applicable for GRN inference.

To demonstrate the novelty and advantages of PMF-GRN, we apply our method to 
datasets from Sacchromyces cerevisiae, human peripheral blood mononuclear cells 
(PBMCs), and BEELINE. In our first experiment, we apply our method to two single-cell 
gene expression datasets for the model organism S. cerevisiae. We evaluate our mod-
el’s performance in a normal inference setting as well as with cross-validation and noisy 
data. To assess the accuracy of predicted regulatory interactions, we evaluate all regula-
tory predictions using area under the precision recall curve (AUPRC) against database 
derived gold standards. Our findings show that the uncertainty estimates are well-cali-
brated for inferred TF-target gene interactions, as the accuracy of predictions increases 
when the associated uncertainty decreases. Here, in comparison to three state-of-the-
art regression-based methods for inferring single-cell GRNs, namely the Inferelator [31], 
Scenic [33], and Cell Oracle [34], our method demonstrates an overall improved per-
formance in recovering the true underlying GRN. Additionally, we apply our method to 
a PBMC dataset and explore the inferred TFA profiles in the context of annotated cell 
types and specific immune TFs. We investigate regulatory edges in our inferred GRN 
and find compelling support for our predictions. Lastly, we benchmark our method 
using six synthetic datasets generated from BEELINE [37] and demonstrate consistent 
outperformance of PMF-GRN compared to the baseline.

Results
The PMF‑GRN model

The goal of our probabilistic matrix factorization approach is to decompose observed 
gene expression into latent factors, representing TF activity (TFA) and regulatory inter-
actions between TFs and their target genes. These latent factors, which represent the 
underlying GRN, cannot be measured experimentally, unlike gene expression. We model 
an observed gene expression matrix W ∈ R

N×M using a TFA matrix U ∈ R
N×K
>0  , a TF-

target gene interaction matrix V ∈ R
M×K  , observation noise σobs ∈ (0,∞) , and sequenc-

ing depth d ∈ (0, 1)N , where N is the number of cells, M is the number of genes, and K is 
the number of TFs. We rewrite V as the product of a matrix A ∈ (0, 1)M×K  , representing 
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the degree of existence of an interaction, and a matrix B ∈ R
M×K  representing the inter-

action strength and its direction:

where ⊙ denotes element-wise multiplication. An overview of the graphical model is 
shown in Fig. 1A.

These latent variables are mutually independent a priori, i.e., 
p(U ,A,B, σobs, d) = p(U)p(A)p(B)p(σobs)p(d) . For the matrix A, prior hyperparam-
eters represent an initial guess of the interaction between each TF and target gene which 
need to be provided by a user. These can be derived from genomic databases or obtained 

V = A⊙ B,

Fig. 1  A PMF-GRN graphical model overview. Input single-cell gene expression W is decomposed into 
several latent factors. Information obtained from chromatin accessibility data or genomics databases is 
incorporated into the prior distribution for A. B Input experimental data for PMF-GRN includes single-cell 
RNA-seq gene expression data. Prior-known TF-target gene interactions can be obtained using chromatin 
accessibility in parallel with known TF motifs or through databases or literature derived interactions. C 
Hyperparameter selection process is performed for optimal model selection. The provided prior-known 
network is split into a train and validation dataset. 80% of the prior-known information is used to infer a GRN, 
while the remaining 20% is used for validation by computing AUPRC. This process is repeated multiple times, 
using different hyperparameter configurations in order to determine the optimal hyperparameters for the 
GRN inference task at hand. Finally, using the optimal hyperparameters, a final network is inferred using the 
full prior and evaluated using an independent gold standard
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by analyzing other data types, such as the measurement of chromosomal accessibility, 
TF motif databases, and direct measurement of TF-binding along the chromosome, as 
shown in Fig. 1B (see the “Methods” section for details).

The observations W result from a matrix product UV⊤ . We assume noisy observa-
tions by defining a distribution over the observations with the level of noise σobs , i.e., 
p(W |U ,V = A⊙ B, σobs, d).

Given this generative model, we perform posterior inference over all the unobserved 
latent variables―U, A, B, d, and σobs―and use the posterior over A to investigate 
TF-target gene interactions. Exact posterior inference with an arbitrary choice of prior 
and observation probability distributions is, however, intractable. We address this issue 
by using variational inference [38, 39], where we approximate the true posterior distri-
butions with tractable, approximate (variational) posterior distributions.

We minimise the KL-divergence DKL(q‖p) between the two distributions with respect 
to the parameters of the variational distribution q, where p is the true posterior distribu-
tion. This allows us to find an approximate posterior distribution q that closely resem-
bles p. This is equivalent to maximizing the evidence lower bound (ELBO), i.e., a lower 
bound to the marginal log likelihood of the observations W:

The mean and variance of the approximate posterior over each entry of A, obtained 
from maximizing the ELBO, are then used as the degree of existence of an interaction 
between a TF and a target gene and its uncertainty, respectively.

It is important to note that matrix factorization based GRN inference is only identifi-
able up to a latent factor (column) permutation. In the absence of prior information, the 
probability that the user assigns TF names to the columns of U and V in the same order 
that the inference algorithm implicitly assigns TFs to these columns is 1

K !
 , is essentially 

0 for any reasonable value of K. Incorporating prior-knowledge of TF-target gene inter-
actions into the prior distribution over A is therefore essential in order to provide the 
inference algorithm with the information of which column corresponds to which TF.

With this identifiability issue in mind, we design an inference procedure that can be 
used on any prior-knowledge edge matrices, described in Fig. 1C. The first step is to ran-
domly hold out prior information for some percentage of the genes in p(A) (we choose 
20% ) by leaving the rows corresponding to these genes in A but setting the prior logistic 
normal means for all entries in these rows to be the same low number.

The second step is to carry out a hyperparameter search using this modified prior-
knowledge matrix. The early stopping and model selection criteria are both the ‘valida-
tion’ AUPRC of the posterior point estimates of A, corresponding to the held out genes, 
against the entries for these genes in the full prior hyperparameter matrix. This step 
is motivated by the idea that inference using the selected hyperparameter configura-
tion should yield a GRN whose columns correspond to the TF names that the user has 
assigned to these columns.

The third step is to choose the hyperparameter configuration corresponding to the 
highest validation AUPRC and perform inference using this configuration with the full 

log p(W ) ≥ EU ,A,B,σobs ,d∼q(U ,A,B,σobs ,d)[ log p(W |U ,V = A⊙ B, σobs, d)

+ log p(U ,A,B, σobs, d)

− log q(U ,A,B, σobs, d)]
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prior. An importance weighted estimate of the marginal log likelihood is used as the 
early stopping criterion for this step. The resulting approximate posterior provides the 
final posterior estimate of A.

Advantages of PMF‑GRN

Existing methods almost always couple the description of the data generating pro-
cess with the inference procedure used to obtain the final estimated GRN [31, 33, 34]. 
Designing a new model thus requires designing a new inference procedure specifi-
cally for that model, which makes it difficult to compare results across different mod-
els due to the discrepancies in their associated inference algorithms. Furthermore, this 
ad hoc nature of model building and inference algorithm design often leads to the lack 
of a coherent objective function that can be used for proper hyperparameter search as 
well as model selection and comparison, as evident in [31]. Heuristic model selection in 
available GRN inference methods presents the challenge of determining and selecting 
the optimal model in a given setting.

The proposed PMF-GRN framework decouples the generative model from the infer-
ence procedure. Instead of requiring a new inference procedure for each generative 
model, it enables a single inference procedure through (stochastic) gradient descent with 
the ELBO objective function, across a diverse set of generative models. Inference can 
easily be performed in the same way for each model. Through this framework, it is pos-
sible to define the prior and likelihood distributions as desired with the following mild 
restrictions: we must be able to evaluate the joint distribution of the observations and 
the latent variables, the variational distribution and the gradient of the log of the vari-
ational distribution.

The use of stochastic gradient descent in variational inference comes with a significant 
computational advantage. As each step of inference can be done with a small subset of 
observations, we can run GRN inference on a very large dataset without any constraint 
on the number of observations. This procedure is further sped up by using modern 
hardware, such as GPUs.

Under this probabilistic framework, we carry out model selection, such as choosing 
distributions and their corresponding hyperparameters, in a principled and unified way. 
Hyperparameters can be tuned with regard to a predefined objective, such as the mar-
ginal likelihood of the data or the posterior predictive probability of held out parts of the 
observations. We can further compare and choose the best generative model using the 
same procedure.

This framework allows us to encode any prior knowledge via the prior distributions of 
latent variables. For instance, we incorporate prior knowledge about TF-gene interac-
tions as hyperparameters that govern the prior distribution over the matrix A. If prior 
knowledge about TFA is available, this can be similarly incorporated into the model via 
the hyperparameters of the prior distribution over U.

Because our approach is probabilistic by construction, inference also estimates uncer-
tainty without any separate external mechanism. These uncertainty estimates can be 
used to assess the reliability of the predictions, i.e., more trust can be placed in interac-
tions that are associated with less uncertainty. We verify this correlation between the 
degree of uncertainty and the accuracy of interactions in the experiments.
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Overall, the proposed approach of probabilistic matrix factorization for GRN infer-
ence is scalable, generalizable and aware of uncertainty, which makes its use much more 
advantageous compared to most existing methods.

PMF‑GRN recovers true interactions in simple eukaryotes

To evaluate PMF-GRN’s ability to infer informative and robust GRNs, we leverage two 
single-cell RNA-seq datasets from the model organism Saccharomyces cerevisiae [8, 40]. 
This eukaryote, being relatively simple and extensively studied, provides a reliable gold 
standard [41] for assessing the performance of different GRN inference methods. We 
conduct three experiments to compare the performance of three state-of-the-art GRN 
inference methods, the Inferelator (AMuSR, BBSR, and StARS) [31], SCENIC [33], and 
CellOracle [34]. Throughout these experiments, each method is provided with the exact 
same single-cell RNA-seq datasets (GSE125162 [8]: N cells = 38, 225 , GSE144820 [40]: 
N cells = 6118 , combined: N cells = 44, 343 by M genes = 6763 ), prior-knowledge (M 
genes = 6885 by K TFs = 220 ), and gold standard (M genes = 993 by K TFs = 98).

In the first experiment, we infer GRNs for each of the two yeast datasets and aver-
age the posterior means of A to simulate a “multi-task” GRN inference approach. Using 
AUPRC, we demonstrate that PMF-GRN outperforms AMuSR, StARS, and SCENIC, 
while performing competitively with BBSR and CellOracle (Fig.  2A). We next com-
bine the two expression datasets into one observation to test whether each method 
can discern the overall GRN accurately when data is not cleanly organized into tasks. 
This experiment reveals a substantial performance decrease for BBSR, indicating its 
dependence on organized gene expression tasks. This finding suggests potential chal-
lenges for BBSR in more complex organisms with less well-defined cell types or condi-
tions. For benchmarking purposes, we provide two negative controls for each method, a 
GRN inferred without prior information (no prior), and a GRN inferred using shuffled 
prior information (shuffled prior). For all methods, these negative controls achieve an 
expected low AUPRC. It is essential to note that for CellOracle, an experiment with no 
prior information could not be performed. This is due to the fact that by design, Cel-
lOracle cannot learn regulatory edges that are not included in the prior information.

In our comparitive GRN inference analysis, we assess the number of edges predicted 
in common by each algorithm, on the individual S. cerevisiae datasets. We do so by 
computing the Intersection over Union (IoU) score, filtering each GRN to the top 25% 
of interactions to remove noisy predictions. Notably, PMF-GRN obtains an IoU score 
of 15.69% , outperforming alternative algorithms such as SCENIC ( 3.17% ), AMuSR 
( 12.46% ), BBSR ( 14.56% ), and StARS ( 11.78% ). The superior performance of PMF-GRN 
can be attributed to an ability to discern meaningful regulatory interactions, thereby 
enriching the consensus among predictions. Importantly, our findings underscore a lim-
itation of CellOracle, which achieves an IoU score of 30.28% . This algorithm, while pro-
ficient, can only ascertain edges present in the prior-knowledge matrix. Consequently, 
the two yeast GRNs inferred display high similarity, reflecting an inherent constraint. 
This characteristic imparts a degree of predictability to CellOracle, limiting its capac-
ity to discover novel interactions beyond the established prior-knowledge. In contrast, 
PMF-GRNs IoU score is indicative of a more diverse and comprehensive set of common 
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edges. This highlights PMF-GRNs capability to capture nuanced regulatory relationships 
as a robust and versitle tool for GRN inference.

In a second experiment, we implement a 5-fold cross-validation approach to establish 
a baseline for each model. Cross-validation is crucial for evaluating the generalization 
ability of machine learning models like PMF-GRN, particularly in predicting TF-target 
gene interactions with limited data, a common scenario in experimental settings. To 
streamline the analysis, we combine the two S. cerevisiae single-cell RNA-seq datasets 
into a single observation matrix. The cross-validation process involves an 80–20% split 
of the gold standard, where a network is inferred using 80% as “prior-known infor-
mation” and evaluated using the remaining 20% . This process is iterated five times 
with different random splits to yield meaningful results. We observe that PMF-GRN 

Fig. 2  GRN inference in S. cerevisiae. A Consensus network AUPR with a normal prior-knowledge matrix (N): 
PMF-GRN (red) performance compared to Inferelator algorithms (AMuSR in yellow, BBSR in orange, StARS 
in green), SCENIC (blue), and CellOracle (purple). Dashed line represents the baseline if expression data is 
combined. Negative controls: no prior information (NP―black) and shuffled prior information (S―gray). 
B 5-fold cross-validation baseline: each dot with low opacity represents one of the five experiments. Colored 
dots and lines depict the mean AUPR ± standard deviation for each GRN inference method. C GRNs inferred 
with increasing amounts of noise added to the prior. D Calibration results on S.cerevisiae (GSE144820 [8] only) 
dataset. Posterior means are cumulatively placed in bins based on their posterior variances. AUPRC for each 
of these bins is computed against the gold standard (see the “Methods” section for details)
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outperforms SCENIC and CellOracle, while achieving similar performance to BBSR 
and StARS (Fig. 2B). We note that for this experiment, we are unable to implement the 
AMuSR algorithm as it is a multi-task inference approach that requires more than one 
task (dataset).

In a third experiment, we evaluate the robustness of each GRN inference method in 
the presence of noisy prior information. We conduct GRN inference with increasing 
levels of noise introduced into the prior knowledge. Specifically, the prior informa-
tion begins with 1% non-zero edges, and we systematically introduce noise to observe 
the performance of each method. The noise levels are varied from zero noise (original 
prior, 1% non-zero edges), to 100% noise (resulting in 2% non-zero edges), 250% noise 
( 3.5% non-zero edges), and 500% noise ( 6% non-zero edges). Our findings, illustrated in 
Fig. 2C, reveal that as the noise in the prior information increases, PMF-GRNs AUPRC 
experiences a slow decline, mirroring the behavior observed in CellOracle. Notably, 
PMF-GRN consistently outperforms BBSR, StARS, and SCENIC under these noise con-
ditions, showcasing its robustness in accurately inferring GRNs from noisy priors. These 
results underscore PMF-GRN as one of the most robust approaches in the face of noisy 
prior information, thereby emphasizing its utility in practical applications.

To further emphasize PMF-GRN’s robustness in a diverse number of settings, we 
perform the following two experiments. In the first experiment, we examine the per-
formance of PMF-GRN using different sizes of downsampled yeast expression (Fig. 3A). 
The downsampling procedure involved reducing the expression data to sizes of 80% , 
60% , 40% , and 20% , with each size undergoing random sampling five times to gener-
ate five distinct datasets per sample size. Remarkably, the AUPRC performance exhib-
its noteworthy stability across the downsampling variations. Despite the reduction in 
dataset size, PMF-GRN consistently demonstrates an ability to learn accurate GRNs as 
evidenced by the sustained AUPRC performance. These findings underscore the robust-
ness of PMF-GRN, suggesting its reliability even under conditions of diminished dataset 
sizes, a critical consideration for practical applications where data availability may be 
limited.

In a subsequent experiment, we explore the impact of different cross-validation split 
sizes on hyperparameter tuning for PMF-GRN using the S. cerevisiae prior-knowledge 
(Fig. 3B). Four distinct cross-validation splits, ranging from 80% training and 20% valida-
tion to 20% training and 80% validation, were employed. For each split, we conducted 
a hyperparameter search across five samples, selecting the optimal hyperparameters 
based on the highest validation AUPRC. We then selected the best overall hyperparam-
eters from each split to learn a GRN on the full dataset, in order to demonstrate the 
downstream effect of cross validation split choice on GRN inference. Surprisingly, our 
results revealed that the choice of cross-validation split size had a marginal impact on 
the overall performance of the inferred GRN. Specifically, the AUPRC values for the full 
GRN remained nearly unchanged regardless of whether an 80% train and 20% validation 
or 60% train and 40% validation split where employed. Even with more disparate splits, 
such as 40% train and 60% validation, or 20% train and 80% validation, the decrease in 
AUPRC was only minor. This implies that PMF-GRN exhibits robustness in hyperpa-
rameter selection, with the algorithm consistently converging to optimal settings across 
varying cross-validation scenarios.
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From our experiments on S. cerevisiae data, several key observations emerge. First, 
PMF-GRN consistently outperforms the Inferelator in recovering true GRNs, surpass-
ing two Inferelator algorithms (AMuSR and StARS) and performing similarly to BBSR. 
Notably, when expression data is not separated into tasks, PMF-GRN outperforms 
BBSR. In comparison to CellOracle, PMF-GRN demonstrates competitive performance 
during normal inference and significantly outperforms CellOracle in cross-validation. 
However, PMF-GRN, in contrast to CellOracle, is not constrained to predicting edges 
solely within the confines of the prior-knowledge matrix. Furthermore, PMF-GRN con-
sistently outperforms SCENIC across all experiments.

A second key observation is that our approach addresses the high variance associated 
with heuristic model selection among different inference algorithms. When implement-
ing the Inferelator on S. cerevisiae datasets under normal conditions, AUPRCs fall within 
the range of 0.2 to 0.4, showcasing significant variability without a priori information to 
guide algorithm selection. This diversity among Inferelator algorithms constitutes heu-
ristic model selection, as one cannot predict a priori which algorithm will perform bet-
ter or discern the reasons behind their divergent performances. In contrast, our method 
offers reliable results grounded in a principled objective function, delivering competitive 

Fig. 3  A GRNs inferred by downsampling S. cerevisiae expression data. B Hyperparameter search performed 
on 4 different ratios of cross-validation. Dots represent validation AUPRC from hyperparameter search during 
cross-validation, triangle represents AUPRC from a GRN learned using the most optimal hyperparameters for 
each ratio
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performance akin to the best-performing Inferelator algorithm (BBSR) and CellOra-
cle. This underscores the importance of a consistent and robust approach in the face of 
uncertainty associated with heuristic model selection among disparate algorithms.

To underscore the identifiability issue and affirm the utility of prior-known informa-
tion, we showcase PMF-GRN’s performance when prior information is unused (e.g., all 
prior logistic normal means of A set to the same low number). This process is replicated 
for other GRN inference algorithms by providing an empty prior. Additionally, we assess 
PMF-GRN’s performance when prior-known TF-target gene interaction hyperparame-
ters are randomly shuffled before building the prior distribution for A. The results, along 
with those for the Inferelator and CellOracle, indicate the capability of these approaches 
to accommodate such prior information effectively.

PMF‑GRN provides well‑calibrated uncertainty estimates

Through our inference procedure, we obtain a posterior variance for each element of A, 
in addition to the posterior mean. We interpret each variance as a proxy for the uncer-
tainty associated with the corresponding posterior point estimate of the relationship 
between a TF and a gene. Due to our use of variational inference as the inference proce-
dure, our uncertainty estimates are likely to be underestimates. However, these uncer-
tainty estimates still provide useful information as to the confidence the model places 
in its point estimate for each interaction. We expect posterior estimates associated with 
lower variances (uncertainties) to be more reliable than those with higher variances.

In order to determine whether this holds for our posterior estimates, we cumulatively 
bin the posterior means of A according to their variances, from low to high. We then 
calculate the AUPRC for each bin as shown for the GSE125162 [8] S.cerevisiae dataset 
in Fig. 2D. We observe that the AUPRC decreases as the posterior variance increases. In 
other words, inferred interactions associated with lower uncertainty are more likely to be 
accurate than those associated with higher uncertainty. This is in line with our expecta-
tions as the more certain the model is about the degree of existence of a regulatory inter-
action, the more accurate it is likely to be, indicating that our model is well-calibrated.

PMF‑GRN integrates single‑cell multi‑omic data for GRN and TFA inference in human 

PBMCs

We next evaluate PMF-GRN’s ability to learn informative GRNs in a human cell line by 
focusing on peripheral blood mononuclear cells (PBMCs). PBMCs represent an essential 
component of the human immune system and consist of lymphocytes (CD4 and CD8 
T cells, B cells, and natural killer cells), monocytes, and dendritic cells. Unraveling the 
distinct regulatory landscape of PBMCs is an essential task to provide insight into how 
these immune cells interact as well as coordinate to maintain homeostasis and respond 
effectively to infections.

To infer an informative and comprehensive PBMC GRN, we harness information 
from a large, paired single-cell RNA and ATAC-seq multi-omic dataset [42]. We 
adopt a prior-knowledge matrix of TF-target gene interactions (M genes = 18, 557 by 
K TFs = 860 ) as previously constructed by [43] for GRN inference with this multi-
omic dataset. In this work, the ATAC-seq data was used as a regulatory mask for 
ENCODE-derived TF ChIP-seq peaks. Regulatory associations were established 
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through the Inferelator-Prior package based on the proximity of TFs to their potential 
target genes within 50 kb upstream and 2 kb downstream of the gene transcription 
start site. We integrate this prior knowledge with the raw expression profiles of 11,909 
PBMCs from a healthy donor to infer a global PBMC GRN and analyze the TFA pro-
files of eight annotated cell types and several families of immune TFs within this cell 
line.

We first investigate whether our predicted TFA clusters into distinct cell-type groups, 
as annotated by [42]. Using UMAP dimensionality reduction, we are able to determine 
a near clear distinction between each cell type within PBMCs (Fig.  4A). Interestingly, 
the TFA profiles for each of the T cell sub-types (CD4 T, CD8 T, and other T cells) are 
closely grouped together, suggesting that these cell types may have a similar lineage or 
TFA patterns, and may share common transcriptional programs or regulatory networks.

Fig. 4  GRN and TFA inference in PBMC. A UMAP projection of predicted TFA for each annotated PBMC cell 
type. B Predicted IRF2 TFA demonstrates high activity in NK and CD8 T cells. C GRN between IRF TFs and their 
targets. Pink edges indicate literature support for interaction. D Heat-map dot-plot depicting TFA of selected 
immune TFs across annotated PBMC cell types. E Heat-map dot-plot indicates ten most highly active TFs for 
each PBMC cell type. F Violin plot demonstrates corresponding distribution of TFA profiles for ten most highly 
active TFs
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We next explore the activity profiles of specific immune TF families, starting with the 
family of TFs belonging to IRF. In PBMCs, IRF contributes to the activation of immune 
cells that modulate antiviral immunity. Notably, the UMAP projection for IRF2 indicates 
a high activity pattern within natural killer cells and CD8 T cells (Fig. 4B). Indeed, IRF2 
is essential for the development and maturation of natural killer cells [44] and acts as a 
CD8 T cell nexus to translate signals from inflammatory tumor microenvironments [45].

In order to support our predicted TFA for the family of IRF TFs, we additionally inves-
tigate the regulatory interactions inferred by PMF-GRN (Fig. 4C). To do this within a 
reasonable scale, we first threshold our predicted GRN interactions (described in detail 
in the  “Methods” section). Within our thresholded GRN, we predict regulatory edges 
between IRF1 and the target genes B2M and BTN3A1. IF1 has been documented as a 
transactivator of B2M [46], while BTN3A1, a defense-related gene, has been found to be 
upregulated via the IRF1 pathway [47]. Furthermore, we predict that IRF2 also regulates 
B2M. Supporting evidence demonstrates that IRF2 has been shown to directly bind to 
genes linked to the interferon response and MHC class I antigen presentation, including 
B2M [48]. Finally, we predict regulatory edges between IRF3 and GPR108, RNF5, and 
TRAF2. GPR108 has been shown to be a regulator of type I interferon responses by tar-
geting IRF3 [49]. Evidence supporting the interaction between IRF3 and RNF5 indicates 
that RNF5 has an inhibitory effect on the activation of IRF3 [50]. Lastly, TRAF3 has been 
shown to be a critical component in the activation of IRF3 during the innate immune 
response to viral infections [51].

In addition to the IRF TFs, several other families of TFs, such as SMAD, STAT, 
GATA, and EGR, collectively play pivotal roles in PBMCs. These roles contribute to a 
wide spectrum of functions, including antiviral responses (IRF), fine-tuning immune 
responses (SMAD), immune cell development (GATA), immediate early responses to 
signals (EGR), and central regulation of T cells, B cells, and natural killer cells (STAT). 
Their coordinated activities orchestrate the complex interplay of immune cells, enabling 
PBMCs to effectively respond to diverse stimuli and maintain immune homeostasis.

Similarly to IRF, we also explore edges in our thresholded PBMC GRN for these 
immune TFs to identify regulatory edges supported by literature. Of the five families of 
immune TFs that we investigate, we find supporting literature for 60 regulatory edges 
predicted by PMF-GRN. We provide these literature supported edges, along with their 
supporting references in Additional file 1: Table S10. Additionally, we provide a graph 
representation of each immune TF GRN in Additional file 2: Fig. S2.

We next explore the TFA profiles of each of these immune TFs within the eight PBMC 
cell types. In Fig. 4D, a heat-map dot-plot provides a visual representation of TFA for 
each immune TF family across the different PBMC cell types. In particular, we observe 
that within the IRF family, IRF1 is highly active in CD4 T cells. Previous studies have 
confirmed the pivotal role of IRF1 in CD4+ T cells, where it is essential for promot-
ing the development of TH1 cells through the activation of the Il12rb1 gene [52]. Addi-
tionally, SMAD5 is predicted as highly active in B cells. SMAD5 is a key component of 
the TGF-β signaling pathway, and has been shown to play a crucial role in maintaining 
immune homeostasis in B cells [53]. We provide a UMAP of the TFA profiles for each of 
these immune TFs in Additional file 2: Fig. S3.
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We further explore our predicted TFA profiles from our global PBMC GRN and calcu-
late the ten most active TFs across the eight distinct cell types. For this experiment, we 
provide a heat-map dot-plot demonstrating the mean TFA value for each of the top TFs 
as well as a corresponding violin plot depicting the distributions of these TFA profiles 
(Fig. 4E and F). Visualizing these distinct activity profiles provides a concise and inform-
ative snapshot of the predominant TFs contributing significant transcriptional activity 
within each cell population. For example, within B cells we observe high activity for the 
TF PAX5. PAX5 is known to play a crucial role in B cell development by guiding the 
commitment of lymphoid progenitors to the B lymphocyte lineage while simultaneously 
repressing inappropriate genes and activating B lineage-specific genes [54].

For each annotated cell-type in the PBMC dataset, a set of marker genes were pro-
vided. From our ten most active TFs per cell-type analysis combined with their edges 
to target genes from our thresholded GRN, we find that several of these TFs are pre-
dicted to regulate marker genes. For example, within dendritic cells, the marker gene 
HLA-DQA1 is predicted to be regulated by the TFs SMAD1 and RFX5; the marker gene 
HLA-DPA1 is predicted to be regulated by ZNF2 and RFX5; and the marker gene HLA-
DRB1 is predicted to be regulated by RFX5. Within CD4 T cells, the marker gene LTB is 
predicted to be regulated by the TF ZNF436. Within natural killer cells, the marker gene 
PRF1 is predicted to be regulated by ZNF626. Finally, within B cells, the marker gene 
BANK1 is predicted to be regulated by the TFs ZNF792, EBF1, PAX8, and PAX5; and 
the marker gene HLA-DQA1 is predicted to be regulated by the TF SMAD1.

From the predicted edges between a snapshot of highly active TFs and annotated 
marker genes, we find the following supporting evidence. The regulatory relationship 
between RFX5 and HLA-DQA1 involves the inability of RFX5 to bind to the proximal 
promoter region of HLA-DQA1, potentially due to DNA methylation, hindering the 
assembly of active regulatory regions [55]. Additionally, EBF1 orchestrates direct tran-
scriptional regulation of BANK1, leading to the observed downregulation of BANK1 
expression [56].

Pairing the intensity (dot-plot) with the distribution (violin plot) of TFA offers a com-
prehensive view of the key TFs guiding our regulatory networks. This approach illu-
minates the variability in their activity levels across diverse immune cell populations, 
providing a nuanced understanding of the transcriptional dynamics in PBMCs. This 
information can be used to guide insights into the functional specialization and diversity 
of immune cells within PBMCs. Furthermore, this comparison provides a sound starting 
point for exploring the commonalities and differences in the transcriptional regulation 
of various immune cell populations.

Evaluating PMF‑GRN with BEELINE synthetic data

We next evaluated PMF-GRN using synthetic datasets curated from the BEELINE 
benchmark [37]. This benchmark provides six synthetic networks, linear (LI), lin-
ear long (LL), cycle (CY), bifurcating (BF), trifurcating (TF), and bifurcating con-
verging (BFC). In repetitions of ten, expression datasets of increasing cell sizes (e.g., 
n = 100, 200, 500, 2000 , and 5000) were generated by sampling. Using these generated 
expression datasets, as well as the provided reference GRNs, we inferred 300 GRNs using 
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PMF-GRN (Fig. 5A). For each of the six synthetic datasets, PMF-GRN outperforms the 
BEELINE baseline, represented in Fig. 5A with a black dashed line.

To further evaluate PMF-GRN, we calculate the AUPRC ratio of PMF-GRN over the 
baseline random predictor to compare to the similarly computed ratios in the original 
BEELINE paper (Fig.  5B). We observe that for the linear, cycle, and bifurcating con-
verging, PMF-GRN achieves competitive AUPRC ratios in comparison to the original 
methods used in the BEELINE benchmark. Interestingly, PMF-GRN does not perform 
competitively on long linear. This could be due to a number of factors, such as the 
larger number of intermediate genes introducing additional complexity which PMF-
GRN struggles to capture. Alternatively, the extended trajectory introduces a higher-
dimensional space, which could present a challenge for our matrix factorization based 
approach to effectively decompose the data into meaningful latent factors. This presents 
an interesting avenue of consideration when developing future probabilistic matrix fac-
torization approaches for GRN inference.

Discussion
In this paper, we introduce a robust framework for probabilistic matrix factorization, 
optimized through automatic variational inference, to infer GRNs from single-cell gene 
expression data. A distinctive feature of our approach is the decoupling of the data gen-
eration model from the inference procedure, providing unprecedented flexibility. This 
decoupling allows for modifications to the latent variables and their distributions, with-
out altering the inference process. Such flexibility facilitates the seamless integration of 
diverse sequencing datasets and modeling assumptions. Unlike previous methods, our 
framework eliminates the need to define a new inference procedure for each specific 
dataset or biological context when building new models.

PMF-GRN not only offers a flexible and unified approach to GRN inference but also 
provides a principled methodology for model selection and hyperparameter configura-
tion. The use of a consistent objective function and inference procedure across all gen-
erative models streamlines the process of hyperparameter search, reducing ambiguity 

Fig. 5  PMF-GRN performance on BEELINE synthetic GRN data A PMF-GRN inference performance with half of 
the ground truth provided as prior network information and the remaining half provided as a gold standard 
for evaluation. Dashed lines are the expected baseline of a random predictor. B AUPRC ratio over the baseline 
random predictor for PMF-GRN in comparison to each of the GRN inference methods used in the original 
BEELINE benchmark
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present in methods like the Inferelator. By conducting hyperparameter search across dif-
ferent generative models, we identify configurations corresponding to optimal values of 
our objective function, minimizing the reliance on heuristic model selection.

To validate the effectiveness of our approach, we applied PMF-GRN to infer GRNs 
from single-cell S. cerevisiae gene expression, comparing results with state-of-the-art 
single-cell GRN inference methods such as the Inferelator, SCENIC, and CellOracle. Our 
method demonstrates competitive, if not superior, performance in terms of AUPRC, in 
each experiment performed. Here, PMF-GRN provides a stable and reliable inferred 
GRN without the need for heuristic model selection or data separation into tasks.

Cross-validation experiments further support the robustness of PMF-GRN, BBSR, and 
StARS, indicating their ability to generalize well to new data without overfitting. In con-
trast, SCENIC and CellOracle exhibited poor performance during cross-validation, sug-
gesting potential issues with generalizability. Notably, we assessed the robustness of each 
algorithm against increasing noise in the prior-knowledge, identifying PMF-GRN and 
CellOracle as the most resilient to noisy priors. This resilience ensures the reliability of 
inferred GRNs even in the presence of uncertain prior knowledge.

Our model uniquely provides well-calibrated uncertainty estimates alongside point 
estimates for each interaction in the final GRN. The evaluation of uncertainty estimates 
demonstrated that as the posterior variance decreases, the AUPRC increases, indicating 
that the model is well-calibrated. Biologists can leverage these uncertainty estimates for 
downstream experimental validation, placing more trust in estimates with lower pos-
terior variance. Finally, the linear scalability of our models computational cost with the 
number of cells enables its application to single-cell RNA-seq datasets of any size.

Our investigation into PMF-GRN’s application to human PBMCs provides insight-
ful findings into the regulatory landscape of these essential immune cells. Leveraging a 
comprehensive multi-omic dataset, we demonstrate that our approach integrates single-
cell RNA and well-curated prior knowledge derived from ATAC-seq data. The resulting 
global PBMC GRN unveils distinct TFA profiles for eight annotated cell types and vari-
ous immune TF families. Through UMAP dimensionality reduction, we observe clear 
clustering of TFA profiles. Focusing on the IRF family, we identify specific TF-target 
gene interactions supported by literature, shedding light on regulatory relationships 
critical for immune responses. Extension to other immune TF families reveals their 
orchestrated activities within PBMCs, contributing to antiviral responses, immune cell 
development, and the regulation of T cells, B cells, and natural killer cells. By explor-
ing predicted edges between active TFs and marker genes, we establish connections 
between regulatory networks and cellular functions. The combined dot-plot and violin 
plot visualization strategy provides a nuanced understanding of TF activities, offering a 
valuable resource for deciphering the intricate transcriptional dynamics in PBMCs. This 
detailed exploration sets the stage for further investigations into the functional speciali-
zation and diversity of immune cells within the PBMC population, with implications for 
advancing our understanding of immune responses and disease mechanisms.

In the context of synthetic datasets curated from the BEELINE benchmark, PMF-GRN 
demonstrates robust performance across various network structures. Outperforming the 
BEELINE baseline across different synthetic networks, PMF-GRN consistently achieves 
competitive AUPRC ratios compared to the original methods used in the BEELINE 



Page 17 of 27Skok Gibbs et al. Genome Biology           (2024) 25:88 	

benchmark. Notably, PMF-GRN’s competitive performance is observed in linear, cycle, 
and bifurcating converging structures. However, challenges arise in the long linear struc-
tured synthetic data, suggesting potential limitations in capturing the complex dynam-
ics of extended trajectories. Factors such as the increased number of intermediate genes 
and a higher-dimensional space may contribute to this limitation. This observation 
opens avenues for future development of probabilistic matrix factorization approaches, 
encouraging exploration of methods better suited for intricate network structures. The 
overall success of PMF-GRN in diverse synthetic network scenarios underscores its ver-
satility and effectiveness in inferring GRNs, promising broad applicability in deciphering 
complex biological systems and regulatory interactions.

Conclusion
In conclusion, the PMF-GRN framework provides a flexible and principled approach 
for inferring GRNs from single-cell gene expression data. By decoupling the model and 
inference procedure, PMF-GRN enables easy integration of new and various sequencing 
datasets as well as modeling assumptions without the need for defining a new inference 
procedure. Additionally, PMF-GRN provides a principled approach for model selec-
tion through hyperparameter search, reducing the need for heuristic model selection. 
Overall, PMF-GRN consistently yields high-performing competitive results compared to 
other state-of-the-art single-cell GRN inference methods with a reliable gold standard 
and is robust to cross validation, noisy priors, and downsampling. Furthermore, PMF-
GRN provides well-calibrated uncertainty estimation, enabling a reliable set of results 
for downstream experimental validation.

We envision many possible directions for future work to design a better algorithm for 
inferring GRNs under our framework. This framework could be extended to explicitly 
model multiple expression matrices and their batch effects. We could probabilistically 
model prior information for A obtained from ATAC-seq and TF motif databases and 
include this as part of the probabilistic model over which we carry out inference. Evalu-
ating the posterior estimates of the direction of transcriptional regulation, provided by 
the matrix B, could provide a useful benchmark for the computational estimation of TF 
activation and repression. Research could also be carried out on improved self-super-
vised objectives for hyperparameter selection.

Future work could also focus on how to use results from our framework to guide 
experimental wet-lab work. For example, the uncertainty quantification provided by 
our model could open up new research directions in active learning for GRN inference. 
Highly ranked, uncertain interactions could be experimentally tested and the results fed 
back into the prior hyperparameter matrix for A. Inference with this updated matrix 
would ideally yield a better posterior GRN estimate. Posterior estimates of TFA provided 
by our model could be useful to wet lab scientists, as this quantity provides informa-
tion about possible post-transcriptional modifications, which are currently challenging 
to measure experimentally.

Most importantly, the study of GRN inference is far from complete. GRN inference 
approaches have thus far required new computational models and assumptions in order to 
keep up with relevant sequencing technologies. It is thus essential to develop a model that 
can be easily adapted to new biological datasets as they become available, without having 
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to completely re-build each model. We have therefore proposed PMF-GRN as a modular, 
principled, probabilistic approach that can be easily adapted to both new and different bio-
logical data without having to design a new GRN inference method.

Methods
Model details

We index cells, genes and TFs using n ∈ {1, · · · ,N } , m ∈ {1, · · · ,M} , and k ∈ {1, · · · ,K } , 
respectively. We treat each cell’s expression profile Wn as a random variable, with local 
latent variables Un and dn , and global latent variables (that are shared among all cells) σobs 
and V = A⊙ B . We use the following likelihood for each of our observations:

We assume that U, V, σobs , and d are independent, i.e., p(U ,V , σobs , d) = p(U)p(V )p(σobs)p(d) . 
In addition to our i.i.d assumption over the rows of U and d, we also assume that the entries 
of Un are mutually independent, and that all entries of A and B are mutually independent. 
We choose a lognormal distribution for our prior over U and a logistic normal distribution 
for our prior over d:

where µu ∈ R and σu ∈ R
+.

We use a logistic normal distribution for our prior over A, a normal distribution for our 
prior over B and a logistic normal distribution for our prior over σobs:

where Āmk ∈ {0, 1} , amax ∈ (0, 1) , amin ∈ (0, 1) , σa ∈ R>0 , clip( ¯Amk , amax, amin) = max(min( ¯Amk , amax), amin) , 
and σb ∈ R>0 . Āmk is given by a pipeline that is used by other methods such as the Infer-
elator. The pipeline leverages ATAC-seq and TF binding motif data to provide binary ini-
tial guesses of gene-TF interactions. amax and amin are hyperparameters that determine 
how we clip these binary values before transforming them to the logit space.

For our approximate posterior distribution, we enforce independence as follows:

We impose the same independence assumptions on each approximate posterior as we do 
for its corresponding prior. Specifically, we use the following distributions:

p(Wn|U ,V , σobs, d) = N dn ∗UnV
⊤, σ 2

obs .
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(

µu, σ
2
u

)

,
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(
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(
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q(U ,A,B, σobs, d) = q(U)q(A)q(B)q(σobs)q(d).
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where the parameters on the right hand sides of the equations are called variational 
parameters; Ũnk , d̃n , Ãmk , B̃mk , õ ∈ R and σ̃Unk

 , σ̃dn , σ̃Amk
 , σ̃Bmk

 , σ̃o ∈ R
+ . To avoid numeri-

cal issues during optimization, we place constraints on several of these variational 
parameters.

Inference

We perform inference on our model by optimizing the variational parameters to 
maximize the ELBo. In doing so, we minimise the KL-divergence between the true 
posterior and the variational posterior. In practice, to help with addressing the latent 
factor identifiability issue, we use a modified version of the ELBo where the prior 
and posterior terms are weighted by a constant β ≥ 1 [57]:

Inference is carried out using the Adam optimizer with learning rate 0.1 and 
beta values of 0.9 and 0.99. We clip gradient norms at a value of 0.0001. We set 
amin = 0.005 , amax = 0.995 , σ 2

b = 1 , and µu = 0 . We vary σa and σu as hyperparam-
eters that control the strengths of the priors over A and U, respectively. We also vary 
β as a hyperparameter.

We choose a hyperparameter configuration using validation AUPRC as the objec-
tive function as well as the early stopping metric. We hold out hyperparameters for 
p(A) for a fraction of the genes. We do this by setting Āmk = 0 for m corresponding 
to these genes for all k. During inference, we regularly obtain posterior point esti-
mates for these entries and measure the AUPRC against the original values of these 
entries as given in the full prior. This quantity is known as the validation AUPRC.

Once we have picked the hyperparameter configuration corresponding to the best 
validation AUPRC, we perform inference with this model using the full prior with-
out holding out any information. We use an importance weighted estimate of the 
marginal log likelihood as our early stopping criterion:

where the expectation is computed using simple Monte Carlo and the log-
∑

-exp trick is 
used to avoid numerical issues.
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Computing summary statistics for the posterior

After training the model, we use Ã and σ̃A , the variational parameters of q(A), to obtain 
a mean and a variance for each entry of A. Since q(A) is logistic normal, it admits no 
closed form solution for the mean and variance. We therefore use Simple Monte Carlo, 
i.e., we sample each entry of A several times from its posterior distribution and then 
compute the sample mean and sample variance from these samples. We use each mean 
as a posterior point estimate of the probability of interaction between a TF and a gene, 
and its associated variance as a proxy for the uncertainty associated with this estimate.

Calculating AUPRC

The gold standards for the datasets used in this paper do not necessarily perfectly overlap 
with the genes and TFs that make up the rows and columns of A as defined by the prior 
hyperparameters, i.e., there may be genes and TFs in the gold standard with a recorded 
interaction or lack of interaction, that do not appear in our model at all because they are 
not present in the prior. The reverse is also true: the prior may contain genes and TFs 
that are not in the gold standard. For this reason, we compute the AUPRC using one of 
two methods: “keep all gold standard” or “overlap,” which correspond to evaluating only 
interactions that are present in the gold standard or only interactions that are present in 
both the gold standard and the prior/posterior. We present results with “keep all gold 
standard” AUPRC as the evaluation metric when comparing our model to the Inferela-
tor in Fig. 2. For our evaluation of uncertainty calibration (Fig. 2D), we use the overlap 
AUPRC so that bins containing a lower number of posterior means do not have artifi-
cially deflated AUPRCs (see the “Evaluating calibration of posterior uncertainty” section 
for further information).

Evaluating calibration of posterior uncertainty

We create 10 bins, corresponding to the lowest 10%, 20%, 30%, and so on of posterior 
variances. We place the posterior point estimates of TF-gene interactions associated 
with these variances into these bins and then calculate the “overlap AUPRC” for each 
bin using the corresponding gold standard. The AUPRC for each bin is calculated using 
those interactions that are in the gold standard and also in the bin. We use such a cumu-
lative binning scheme because using a non-cumulative scheme could result in some bins 
having very small numbers of posterior interactions that are present in the gold stand-
ard, which would lead to noisier estimates of the AUPRC.

Inference and evaluation on multiple observations of W

The Inferelator method applies two scRNA-seq experiments separately on S. cerevisiae, 
with each resulting in a distinct model. These models are used to infer TF-gene inter-
action matrices, which are then sparsified. The final matrix is obtained by taking the 
intersection of the two matrices and retaining only the entries that are non-zero in both 
matrices. In our approach, we also train a separate model on each expression matrix 
and obtain a posterior mean matrix for A for each of them. To obtain the final posterior 
mean matrix for A, we average the posterior mean matrices from each model. While this 
approach works well, future research could focus on explicitly modeling separate expres-
sion matrices within the model, as mentioned in the “Discussion” section.
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Measuring the impact of prior hyperparameters

We evaluate the utility of each of the prior hyperparameter matrices used in our 
experiments. In Fig. 2A and Additional file 2: Fig. S1, we present with grey dots the 
AUPRCs achieved when performing inference using shuffled prior hyperparameters 
for A. This corresponds to randomly assigning to each row (gene) of A, the prior 
hyperparameters that correspond to a different row of A. Shuffling the hyperparame-
ters should lead to worse performance, as the posterior estimates should then also be 
shuffled, whereas the row/column labels for the posterior will remain unshuffled. For 
the “no prior” setting, shown with black dots in the figures, we set Āmk = 0 ∀m, k . 
The difference in AUPRC achieved using the unshuffled vs shuffled or no hyperpa-
rameters measures the usefulness of the provided hyperparameters for the inference 
task on the dataset in question.

Cross‑validation

For S. cerevisiae, we perform a five-fold cross validation experiment (Fig. 2B). Cross-
validation is performed by partitioning the gold standard into an 80–20% split, where 
80% of the data represents prior-known information to be used as a prior for p(A), 
and the remaining 20% is treated as the gold standard for evaluation. This process is 
repeated five times to generate five random splits of the data in order to robustly eval-
uate GRN inference. It is important to note that PMF-GRN performs hyperparameter 
search before inferring a final GRN within each cross-validation split. For each of the 
five partitioned cross-validation folds, the 80%, or prior portion, is further split into 
80% train and 20% test for hyperparameter search and evaluation. Once the optimal 
hyperparameters have been determined, the initial 80% split is treated as the training 
data, while the remaining 20%, which was not seen during hyperparameter selection, 
is used for evaluation.

Intersection over Union

Intersection over Union (IoU) scores were computed using the GRN learned by each 
algorithm for the two S. cerevisiae expression datasets. For each GRN, we calculate 
and retain the top 25% of predicted edges in order to obtain the best estimates for 
each algorithm and elimate noisier predictions. For each algorithm, we compute both 
the intersection and the union of the GRN interactions predicted from the two S. cer-
evisiae datasets. Dividing the Intersection by the Union allows us to obtain a score 
indicating how similar the two inferred GRNs are for each algorithm.

Downsampling expression

For S. cerevisiae, in repetitions of five, we randomly sample the S. cerevisiae expres-
sion matrix on the cell axis to obtain downsampled expression dataset sizes of 80% , 
60% , 40% , and 20% . We perform a hyperparameter search, using an 80% training-20% 
validation split of the prior-knowledge matrix, on each of these five expression matri-
ces for each sample size. Using these hyperparameters, we infer GRNs for each repeti-
tion within each split to obtain our final downsampled GRNs.
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Exploring the effect of cross‑validation ratios on hyperparameter selection

To effectively explore the influence of cross-validation split size on obtaining optimal 
hyperparameters for GRN inference, we methodically separate our S. cerevisiae prior-
knowledge into 4 different split sizes. These splits consist of 80% training-20% valida-
tion, 60% training-40% validation, 40% training-60% validation, and 20% training-80% 
validation. For each split size, we obtain 5 random training and validation splits to 
ensure robust results. We then perform hyperparameter search across each 5 random 
splits for each split size. Using the best overall hyperparameters for each split size, we 
infer a final GRN to demonstrate the impact each particular split had on obtaining the 
optimal hyperparameters for the final GRN.

Datasets and preprocessing

We inferred each GRN using a single-cell RNA-seq expression matrix, a TF-target 
gene connectivity matrix, and a gold standard for bench-marking purposes. We mod-
eled the single-cell expression matrices based on the raw UMI counts obtained from 
sequencing for the S. cerevisiae and PBMC datasets, which were therefore not nor-
malized for the purpose of this work. For the two B. subtilis datasets used in this 
work, we demonstrate the effect of different normalization and scaling techniques and 
convert all data used to integers in order to create a single-cell-like dataset. We fur-
ther obtained binary TF-gene matrices representing prior-known interactions, which 
served as prior hyperparameters over A and were derived from the YEASTRACT and 
SubtiWiki databases, as well as from [43] for PBMC. We acquired a gold standard for 
S. cerevisiae our datasets from independent work which is detailed below.

Saccharomyces cerevisiae

We used two raw UMI count expression matrices for the organism S. cerevisiae 
obtained from NCBI GEO (GSE125162 [8] and GSE144820 [40]). For this well stud-
ied organism, we employed the YEASTRACT [58, 59] literature derived network of 
TF-target gene interactions to be used as a prior over A in both S. cerevisiae net-
works. A gold standard for S. cerevisiae was additionally obtained from a previously 
defined network [41] and used for bench-marking our posterior network predictions. 
We note that the gold standard is roughly a reliable subset of the YEASTRACT prior. 
Additional interactions in the prior can still be considered to be true but have less 
supportive evidence than those in the gold standard.

Peripheral blood mononuclear cells

We used a paired multi-omic single-cell RNA-seq and ATAC-seq dataset for PBMC 
obtained from [42]. The single-cell expression matrix contained 11,909 cells. The 
prior-knowledge matrix was constructed using the ATAC-seq data from this multi-
omic dataset, constructed and described in detail by [43]. The prior-knowledge 
matrix is 18,557 genes by 860 TFs and contains 0.5% non-zero edges.

Due to the complex and dynamic nature of PBMCs, a gold standard is currently 
unavailable for this cell line. To evaluate our inferred network, we implement a 5-fold 
cross-validation procedure where our chromatin accessibility-based prior is split 
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into 5 random sets, where 80% is used as prior knowledge and 20% is used as the 
gold standard for evaluation. We then took the intersection of the regulatory edges 
inferred across each of the 5 fold cross-validation experiments and filtered to retain 
the highest quality edges, obtaining a prediction probability of 90% or higher.

BEELINE synthetic datasets

We used the BEELINE synthetic expression datasets [37] without modification. Refer-
ence GRNs were transformed into cross-tab matrices in order to use this information 
for prior-knowledge and gold standard evaluation. We used 50% of the reference GRN 
as the prior and the remaining 50% as the gold standard, as was similarly done in [31].
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