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Abstract 

The impact of millions of individual genetic variants on molecular phenotypes in cod-
ing sequences remains unknown. Multiplexed assays of variant effect (MAVEs) are scal-
able methods to annotate relevant variants, but existing software lacks standardization, 
requires cumbersome configuration, and does not scale to large targets. We present 
satmut_utils as a flexible solution for simulation and variant quantification. We then 
benchmark MAVE software using simulated and real MAVE data. We finally determine 
mRNA abundance for thousands of cystathionine beta-synthase variants using two 
experimental methods. The satmut_utils package enables high-performance analysis 
of MAVEs and reveals the capability of variants to alter mRNA abundance.
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Background
Multiplexed assays of variant effect (MAVEs) employ next-generation sequencing to 
profile the phenotypic effects of hundreds to thousands of genetic variants in a target 
gene. These assays, which rely on saturation mutagenesis, have been used to survey 
variant effects on molecular phenotypes ranging from mRNA and protein expression to 
protein binding and enzyme activity [1–10]. As a result, MAVEs emerged as methods 
to study variant effects and annotate variant significance, ultimately informing disease 
diagnosis and prognosis [11, 12]. Guidelines now exist for the development of MAVEs, 
underscoring their utility for variant annotation and interpretation [13]. Given satura-
tion mutagenesis data contains variants with frequencies at and even below error rates 
for some polymerases (1 × 10–4), variant callers for MAVEs must have not only high sen-
sitivity, but also high specificity. Yet, analysis methods for MAVEs are not standardized, 
and to our knowledge, none of the existing variant callers for analysis have previously 
benchmarked performance.

Existing tools for MAVE analysis require detailed configuration of parameters 
(“Methods”), may be limited to particular experimental designs, and fail to scale to 
large target genes. For example, dms_tools2 [14] has specific input requirements: 
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primer designs should end flush with a codon, and reads must be dual-barcoded and 
align contiguously to a user-provided reference (no insertions or deletions). Simi-
larly, Enrich2 [15] requires that reads align contiguously with a provided reference 
sequence. DiMSum [16] outputs nucleotide strings and only annotates amino acid 
changes in HGVS format. Importantly, all tools only call variants in a single PCR 
amplicon at a time. Hence, none of the published methods allow variant calling from 
multiple PCR amplicons at once with one configuration of analysis parameters, lim-
iting the ability to rapidly scale to large genes. A recently released variant caller for 
MAVE analysis attempted to address the scalability problem, enabling both direct, 
“shotgun” sequencing and barcoded analysis [17]. However, this analysis did not 
benchmark performance against published MAVE variant callers.

Existing strategies typically assume pre- and post-selection sequencing of the vari-
ant library, for example when assaying variant effects on organismal growth [4]. While 
this is the predominant MAVE design, a generalized variant caller would facilitate not 
only selection-based assays but also assays of arbitrary design. Similarly, while a mul-
titude of methods exist to call somatic variants in clinical samples [18–20], somatic 
variant callers for whole-transcriptome analysis are tailored to quantify variants in 
samples with few real single- and multi-nucleotide polymorphisms (SNPs and MNPs, 
respectively). In contrast, MAVE data contain a high density of thousands of low-fre-
quency SNPs and MNPs. For example, di- and tri-nt MNPs may comprise a large pro-
portion of the total variants in codon saturation mutagenesis. The low frequency of 
variants (< 1 × 10−4) pose new problems to variant calling for MAVE data. Analysis is 
further complicated by the hierarchical composition of variants, wherein true positive 
variants may be called together with nearby true or false positive variants [16].

To address the need to call low-frequency variants in MAVE data, we designed and 
implemented satmut_utils (saturation mutagenesis utilities), incorporating modern 
software development practices, extensive documentation, integration with package 
management, and rigorous unit testing. The satmut_utils “call” workflow is an end-
to-end variant caller for MAVEs that supports direct analysis of targeted sequencing 
data from both (a) amplicon [4] and (b) rapid amplification of cDNA ends (RACE)-
like library preparation methods [21–23]. Conversely, our software does not sup-
port analysis of barcoded-sequencing designs, or enable multi-codon (haplotype) 
variant calling, a requirement for analysis of experiments utilizing error-prone PCR 
(see Additional file 1 for rationale). To achieve high specificity, satmut_utils option-
ally builds on a simulation workflow (“sim”), enabling the generation of datasets for 
benchmarking and error modeling.

Here, we performed the first benchmarking analysis of MAVE variant callers on 
simulated and real MAVE data, and show that satmut_utils achieves superior perfor-
mance for MAVE analysis. Using satmut_utils, we assayed variant effects on mRNA 
abundance using two library preparation methods. We identified variants in cysta-
thionine beta-synthase (CBS) with effects on mRNA abundance, expanding a prior 
variant effect map for CBS function [10]. We further characterized possible mech-
anisms of altered mRNA abundance, including codon-mediated effects. The sat-
mut_utils package enables flexible experimental design and comparative analysis of 
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saturation mutagenesis data from various sources and will facilitate the interpretation 
of variant effects on multiple layers of gene expression.

Results
Design of simulation and variant calling workflows for saturation mutagenesis data

We developed a workflow to simulate low-frequency variants in real alignments, termed 
“sim” (Fig.  1A). “sim” generates variants by editing into pre-existing alignments that 
correspond to a negative control (NC) sequencing library prepared from a non-muta-
genized template. Editing real alignments enables us to capture sequencing errors and 
experiment-specific biases that may escape model-based in silico read generation. “sim” 
can efficiently simulate the number of variants typically targeted in MAVEs (> 1000) in a 
single transcript, improving on the scalability of existing solutions [24].

The “sim” workflow supports editing of multiple SNPs and MNPs at the same coordi-
nate; ensures reads are edited only once; and allows the user to prohibit simulation of 
variants adjacent to pre-existing errors to ensure errors in the edited read do not convert 
the simulated variant to higher order (e.g., SNP to MNP; see Additional file 1). In sum-
mary, satmut_utils “sim” enables deterministic simulation of many low-frequency vari-
ants at the same position and offers the first generalized simulation method specific for 
multiplexed assays.

Next, to call low-frequency SNPs and MNPs in targeted sequencing data, we devel-
oped the satmut_utils “call” workflow (Fig.  1B). Importantly, “call” supports variant 

Fig. 1  satmut_utils design and performance benchmarking. Solid circles represent single- or 
multiple-nucleotide polymorphisms (SNPs, MNPs), which may be either true or false positives (errors). A 
Variant simulation workflow. With “sim,” ultra-low-frequency variants in Variant Call Format (VCF) are edited 
into pre-existing sequencing read alignments (BAM). Edited reads (FASTQ) and true positive variants (Truth) 
are output with expected counts and frequencies. The “call” workflow B extracts quality features during 
variant calling, which may be used for assay design validation, software parameter tuning, and machine 
learning-based error correction. B Variant calling workflow. SNPs and MNPs are identified and quantified in 
paired-end reads following optional preprocessing to improve specificity. Transcript nucleotide and protein 
changes are annotated and a VCF and fragment coverage bedgraph file are output. C Performance of 
MAVE variant callers. Two hundred eighty-one variants were simulated in alignments for a single amplicon 
in CBS, and performance measures were evaluated after applying two simple count filters. nt: nucleotide/
codon-level calls; aa: amino acid-level calls. D Accuracy of variant count estimates. The expected count is the 
simulated truth count. One outlier SNP was excluded for visualization (Enrich2 log ratio: 4.88; satmut_utils 
and dms_tools2 log ratio: 0.87). dedup = deduplication
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calling from multiple interleaved PCR tiles simultaneously, a feature lacking from other 
tools for analysis [14–16]. A curated human transcriptome is included to facilitate ease-
of-use, although custom reference files are also supported. Our method provides two 
additional features missing in published MAVE analysis methods. First, satmut_utils 
enables variant calling from RACE-like library preparation methods such as Anchored 
Multiplex PCR [21] (Additional file  2: Fig. S1A). Second, satmut_utils extracts read-
based quality data for each mismatch contributing to a variant call. Quality data may 
then be used to train error correction models. (For a detailed comparison of variant 
caller features see Additional file 2: Fig. S1B; for time and memory consumption of sat-
mut_utils see Additional file 1).

To improve specificity of variant calls, the “call” algorithm incorporates filters based 
on read edit distance and base qualities (Additional file 2: Fig. S1C). Then, variants are 
called in read pairs if mates are concordant [4, 10], i.e., if the same base call is observed 
in both forward and reverse reads. This filters out sequencing errors which are found in 
only one read of the pair. Finally, satmut_utils employs a novel variant calling algorithm 
that prioritizes MNPs and improves sensitivity for MNP calls when they are adjacent 
to errors (Additional file 2: Fig. S1D). We coined the term variant conversion for cases 
when a true variant and adjacent error are called together as a false positive (Additional 
file 1). Conversion is particularly insidious for MAVE analyses as it may also lead to a 
false negative call. Altogether, satmut_utils (1) requires a single configuration for analy-
sis of data from multiple amplicons; (2) supports two different library preparation meth-
ods; and (3) employs a unique variant calling algorithm for high-accuracy estimates of 
variant abundance.

In silico validation and benchmarking of variant calls with “sim”

We compared performance of satmut_utils to dms_tools2 [14], Enrich2 [15], and DiM-
Sum [16], in the first benchmarking analysis of MAVE variant callers. We speculate that 
a prior lack of benchmarking was due to several challenges: (1) lack of truth datasets; 
(2) different experimental design assumptions; and (3) non-standardized input and out-
put file formats. Nonetheless, after preprocessing alignments to meet the various input 
requirements for Enrich2 and dms_tools2 (“Methods”), we successfully generated a 
common benchmarking dataset using reads from a single PCR amplicon in cystathio-
nine beta-synthase (CBS) [10, 25]. This simulated dataset contained 281 variants at fre-
quencies between 1 × 10−6 to 1 × 10−3 in a background of approximately two million 
negative control (wild-type) read pairs.

With a threshold of two supporting reads/fragments to make a variant call, Enrich2, 
dms_tools2, and satmut_utils achieved perfect sensitivity at the nucleotide level 
(Fig. 1C). However, precision was 0.023 (Enrich2, single-read mode), 0.487 (dms_tools2), 
and 0.553 (satmut_utils). Because DiMSum does not provide HGVS-formatted nucle-
otide annotations, but rather full nucleotide strings, we compared DiMSum to sat-
mut_utils for amino acid changes (rationale in Additional file 1). At perfect sensitivity, 
DiMSum precision was 0.440 compared to satmut_utils precision of 0.605. Lower preci-
sion for Enrich2 and DiMSum may be due to merging with nearby errors. The satmut_
utils “call” workflow does not call phased SNPs as a MNP unless the SNPs are within 3 
nt (no haplotype calls are made). We found that this algorithmic design is a reasonable 
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compromise to remove thousands of false positive calls arising from the merging of read 
errors. We note that Enrich2 precision might be higher with another analysis mode 
(barcoded sequencing; see Additional file 1 for a detailed explanation of benchmarking 
considerations).

Despite differences in overall performance, dms_tools2 and Enrich2 reported largely 
similar counts to satmut_utils for true positive variants, especially MNPs (Additional 
file 2: Fig. S2 A-C). Yet, satmut_utils reported more accurate variant counts than other 
methods for MNPs (Fig.  1D). Deviations from the truth count are likely impacted by 
read filtering and the variant calling algorithm (Additional file  2: Fig. S1 C-D), which 
may explain the higher accuracy of satmut_utils variant calling. In total, using satmut_
utils “sim,” we performed the first benchmarking analysis of MAVE variant callers and 
showed that satmut_utils “call” is more accurate than other methods for variant calling 
of in silico mutagenesis data.

“sim” and “call” power machine learning‑based error correction

Sequencing libraries contain systematic errors arising from library preparation- and 
sequencer-specific biases [26–28]. In MAVEs, a negative control (NC) library of the 
non-mutagenized template is typically sequenced in the same experiment as mutagen-
ized libraries [10]. In agreement with prior observations of experiment- and platform-
specific errors [28], we found a wide range of error rates for independent libraries from 
various labs, experiments, and sequencing runs (Fig.  2A). We noted the highest error 
rates for (C > A, G > T) and (C > T, G > A) substitutions across all Illumina platforms, 
library preparation methods, and independent libraries from various input nucleic acid 
sources. We hypothesized that sequencing a NC library, simulating variants in this con-
trol, and then training classifiers would help moderate such biases.

To test the utility of error correction models enabled by satmut_utils, we generated 
four large simulated datasets by editing thousands of variants into two NC libraries, 
sequenced on four Illumina platforms (“Methods”). At perfect recall, satmut_utils pre-
cision in these datasets with default calling parameters and no model-based error cor-
rection (“Methods”) was 0.552 + / − 0.041 (mean + / s.d.). Thus, with a naïve filter using 
a minimum count threshold, thousands of false positives remain in multiplexed assay 
datasets, deteriorating their quality.

We next used the simulated dataset from the first NC library, which comprised the 
human CBS coding sequence after functional complementation in yeast [10], to assess 
performance of machine learning models in reducing false positives. We trained binary 
classifiers using quality features extracted by satmut_utils “call” from the first simu-
lated dataset (hereafter dataset A). Of the five classifiers evaluated by cross-validation, 
all five models showed a median accuracy > 0.95 (Fig. 2B). The remaining three datasets 
(B–D) arose from a second NC library consisting of the CBS coding sequence amplified 
from human HEK293T total RNA and sequenced on different platforms. We selected 
the random forest (RF) to test performance on all four datasets generated with “sim” 
(Fig.  2C). The mean accuracy of the final models (N = 4) on an independent test set 
was 0.954 + / − 0.019 (mean, s.d.), indicating that models trained on simulated data 
are robust to different choices of NC library and sequencing platform, and outper-
form filtering variants using a fixed count threshold (Fig. 1D). Several quality features 
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lent predictive power as measured by RF feature importance (Fig. 2D, Additional file 3: 
Table S1).

To assess generalization of the models, we trained a RF on one simulated dataset 
and tested it on all other datasets (all pairwise permutations, Fig. 2E). Models general-
ized well for our own NC library sequenced on different platforms, with an accuracy 
of 0.938 + / − 0.014 (mean, s.d.). Accuracy was slightly worse when trained on the inde-
pendent dataset A and tested on datasets B-D: 0.891 + / − 0.012 (mean, s.d.). We finally 
applied the models to filter calls in the NC libraries and observed a strong reduction 
of false positives (Fig.  2F). Therefore, training error correction models on simulated 
data appreciably improves variant calling precision (see Additional file  1 for potential 
caveats).

Read preprocessing implemented in satmut_utils reduces false positive variant calls

While machine learning models using sequence-level features reduce false positives, 
additional improvements that leverage read preprocessing can further improve speci-
ficity. For example, primer base quality masking [20] may be used to omit variant calls 
that arise from primer synthesis errors, by setting base qualities to 0 for synthetic read 
segments (Fig. 3A). When unique molecular indices (UMIs) are incorporated into the 
library design, further improvements can be obtained by consensus deduplication [14, 

Fig. 2  Machine learning models for error correction. Negative control (NC) alignments for “sim” dataset 
A (Nextseq 500) arose from the human CBS coding sequence after functional complementation in yeast 
[10]. Alignments for “sim” datasets B–D (NovaSeq 6000, HiSeq 2500, HiSeq 4000) and MiSeq runs arose from 
HEK293T endogenous CBS cDNA, and alignments for HiSeq X datasets arose from CBS plasmid. A Error 
proportions in negative control libraries. Proportion of each error substitution across NC libraries from various 
sources. Shape of the points indicates an independent NC library. B Model selection. To compare models, 
dataset A (3802 variants, 7859 true mismatches, 6463 false mismatches) was used. Up to 19 satmut_utils call 
quality features were selected to train binary classifiers (“Methods”). C Random forest performance. Random 
forests (RF) were trained on all four “sim” datasets and cross-validation performance across different platforms 
was calculated. D Feature importance for RF models. A RF was trained on a combined dataset (all “sim” 
datasets A–D), and the top fifteen important features as measured by mean decrease in accuracy (“Methods”) 
are plotted. E Cross-generalization of RF models. Pairwise train-test regimes were carried out with all “sim” 
datasets to assess model generalization across sequencing libraries and platforms. F Error correction impact 
on variant calls in NC libraries. satmut_utils variant calls from each NC library were filtered by the RF models. 
The number of error mismatches before and after filtering is plotted for each NC library. NC: negative control; 
GBM: gradient boosted machine; GLM-elasticnet: generalized linear model with elastic net regularization; 
kNN: k-nearest neighbors; RF: random forest; SVC: support vector classifier



Page 7 of 27Hoskins et al. Genome Biology           (2023) 24:82 	

20, 29], where a consensus sequence is generated from PCR read duplicates (Fig. 3B). We 
implemented these additional methods and compared variant calls in simulated datasets 
before and after primer masking and consensus deduplication using UMIs.

Primer masking removed a small number of false positive SNPs in “sim” datasets 
(min = 1, max = 64; min proportion of SNPs remaining = 0.985). More importantly, 
primer base quality masking improved the accuracy of variant counts in simulated data 
(Fig.  3C, N = 4 pooled datasets). In parallel with primer masking, consensus dedupli-
cation of a RACE-like (Anchored Multiplex PCR) NC library through UMIs reduced 
depth of coverage across CBS by 63.1% (Fig.  3D, “Methods”). Further, deduplication 
reduced false positive (FP) SNPs by 21.5% (1026 FPs); di-nt MNPs by 70.3% (237 FPs); 
and tri-nt MNPs by 27.2% (3 FPs) (Fig. 3E). This significant improvement in specificity 
may be accompanied by a slight cost to sensitivity, but the current implementation of the 
“sim” workflow was insufficient to determine the exact sensitivity–specificity tradeoff 
(see Additional file 1 for details). Altogether, read preprocessing steps can improve the 
quality of MAVE data prior to variant calling, independent of other model-based error 
correction.

End‑to‑end analysis of growth‑based MAVE data with satmut_utils

To apply satmut_utils to real MAVE data and compare the impact of variant calling algo-
rithms on fitness estimates, we used two growth-based MAVE experiments- human 
SUMO1 [4] and influenza HA [30]. We quantified variant counts using satmut_utils 
“call” or DiMSum “WRAP,” then applied a uniform statistical inference pipeline to deter-
mine variant fitness effects (DiMSum “STEAM,” “Methods”). This approach enabled us 

Fig. 3  Read preprocessing for error correction. For A and B, solid colored circles represent SNPs, either 
true or false positive (error). A Primer base quality masking schematic. Base qualities for read segments 
determined to originate from synthetic primer sequences are set to 0. Black lines indicate the sequenced 
fragment. Solid gray lines with ticks represent primers/directionality. Gray dotted lines represent reads off the 
input fragment. Readthrough coverage refers to coverage from adjacent PCR tiles, required to call variants 
that overlap primers. B Consensus deduplication schematic. UMI-tools directional adjacency method [75] 
is used to group paired-end reads from a common unique fragment, defined by UMI and read 1 position 
(R1 pos.). A custom consensus deduplication algorithm generates the consensus base among duplicates at 
each aligned fragment position for each read. C Primer base quality masking improves accuracy of variants 
underlying primers. Simulated datasets (Fig. 2, N = 4) were analyzed with/without primer BQ masking and 
true positive variants that overlap primers are plotted compared to variants not overlapping a primer. D 
Consensus deduplication maintains coverage uniformity. A UMI-containing, RACE-like negative control 
(NC) library was generated. Waterfall plots of cumulative fragment coverage for consensus-deduplicated 
reads and non-deduplicated reads indicate uniform collapse of PCR duplicates. x-axis is in log10 scale with 
a range between 4.6 and 5.6. E Consensus deduplication reduces false positives. The effect of consensus 
deduplication is shown for the RACE-like NC library for each variant type. UMI = Unique molecular index; 
SNP = single-nucleotide polymorphism; MNP = multiple-nucleotide polymorphism; NC: negative control
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to tease-apart the impact of variant calling algorithms on the resulting fitness estimates 
and variant effect maps.

We found that DiMSum reported more variants than satmut_utils for both datasets 
(Fig. 4A,B). This is partly due to satmut_utils’ leverage of the NC library for error correc-
tion (i.e., subtraction of background errors, “Methods”). Nonetheless, satmut_utils and 
DiMSum reported well-correlated fitness estimates for both datasets (Fig. 4C,D; Pearson 
correlation 0.84 and 0.78 for SUMO1 and HA, respectively). We hypothesized that more 
accurate software should lower the fitness estimates for missense and nonsense variants 
relative to silent variants, so we compared fitness estimates between these variant types. 
For the HA dataset, but not the SUMO1 dataset, we found satmut_utils reported lower 
fitness estimates for missense and nonsense variants compared to DiMSum (Fig. 4E,F). 
Conversely, the biological replicate correlation of raw counts and fitness scores was 
higher for satmut_utils in the SUMO1 dataset (Fig.  4G–I). Our analysis indicates sat-
mut_utils accurately quantifies variants in large target regions with multiple amplicons.

Altogether, we found variant calling algorithms and pre-/postprocessing methods have 
a measurable impact on fitness estimates. Importantly, our analysis demonstrates the 

Fig. 4  End-to-end analysis of growth-based MAVE datasets with satmut_utils and DiMSum. SUMO1: Homo 
sapiens small ubiquitin-like modifier 1. HA: influenza A/WSN/1933(H1N1) hemagglutinin. In all panels, all 
six amplicons in the HA dataset [30] were analyzed, and only one of the three targeted amplicons in the 
SUMO1 dataset [4] was analyzed for simplicity (Methods). For A–F, only “single” variants are plotted (those 
altering only one codon/amino acid). For C, D, H, and I, the Pearson correlation coefficient for DiMSum 
fitness estimates is indicated. In E and F, outliers are greater than 1.5 * interquartile range. A Variant counts 
by software method. A pseudocount of 1 was added. B Variant call overlap by software. C SUMO1, and D 
HA fitness estimates by software. E SUMO1, and F HA fitness estimate distributions by variant type. Asterisks 
indicate significant two-sided Wilcoxon rank-sum tests at a threshold of < 1 × 10−10. G Biological replicate 
correlation. Shown is correlation between fitness estimates, input counts, and output counts. The SUMO1 
dataset contained two replicates. For HA dataset triplicates, the mean correlation + / − the standard deviation 
is shown. H DiMSum, and I satmut_utils replicate correlation for SUMO1. Scatterplots derive from DiMSum 
reports which aggregate counts for visualization
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modularity and scalability of satmut_utils, and its integration with secondary analysis 
modules to compute fitness estimates.

Variant calls are reproducible by two orthogonal library preparation methods

To date, most MAVE studies have measured variant effects on protein fitness or organ-
ismal fitness. We sought to show the flexibility of satmut_utils in analyzing datasets that 
diverge from the common growth-assay design. To this end, we measured gDNA and 
mRNA abundance for a complete coding variant library in CBS, following stable expres-
sion in a HEK293T landing pad cell line [31]. Our design enabled the measurement of 
variant effects on gene expression at the nucleotide level. We recombined a CBS var-
iant library [10] into the landing pad line with a downstream IRES-mCherry element 
(Fig. 5A). Then, we assayed variant abundance in gDNA and cDNA by amplicon [4, 10] 
and RACE-like (Anchored Multiplex PCR) [21] library preparation methods (“Meth-
ods”). The quality of total RNA as well as PCR products at steps in library preparation 
was confirmed (Additional file 2: Fig. S3).

For each method, we again included a NC sequencing library to enable variant filtering 
with a random forest (RF) model. These libraries showed uniform coverage across the 
CBS target regions (Fig. 5B), as did mutagenized libraries. We found high performance 
of RF models for both library preparation methods (0.975, 0.959 accuracy for amplicon 

Fig. 5  satmut_utils analysis of a CBS variant library by orthogonal library preparation methods. A 
Experimental strategy. A human CBS coding variant library was stably expressed in a landing pad cell line 
[31]. gDNA and total RNA were sequenced by one of two targeted library preparation methods 24 h after 
induction with Doxycycline (Dox). B CBS domains and sequencing coverage. Coverage for two tiles by the 
amplicon method is contrasted with full coverage in the RACE-like method. The maximum coverage depth 
is shown on the left of the track. C Filtering of variant calls. Random forest models were trained for each 
method using negative control libraries and the “sim” workflow. Plotted are the mean number of variant 
calls + / − the standard deviation (N = 3). The total possible calls are as follows: amplicon (531 SNPs, 2145 
MNPs); RACE-like (4105 SNPs, 16,863 MNPs). D Differential abundance for mutation types. The difference in 
the median log frequency between cDNA and gDNA is shown for variants observed in all gDNA and cDNA 
replicates (N = 6). Outliers are greater than 1.5 * interquartile range. Asterisks indicate significant differences 
by one-sided Wilcoxon rank-sum tests (p < 0.05). E Variant call overlap between methods. Overlap in variant 
calls is shown for CBS tiles 2 and 4. Total calls are the theoretical number of variant calls. Significance of 
overlap was computed by a hypergeometric test. F Biological replicate correlation for amplicon libraries. 
Reproducibility between log10 frequencies was determined by Pearson’s correlation coefficient after filtering 
(“Methods”). G Similarity of variant frequency estimates between methods. The difference in median log10 
frequency between methods is shown for cDNA libraries with filtering and correlation as in F. M = million
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and RACE-like simulated datasets, respectively). These models were subsequently used 
to filter variant calls from the mutagenized sequencing libraries (Fig. 5C).

The difference in log ratios (variant:wild-type) between cDNA and gDNA for each 
variant highlighted large effects on relative abundance in both directions. As expected, 
missense and nonsense variants reduced mRNA abundance compared to silent changes 
(Fig. 5D). Variant calls made by both library preparation methods comprised 22.9% of 
the maximum theoretical calls for the two amplicons (2676), and overlap was significant 
by a hypergeometric test (Fig. 5E, p = 7 × 10–112). For the amplicon method, among vari-
ants detected at least once, 55.7% of these variants were found in all replicate gDNA and 
cDNA libraries (N = 3 replicates each). In contrast, only 15.9% of variants were observed 
in all replicates by the RACE-like method.

Variant abundance estimates were reproducible across input sources and independent 
biological replicate cell lines (Fig. 5F, Additional file 2: Fig. S4 A-B). Despite a difference 
in coverage depth (Fig. 5B), the variant frequency correlation was satisfactory compared 
to the RACE-like method for variants that were well-measured (0.91 Pearson’s correla-
tion, Fig. 5G, Additional file 2: Fig. S4C). Taken together, our results suggest satmut_utils 
reports reproducible variant frequency estimates from two library preparation strategies 
and facilitates analyses from multiple nucleic acid sources.

Identification of CBS variants that alter mRNA abundance

To apply satmut_utils variant calling to unveil biological insights, we next determined 
CBS variants with effects on mRNA abundance. The human CBS enzyme has specific 
amino acids that bind two cofactors (heme and pyridoxal phosphate (PLP)) [32–34]. 
These cofactors regulate folding, stability, and activity of CBS [10, 35–37]. Because heme 
and PLP can stabilize CBS variants and remediate pathogenic phenotypes [10, 38, 39], 
and because heme binding is not reversible [40], we hypothesized heme facilitates co-
translational folding of CBS, similar to its role in folding of globin [41, 42].

We reasoned that CBS variants with low mRNA abundance may be enriched at or near 
important structural residues of the CBS protein, as improper co-translational folding 
may trigger ribosome quality control, leading to mRNA and protein degradation [43, 
44]. To address this hypothesis, we determined CBS variants with significant differential 
abundance between cDNA (total RNA) and gDNA using the high-quality data from the 
amplicon method (Fig. 6A, Additional file 2: Fig. S5A, “Methods”). Of the 2676 theoreti-
cal variants for the amplicon method, 1240 were detected (46.3%) at least once, and 691 
were observed in all gDNA and cDNA replicates (N = 6, 25.8%). Of these, 19 variants 
were higher in mRNA abundance compared to 30 variants that were lower in mRNA 
abundance (FDR < 0.1).

Several variants at and near important residues for activity, including variants at posi-
tions previously implicated in CBS deficiency, exhibited significant effects on mRNA 
abundance (Additional file  3: Table  S2). Specifically, we identified decreased mRNA 
abundance of the variant K119F, which interrupts the Schiff base formed by this residue 
with PLP [32]. Similarly, mutations at or adjacent to the heme-binding residue (H65) 
exhibited a strong reduction in mRNA abundance: H65R, H65V, H66F, and H67T. 
Variants with decreased mRNA at positions previously implicated in CBS deficiency 
included P49K, R58I, E128I, I143R, and E144L [37, 45–48].
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Fifty other variants had differential mRNA abundance by the RACE-like method 
(Additional file 2: Fig. S6A, FDR < 0.1), and despite limited variants being detected 
by both preparation methods in all replicates, we found a high correlation in the 
mRNA abundance effect between amplicon and RACE-like methods (0.998 Pearson’s 
coefficient, Additional file 2: Fig. S6B). We noted variant effects that depend on the 
position of the variant in the coding sequence. In the amplicon method, the variance 
of the effect at each position was higher in the catalytic domain than in the heme 
domain, suggesting the magnitude of CBS variant effects may depend on the encom-
passing structure of the CBS protein (Levene’s test, p = 0.009, Additional file 2: Fig. 
S5B). Similarly, RACE-like data indicated nonsense variants had the strongest effects 
on mRNA abundance when located near the middle (catalytic domain) of the coding 
sequence (Additional file 2: Fig. S6C).

Altogether, we identified CBS variants near important functional residues that 
alter mRNA abundance. Consistent with co-translational folding of CBS by cofac-
tors, mutations at and adjacent to the heme- and PLP-binding residues exhibited 
decreased mRNA abundance. Other mutations in these domains showed increased 
mRNA abundance, suggesting complex regulation of CBS mRNA expression linked 
to other nucleotide or codon features.

Fig. 6  Identification and mechanisms of CBS variants that alter mRNA abundance. In all panels, data from 
the amplicon method is shown, and a gray dotted line indicates no change in variant effect or comparative 
metrics. For panel A, variants at a FDR < 0.1 are shown; in all other panels, variants with a FDR < 0.15 were 
analyzed. A CBS variant differential abundance. Structural residues near important features are labeled with 
an icon. Red and blue dotted lines represent the median for each input source. B Codon stability coefficient 
for variants grouped by directional effect. The difference in HEK293T ORFome codon stability coefficient 
(CSC) scores [52] between alternate and reference codons is compared. p-value indicates a one-sided 
Wilcoxon rank-sum test between RNA down and RNA up groups. C Comparison of codon stability between 
significant and non-significant variants. Significant variants were compared to another variant leading to 
the same amino acid change. Variants in the upper quartile of a null distribution are shown (“Methods”). D 
tRNA abundance correlation with mRNA abundance effects. The log fold change (logFC) is compared to the 
log ratio of tRNA abundance measured by Hydro-tRNAseq [56]. Spearman rank correlation (rho) and p-value 
are shown. Blue line is a fitted polynomial spline with a knot at 0. E Comparison of mRNA abundance effect 
with yeast functional complementation. Score (range 0–1, 0 is deleterious) is the max score of low and high 
vitamin B6 conditions [10]. Red text indicates a fitness score < 0.7 or a logFC < 0. Ref. = reference codon; 
Alt. = alternate codon; N.S. = not significant
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Differential mRNA abundance is consistent with codon‑mediated stability and identifies 

variant effects undetected at the protein level

In yeast, zebrafish, Xenopus, and human cells, mRNA decay and translation effi-
ciency are partially explained by codon optimality [49–54], where optimal codons 
are defined as those enriched in transcripts with longer mRNA half-lives and/
or increased translation efficiency. While previous studies predominantly relied 
on reporter assays to assess the impact of codon optimality on these gene expres-
sion phenotypes, our approach enabled testing the relationship in a native coding 
sequence. To test if any CBS variants alter mRNA abundance through codon-medi-
ated mRNA stability, we compared the difference in tRNA abundance and the codon 
stability coefficient (CSC) [52, 55] between alternate and reference codons to the 
magnitude of variant effect (“Methods”).

The difference in CSC [52] between alternate and reference codons was lower for 
variants with decreased mRNA abundance compared to variants with increased 
abundance, indicating changes to less-stable codons may reduce mRNA lev-
els (Fig.  6B, one-sided Wilcoxon rank-sum test p = 0.049). Notably, mutations 
to cysteine (A38C, T135C, P138C, N327C, A509C) and from cysteine (C109G/T) 
exhibited effects consistent with low stability of the UGU codon [52] (Additional 
file  3: Table  S2). By comparing each differential variant to a non-significant vari-
ant leading to the same amino acid change, we found 13 variants had a CSC differ-
ence in the expected direction compared to 5 variants in the unexpected direction 
(binomial test p = 0.02). We highlighted the top four variants with CSC differences 
in the expected direction in Fig. 6C. Similarly, tRNA abundance exhibited a modest 
correlation with the mRNA abundance effect for variants down in mRNA (0.50 and 
0.28 Spearman correlation for Hydro-tRNAseq [56] and mim-tRNAseq [55], respec-
tively) (Fig.  6D, Additional file  2: Fig. S5C). We propose changes to the cysteine 
codon UGU, valine codon GUU, and phenylalanine codon UUU may reduce mRNA 
abundance (Additional file  3: Table  S2). Our results suggest codon optimality par-
tially explains mRNA abundance effects for at least some missense variants.

Finally, we integrated paired yeast functional complementation data for the CBS 
variant library [10] and found 89/191 (46.6%) of variants called by both methods at a 
FDR < 0.15 showed a consistent directional effect (e.g., low mRNA, low fitness) at a 
fitness score cutoff of 0.7 (score range 0–1; 0 is deleterious; binomial test p = 0.81). 
This indicates no significant global agreement between assays in human and yeast; 
however, variants with the most significant negative effects were deleterious by 
functional complementation (Fig. 6E). 18.5% of missense variants (35/189) with low 
mRNA abundance were at amino acid positions implicated in CBS deficiency. Of 
variants with decreased mRNA abundance, low fitness was observed for H65R/V, 
E110H, K119F, D120I, I122F/L/T, L124R, T135C, I142W, I143R, E144L; other vari-
ants showed a more modest reduction of fitness (E37I, A38C, K39V, P49K, R58I, 
E62L, H66F, H67T, G115A, E128I, A130S, T135F, P138C). Our results highlight 
the utility of mRNA abundance readouts to complement organismal fitness data. 
Together, we find variant effects on mRNA abundance are partially explained by 
codon-mediated stability and may diverge from yeast functional complementation 
readouts.
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Discussion
The explosion of saturation mutagenesis studies [2, 5–7, 9, 10, 57–59], facilitated by 
next-generation tools to measure molecular phenotypes [4, 5, 31, 60], prompts a need 
for an analysis solution that is extensible to multiple experimental designs. We created 
satmut_utils to fill this gap by providing simulation and variant calling in whole coding 
sequences for both amplicon and RACE-like library preparation methods.

With satmut_utils “sim,” we conducted the first benchmarking analysis of MAVE vari-
ant callers, and trained error correction models to achieve high variant calling perfor-
mance. We further implemented several read preprocessing strategies (primer masking, 
consensus deduplication), which act synergistically with error correction models to 
improve specificity. Our goal with satmut_utils “call” was to enable primary variant call-
ing analysis to accurately resolve low-frequency SNPs and MNPs. The previously devel-
oped software methods for analysis of MAVEs [14–16] do not easily scale for large genes 
and are tailored to pre-/post-selection designs. We developed a general solution that 
makes limited assumptions about experimental design and focuses on accurately identi-
fying and quantifying variants prior to statistical inference.

One limitation of satmut_utils is that it is not compatible with barcode-sequencing, 
wherein a barcode (i.e., randomer) is separated from the mutagenesis region and linked 
to a specific variant. While this method simplifies variant quantification, it requires ini-
tial sequencing for barcode assignment, which increases cost and time. Further, com-
pared to direct variant calling, barcode-sequencing may lead to regulatory changes due 
to molecular linking between the barcode and the gene of interest. In addition, satmut_
utils does not call phased variants that lead to multi-codon/amino acid variants, which 
may be generated by error-prone PCR. This design choice was informed by simulation 
and reduces variant conversion (Additional file 1).

We demonstrate the utility of our software solution by re-analyzing two growth-assay 
datasets, highlighting satmut_utils’ flexibility in processing data from various experi-
mental designs. Then, building on prior clinical and functional data [10], we assayed 
variant effects on CBS mRNA abundance in human cells and found several variants at 
important CBS structural residues with low mRNA abundance. Our results are consist-
ent with a recent study that employed saturation genome editing of BRCA1 to uncover 
hundreds of SNPs with differential mRNA abundance. This study also supported the 
notion that variants at key structural residues can lead to low mRNA abundance [61].

Both synonymous and nonsynonymous variants may have strong effects on expression 
through translation regulation, codon optimality, and alteration of mRNA secondary 
structure [62–68]. Optimal codons tend to be enriched in regions encoding buried, non-
solvent accessible residues [69], which may explain our observation of a dependence of 
the magnitude of variant effect on position in the coding sequence. We also identified 
several variants that converted to a non-optimal cysteine codon (UGU) and exhibited 
low mRNA abundance, consistent with its low codon stability [52]. We speculate muta-
tions causing CBS misfolding may negatively feed-back on CBS mRNA abundance via 
reduced biosynthesis of cysteine, compounding the deleterious effect of low stability of 
the UGU codon. Further work is needed to quantify the extent to which codon opti-
mality modulates expression of endogenous transcripts [61] as opposed to reporter con-
structs, and satmut_utils is poised to support such studies.
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While mRNA abundance effects are consistent with codon stability and tRNA abun-
dance data, there was no global relationship with yeast functional complementation 
data. This may be due to known differences in regulation of human and yeast CBS 
(requirement for heme, S-adenosylmethionine) [32, 35, 70]. However, variants with the 
largest effects in our study primarily agreed with readouts in yeast.

Here, we analyzed coding variant effects on mRNA abundance in human cells, and 
effects from prior yeast functional complementation or viral fitness datasets [4, 30], but 
analysis of other MAVE data is possible. For example, FACS-based assays to measure 
protein abundance [5, 7, 9] are plausible applications for satmut_utils analysis.

Conclusions
We offer satmut_utils as a flexible solution for variant simulation and variant calling in 
saturation mutagenesis experiments. The satmut_utils package is unit-tested, well-doc-
umented, and available on GitHub. Our method is flexible to design, supports two dif-
ferent library preparation methods, and incorporates state-of-the-art error correction by 
read preprocessing and machine learning models. Further, satmut_utils uses standard-
ized input and output files and is compatible with existing statistical inference tools. In 
conclusion, satmut_utils is a complete solution for multiplexed assay variant calling and 
will motivate novel assays based on targeted DNA and RNA sequencing.

Methods
satmut_utils “sim” workflow

The satmut_utils “sim” workflow takes a Variant Call Format (VCF) and alignment 
(BAM) file with paired reads as input and generates variants in the reads at specified 
frequencies. Outputs are a VCF of true positive (truth) variants and counts, along with 
edited reads (FASTQ). “sim” is comprised of three overall steps: (1) a single samtools 
“mpileup” call [71, 72] is made to query reads at each position in the target region. The 
number of fragments to edit and the read positions to edit are determined for each vari-
ant based on specified frequencies in the input VCF. “sim” employs a heuristic to sample 
reads for editing at each target position while prohibiting variant conversion (the merg-
ing of edited variants with nearby errors). (2) With these edit configurations, variants are 
edited into read pairs and written as raw reads in FASTQ format by “samtools fastq.” (3) 
The raw reads are re-aligned with bowtie2 [73] global alignment mode to generate valid 
CIGAR and MD tags, which are required for visualization of edited reads in genome 
browsers.

satmut_utils “call” workflow

satmut_utils “call” utilizes cutadapt [74] for adapter and 3′ base quality trimming, fol-
lowed by an optimized, paired-end local alignment to the transcript reference using 
bowtie2 [73] with the following parameters: “–maxins = 1000 –no-discordant –fr –mp 
4 –rdg 6,4 –rfg 6,4.” If consensus deduplication is requested, this step directly follows 
alignment. Then, if a primer BED file is provided, primer base quality masking is per-
formed. Following read preprocessing, filtering on base quality, read edit distance, and 
min supporting counts is applied during variant calling. Variant calls are made by iter-
ating over filtered read pairs, finding mismatches with mate concordance, extracting 
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quality features, and writing results for each mismatch participating in a primary vari-
ant call. (This should be considered when counting records from output files). Fragment 
coverage depth is reported in bedgraph format. To validate satmut_utils “call,” we gen-
erated in silico, error-free, paired-end RNA reads and then introduced 187 SNPs and 
MNPs, each at 10 read pairs in 10,000 (0.1%). Tuning of bowtie2 InDel penalties was 
required to achieve 100% recall for MNPs (Additional file 2: Fig. S1E).

satmut_utils primer base quality masking

If a primer BED file is provided, alignments are intersected with primers with “bedtools 
intersect -bed -wa -wb.” The resulting BED file is processed with “bedtools groupby -o 
collapse” to group the intersecting primers for each read, and primers which originate 
the read are determined by the following criteria: (1) the read 5′ end begins within the 
aligned coordinates of the primer, or starts within a buffer upstream of the primer 5′ end 
(relative to strand); (2) the read 3′ end stops within the aligned coordinates of a primer 
on the opposite strand, or stops within a buffer upstream of the primer 5′ end (relative 
to strand). The buffer is 15 nt for amplicon methods and 3 nt for RACE-like methods. 
(These rules ensure masking for 3′ base quality trimmed reads and reads with slight dif-
ferences in alignment start and stop coordinates, for example due to incomplete primer 
synthesis or alignment clipping). Subsequences for originating primers are masked in 
the reads by setting the base qualities of these read segments to 0. These bases are not 
subsequently considered for variant calling and fragment coverage enumeration.

satmut_utils UMI‑based consensus deduplication

Unique molecular indexes (UMIs) are extracted to the read header prior to adapter and 
3′ base quality trimming. Following alignment, reads are grouped by [UMI × R1 POS] 
with UMI-tools [75] default directional adjacency method and the “–paired, –ignore-
tlen” flags. Group ID tags are copied from R1 alignments to R2 alignments, paired reads 
are combined and sorted by read name, and then R1 and R2 are consensus deduplicated 
using a majority vote at each aligned position in the UMI group. In base call ties (two 
duplicates), if one base call matches the reference base, the reference base is used for 
the consensus. Otherwise, the base call with the higher base quality is used, thereafter 
defaulting to random choice.

Data preprocessing for benchmarking

Reads originating from a single CBS negative control amplicon (tile 6) from the wild-
type, non-selected condition [10] were selected for simulation. To meet dms_tools2 
and Enrich2 input requirements, reads were preprocessed using the DesignConverter 
class in v1.0.1-dev001 [76]. A script (run_design_conversion.py) is now provided in sat-
mut_utils v1.0.3-dev001. Preprocessing comprised several steps: (1) reads were locally 
aligned; (2) any hard- or soft-clipped reads, unpaired singletons, and reads with InDels 
were filtered out; (3) reads were modified to start and end flush with codons by trim-
ming and/or appending reference sequence; (4) for dms_tools2, 12 nt unique molecular 
indices (UMIs) were added to the 5′ end of both R1 and R2, enforcing unique UMIs for 
each read pair.
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An accessory script (run_ec_data_generator.py) [76] was used to generate the bench-
marking dataset. Two hundred eighty-one SNPs and MNPs were simulated in the 
preprocessed negative control (NC) alignments for tile 6 of CBS, using frequency param-
eters estimated from satmut_utils variant calls (-m 2 -q 30 -e 10 -s NNK) across all tiles 
of the mutagenized, non-selected condition [10]. In addition, the proportion of SNPs in 
the truth set was set at 0.25. To balance the number of true and false positive labels, the 
number of variants to edit was determined by a heuristic that samples variants until the 
number of component mismatches comprising these variants equals the number of false 
positive mismatches in the NC library. The number of false positive mismatches in the 
NC library was determined by satmut_utils call using the following parameters: “-m 1 -q 
30 -e 10 -s NNK.”

Benchmarking analysis

Configurations and quality parameters for benchmarking were as follows.
CBS_TILE6_SEQ = “GAC​GTG​CTG​CGG​GCA​CTG​GGG​GCT​GAG​ATT​GTG​AGG​

ACG​CCC​ACC​AAT​GCC​AGG​TTC​GAC​TCC​CCG​GAG​TCA​CAC​GTG​GGG​GTG​GCC​
TGG​CGG​CTG​AAG​AAC​GAA​ATC​CCC​AAT​TCT​CAC​ATC​CTA​GAC​CAG​TAC​CGC​
AAC​GCC​AGC​AAC​CCC”.

(1)	 DiMSum version 1.2.9: “–stranded = T -q 30 -m 10 -u coding –mutagen-
esisType = codon –indels = none –mixedSubstitutions = T -w $CBS_TILE6_
SEQ” Variants with one count were filtered out.

(2)	 dms_tools2 version 2.6.10: “–alignspecs 19,132,31,34 –bclen 12 –bclen2 12 –char-
type codon –maxmuts 10 –minq 30 –minreads 1”

	 Variants with one count were filtered out.
(3)	 Enrich2 version 1.3.1: {"filters": {"avg quality": 20, "max N": 10}; "variants": {"max 

mutations": 3, "min count": 2, "use aligner": false, "wild type": {"coding": true, "refer-
ence offset": 534, "sequence": $CBS_TILE6_SEQ}}}

	 The “Basic” mode was used (variant calling on R1 only), and variants to the unknown 
base N were filtered out.

(4)	 satmut_utils v1.0.1-dev001: “-m 2 -q 30 -e 10 -s NNK”

Generation of error correction validation datasets

The same accessory script used for generation of the benchmarking dataset was used 
for generation of four “sim” datasets. To estimate error correction parameters, we ran 
satmut_utils “call” on each NC library with the parameters “-m 1 -q 30 -e 10 -s NNK” to 
count false positive mismatches in the control alignments. satmut_utils “call” was also 
ran on an input source-matched, mutagenized library with the same parameters, except 
with a min count of 2 (-m 2). NC and mutagenized satmut_utils summary.txt files, along 
with the trimmed NC alignments, were used as inputs to the script. To complete each 
simulated dataset, satmut_utils “call” was ran on the output FASTQs, with the same 
parameters as NC libraries. Each simulated dataset (N = 4) comprised thousands of true 
positives (min 4850, max 7859) and thousands of false positives (min 4682, max 6463).
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Data postprocessing and error modeling

Custom R functions in summarization_utils.r and modeling_utils.r [76] were used to 
postprocess and model the resulting simulated datasets. The packages data.table [77], 
ggplot2 [78], cowplot [79], viridis [80], and ggsci [81] were used for data processing 
and graphics. The following packages were used for modeling: leaps [82], caret [83], 
e1071 [84], class [85, 86], randomForest [87], gbm [88], and glmnet [89].

Variant calls in each simulated dataset within the mutagenized target region, and 
with frequency < 0.3, were selected for modeling. Five classifiers were trained: gradi-
ent boosted machine (decision trees); generalized linear model (binomial family) with 
elasticnet regularization; k-nearest neighbors; random forest; and support vector 
classifier. Performance was evaluated by nested tenfold cross-validation (CV), select-
ing 20% of each fold’s training data for hyperparameter tuning with caret::train. Addi-
tionally, for k-nearest neighbors, the number of features was tuned in each fold with 
best subset selection (leaps::regsubsets) by fivefold CV, using between 3 and 10 fea-
tures. For predictions of all models, a probability cutoff of 0.5 was used. The feature 
importance metric (mean decrease in accuracy) was determined by passing impor-
tance = TRUE during random forest training and subsequently calling randomForest::
varImpPlot(type = 1, scale = TRUE).

End‑to‑end analysis of growth‑based MAVE data

For both SUMO1 [4] and HA [30] datasets, FASTQs were downloaded from SRA 
using “fastq-dump –split-3 –origfmt.” The –origfmt flag is important so read names 
are single integers, compatible with the satmut_utils primer masking workflow.

The same preprocessed FASTQs input to satmut_utils were analyzed by the full 
DiMSum pipeline (WRAP, STEAM), version 1.2.11. For comparison, only STEAM (–
startStage 4) was used for the post-processed, merged count files from satmut_utils. 
Both analyses used the following parameters:

`-u codon –mixedSubstitutions T –fitnessMinInputCountAll 10 –sequenceType 
coding`

To enable statistical inference with DiMSum [16], satmut_utils vcf.summary.txt 
files were post-processed using run_satmut_utils_to_dimsum.py [76], and per-sample 
count files were merged with the merge_dimsum_tables function in summarization_
utils.r [76] for normalization to the wild-type count. All reference files for SUMO1 
and HA are available in the Supplementary repository [90] in the reference_files 
directory.

Analysis of SUMO1 MAVE data

No preprocessing on the FASTQs downloaded from SRA was performed before sat-
mut_utils “call” with the following parameters:

“-r SUMO1.fa call -g SUMO1.gtf -k SUMO1.fa -m 1 -v -s NNK”
We ran the full DiMSum pipeline with the above parameters, and configured trim-

ming of the first base of the amplicon to restore frame:
SUMO1_TILE2_SEQ = ”tGGA​CAG​GAT​AGC​AGT​GAG​ATT​CAC​TTC​AAA​GTG​

AAA​ATG​ACA​ACA​CAT​CTC​AAG​AAA​CTC​AAA​GAA​TCA​TAC​TGT​CAA​AGA​CAG​
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GGT​GTT​CCA​ATG​AAT​TCA​CTC​AGG​TTT​CTC​TTT​GAG​GGT​CAG​AGA​ATT​GCT​
GAT​AAT​CAT​ACT​CCA​”.

“–wildtypeSequence $SUMO1_TILE2_SEQ”.

Analysis of influenza WSN HA MAVE data

To preprocess dms_tools2 dual-barcoded reads for analysis with satmut_utils, a post-
processing script was used to convert reads to satmut_utils compatible format (run_
dmstools2_to_satmut_utils.py) [76].

This script moves the UMI from the 5′ end of R2 to the 5′ end of R1 to concatenate 
both UMIs at the start of R1, enabling consensus deduplication with satmut_utils. Then, 
satmut_utils “call” was ran with the following parameters:

“-r WSN_HA.fa -p WSN_HA_primers.bed call -g WSN_HA.gtf -k WSN_HA.fa -m 1 
-v -d -u "(?P<umi_1>[ATCGN]{16})"”

The full DiMSum pipeline was executed for each of the six HA amplicons and the 
above DiMSum parameters, but with inclusion of “–cutadaptCut5First 16” to trim the 
concatenated UMI from R1. DiMSum –wildtypeSequence arguments for each amplicon 
are provided in the Supplementary repository [90].

Differential abundance analysis

Variant calls were filtered by several sequential steps prior to differential abundance 
analysis. First, variant frequencies were adjusted by subtracting the log10 variant fre-
quency in the NC library from the frequency of corresponding variants in the mutagen-
ized libraries. Then, candidate variants were selected in sequential order by the following 
criteria: (1) variant is within the mutagenized target region; (2) variant matches the 
NNK codon mutagenesis signature; (3) variant is a single-codon change; (4) SNP vari-
ant count ≥ 2 and MNP variant count ≥ 1; (5) no strong strand bias (RACE-like method 
only, nucleic acid strand count difference ≤ 64); (6) no variants with false positive RF 
predictions in all replicates (probability cutoff 0.49); (7) variant is observed in all repli-
cates. Additionally, for amplicon data, one sequencing library with possible bottleneck-
ing (gDNA replicate 3, Additional file 2: Fig. S4A) was dropped and replaced with the 
plasmid library sample to achieve three replicates. Amplicon method gDNA replicate 3 
was warranted for exclusion as it formed its own cluster from other gDNA and cDNA 
replicates by hierarchical clustering analysis.

For filter 6, model training datasets were generated as described, and a RF model was 
trained on the following features: log10 frequency, variant type (SNP, di-nt MNP, tri-nt 
MNP), matches mutagenesis signature, substitution (e.g., A > G,T > C; six factor levels), 
upstream reference nt, downstream reference nt, R1 and R2 median supporting base 
qualities, R2 median supporting read position, R2 median supporting edit distance. For 
the RACE-like model, R1 and R2-specific features (base quality, read position, read edit 
distance) were additionally provided for each sample strand (R1 + , R1 − , R2 + , R2 −), 
along with the sample strand count difference. For read position and edit distance fea-
tures, only R2 was used due to collinearity with the corresponding R1 features. RACE-
like model training also required na.action = “na.roughfix” to handle NAs in training 
data due to count observations on only one sample strand.
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To determine variants with differential abundance between cDNA (mRNA) and 
gDNA, we first normalized variant counts to the wild-type count at each position to 
produce a normalized frequency. We then used limma-trend [91] with empirical Bayes 
moderation and Benjamini–Hochberg multiple test correction to compare log frequen-
cies between cDNA and gDNA. gDNA readout serves to normalize for library abun-
dance and recombination efficiency of each variant. Relative changes thus reflect variant 
effects on population-wide, steady-state mRNA abundance.

Replicate analysis

For Fig.  5E–G, variant calls were processed as described for differential abundance 
analysis with the exception of the last criterion (#6, variant observed in all replicates). 
Instead, variants observed in only one replicate were filtered out. For Fig.  5G, due to 
lower depth of coverage in RACE-like sequencing libraries, the median variant fre-
quency of cDNA replicates was plotted for variants with a log10 frequency >  − 5.2 in 
amplicon gDNA libraries. This is the approximate limit of detection for the RACE-like 
method given the attained coverage.

Comparison of library preparation methods

The theoretical number of possible calls in CBS tiles 2 and 4 (2676) was calculated 
empirically by counting all single SNPs, di-nt MNPs, and tri-nt MNPs that match a NNK 
mutagenesis signature for each codon in the CBS coding sequence. Unless otherwise 
noted, variant counts, frequencies, and cDNA-gDNA frequency difference (effect esti-
mates) follow filtering as described in “Differential abundance analysis” and “Replicate 
analysis” and use the median for replicate summarization.

For mRNA abundance effect comparison (Additional file 2: Fig. S6B), variants deter-
mined significant in the amplicon method at FDR < 0.1 were assessed in RACE-like data. 
Only variants that were observed in all gDNA and cDNA replicates by both methods 
were compared.

Analysis of tRNA abundance

Variants identified in the amplicon method at a FDR < 0.15 were used for analysis of 
tRNA abundance data to achieve better power for analysis. For mim-tRNAseq [55], 
the mean of counts was taken of the HEK293T duplicates. For Hydro-tRNAseq [56], 
HEK293 counts were used directly. For both datasets, anticodon abundance for codons 
with Crick wobble base pairing (A-G and C-T) were added to the dataset. Then, the 
sum of isodecoder counts was taken for each codon and log transformed. The difference 
between the log sum of counts (log ratio) was calculated between the alternate (vari-
ant) and reference codons and compared to the log fold changes determined by limma. 
Splines were fitted with R stats::lm and splines::bs with the parameters “knots = 0, 
degree = 2,” and the models were used to predict the response.

Analysis of codon stability coefficient (CSC) data

The same set of variants used in analysis of tRNA abundance data was used to test for 
differences in CSC for the ORFome in HEK293T cells [52]. For Fig. 6B, the difference 
between the alternate codon (Alt.) and reference codon (Ref.) CSC was computed. For 
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Fig. 6C, all pairwise distances of this difference between significant and non-significant 
variants (691 total variants, cDNA to gDNA log ratio) was determined to define the null 
distribution. Variants with a distance in the upper quartile of this null distribution are 
shown.

Cell culture

HEK293T LLP iCasp9 Blast cells [31] were confirmed to be free of Mycoplasma and were 
cultured in Dulbecco’s modified Eagle’s medium (Thermo Fisher Scientific, 11995065) 
with 10% fetal bovine serum (Gibco) and 1% penicillin–streptomycin (Gibco, 15140122). 
Prior to recombination at passage 16, cells were selected for 1 week with 2 µg/mL doxy-
cycline (Sigma-Aldrich, D3072) and 10 µM blasticidin (Gibco, A1113903) to enrich for 
cells with the integrated landing pad.

CBS library cloning

A prior CBS variant library was used [10]. The CBS entry library was transferred into 
pDEST_HC_rec_bxb_v2, a vector containing Bxb1 recombination sites for the HEK293T 
LLP iCasp9 Blast landing pad line, by a Gateway LR II reaction (Thermo Fisher Scien-
tific, 11–791-020) following the manufacturer’s recommendations. 1.5 µL of LR reaction 
was transformed into 25-µL Endura Electrocompetent cells (Lucigen, 60242), plated on 
Nunc Square Bioassay dishes, scraped in 6 mL LB Miller broth, and 3 mL resuspension 
was processed with the ZymoPURE II Plasmid Maxiprep Kit (Zymo Research, D4203). 
Library size was estimated at ~ 540,000 species, or ~ 30-fold coverage of each possible 
SNP or MNP variant in the CBS coding sequence.

Stable expression of CBS variant library

Twenty micrograms of the CBS variant library (in pDEST_HC_Rec_Bxb_V2), along with 
an equal mass of Bxb1 recombinase (pCAG-NLS-HA-Bxb1) was transfected into three 
15-cm dishes of HEK293T LLP iCasp9 Blast cells (passage 18, 65% confluency) using 
Lipofectamine 3000 (Thermo Fisher Scientific, L3000008), with volumes scaled based 
on 3.75 µL reagent per 6 wells. Twenty-four hours later, cells were split 1:2 into 15-cm 
dishes. Forty-eight hours after transfection, at near full confluency, 2  µg/mL doxycy-
cline and 10  nM AP1903 (MedChemExpress, HY-16046), both solubilized in DMSO, 
were added for negative selection of non-recombined cells. The next day, dead cells were 
removed and recombined cells were grown out for an additional 2 days with fresh media 
containing doxycycline and AP1903. Cells were recovered for 1 day by growth in media 
without doxycycline and AP1903. Transcription was induced with 2  µg/mL doxycy-
cline for 24 h; cells were stimulated with fresh media for 3 h, and then harvested at 95% 
confluency.

gDNA extraction

gDNA was extracted from approximately 3 to 4 million cells with the Cell and Tissue 
DNA Isolation Kit (Norgen Biotek Corp, 24700), including RNaseA treatment and elut-
ing in 200 µL warm elution buffer.
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RNA extraction and cDNA synthesis

Approximately 3–4 million cells were solubilized with 1  mL QIAzol (Qiagen, 
79306) and 0.2 mL chloroform in 5PRIME Phase-Lock Gel heavy tubes (QuantaBio, 
2302830), according to the manufacturer’s recommendations. RNA was precipitated 
at − 20  °C following the addition of 2 µL GlycoBlue (Thermo Fisher, AM9515) and 
2.5 volumes of cold absolute ethanol. RNA was washed once with cold 70% ethanol 
then resuspended in 30 µL water. Ten micrograms total RNA was treated with DNa-
seI (NEB, M0303), then re-purified by the RNA Clean and Concentrator Kit (Zymo 
Research, R1015) and eluted in 15 µL water. RNA quality was assessed with the Bio-
analyzer Eukaryotic RNA Pico kit (Agilent, 5067–1513). For each of six reactions, 
2.5  µg DNaseI-treated total RNA was denatured at 65  °C for 5  min followed by RT 
primer annealing at 4 °C for 2 min, using 2 pmol pDEST_HC_Rec_Bxb_v2_R primer 
specific for the landing pad. See Additional file 3: Table S3.

Primed total RNA was included in six 20 µL SuperScript IV cDNA synthesis reac-
tions (Thermo Fisher, 18090010) with SUPERase-In RNase inhibitor (Thermo Fisher, 
AM2696), and first-strand cDNA was synthesized by incubating at 55 °C for 1 h, fol-
lowed by RT inactivation at 80 °C for 10 min. RNA was digested with addition of 5 U 
RNaseH (NEB, M0297) to the first-strand cDNA synthesis reaction and incubation at 
37 °C for 20 min. One reaction was saved for amplicon library preparation, while the 
other five were saved for RACE-like (Anchored Multiplex PCR) library preparation.

Amplicon library preparation

See Additional file  3: Table  S3 for primers used in PCR1 and PCR2 of amplicon 
method library preparation, outlined below.

Landing pad amplification (PCR1)

2.5  µg of gDNA was amplified with Q5 polymerase (NEB, M0491) for 14 cycles in 
each of six 50 µL PCR reactions with 500 nM landing-pad-specific primers (pDEST_
HC_Rec_Bxb_v2_F, pDEST_HC_Rec_Bxb_v2_R) flanking the entire CBS insert 
(~ 1.7 kb), and including the high GC enhancer reagent. The cycling parameters were 
as follows: initial denaturation at 98  °C for 30 s; 3-step cycling with denaturation at 
98 °C for 10 s, anneal at 65 °C for 30 s, extension at 72 °C for 1 min; final extension at 
72 °C for 2 min.

Products were pooled, resolved on a 0.8% agarose/TAE gel, visualized with 
1 × SYBR Gold, and extracted from the gel using the Macherey–Nagel Nucleospin 
Gel and PCR Cleanup Kit (Takara, 740609) with 15–25 µL 70 °C elution buffer.

Coding sequence amplification (PCR2)

Five hundred picograms of the gDNA and cDNA PCR1 products (landing pad insert) 
was amplified for each of two CBS tiles (CBS_2_v2, CBS_4_v2 primer pairs) in a 50 
µL NEB Q5 reaction (NEB, M0491) with high GC enhancer for 8 cycles, following the 
same cycling parameters as for PCR1.
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Illumina adapter addition (PCR3)

Products for tile 2 and 4 amplicons were cleaned up with the Nucleospin Gel and PCR 
Cleanup Kit (Takara, 740,609), eluted in 30 µL 70 °C buffer, and then mixed together 
at equal volumes (5 µL each) and input into a final NEB Q5 reaction for 8 cycles with 
the same formulation as PCR2 but using NEBNext Multiplex Oligos for Illumina Dual 
Index Primers Set 1 (NEB, E7600S) according to the manufacturer’s recommenda-
tions (65 °C annealing). Final library was purified with the Nucleospin Gel and PCR 
Cleanup kit and eluted in 30 µL 70 °C buffer.

RACE‑like library preparation

Anchored Multiplex PCR libraries were generated with modifications following the 
initial strategy [21]. Briefly, for cDNA libraries, double-strand cDNA was first synthe-
sized, and gDNA and double-strand cDNA inputs were sheared prior to library prep-
aration. Libraries were prepared using the ArcherDX, Inc. (now Invitae) LiquidPlex 
library preparation kit with a custom CBS primer assay. See Additional file 3: Table S4 
for primer sequences.

Second‑strand cDNA synthesis

Second-strand cDNA synthesis was carried out with 1st-strand cDNA from each of 
five reactions converting 2.5  µg total RNA and digesting with 5 U RNaseH. 2  pmol 
landing-pad-specific forward primer (pDEST_HC_Rec_Bxb_v2_F) and 1 µL Q5 poly-
merase (NEB, M0491) were added to 20 µL of each 1st-strand cDNA reaction and 
incubated as follows: 95 °C denaturation for 30 s, followed by three cycles of (1) 55 °C 
anneal for 30 s and, (2) 72  °C extension for 3 min, for a total of three linear primer 
extension cycles. Reactions were pooled and cleaned up with the Nucleospin Gel and 
PCR Cleanup kit with 1:1 buffer NTI dilution and elution with 15 µL 70  °C elution 
buffer.

DNA fragmentation

gDNA was extracted from 5 million cells with the Cell and Tissue DNA Isolation 
Kit (Norgen Biotek Corp, 24700), including RNaseA treatment and eluting in 200 
µL warm elution buffer. gDNA and double-strand cDNA were fragmented using the 
Covaris S2 with the following parameters: microTUBE AFA Fiber Snap-Cap, 10% duty 
cycle, 5 intensity, 200 cycles per burst, 1  min treatment. Sheared DNA inputs were 
brought up to 50 µL with ultrapure water.

PCR enrichment and library preparation

Libraries were prepared from 1–1.5  µg sheared gDNA or double-stranded cDNA 
according to the manufacturer’s recommendations (ArcherDX, PRO027.4), using 15 
cycles for both PCR1 and PCR2 with custom CBS primers (Additional file 3: Table S4).

Quantification and size selection of final libraries

Final libraries were quantified using the KAPA Library Quantification Kit for Illumina 
(Roche, KK4873) according to the manufacturer’s recommendations, using 1:10,000 
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dilution of libraries and size correction with an average fragment size of 300 nt. qPCR 
was performed on the Applied Biosystems ViiA 7 instrument. The final pool was size-
selected using Sage Bioscience BluePippin 2% gel (marker V1 and/or V2) to select 
fragments from 200 to 400 bp. Following size selection, the final pool was quantified 
by both the High Sensitivity DNA Kit (Agilent, 5067–4626) and Qubit High Sensitiv-
ity DNA assay (Thermo Fisher, Q32851).

Preparation of negative control libraries

Negative control libraries and mutagenized libraries used for estimating true variant 
frequencies were prepared from various sources (HEK293T total RNA, plasmid DNA) 
with several methods. See protocols for each library under the GEO submission. Primer 
sequences for all CBS amplicons are provided in Additional file 3: Table S5.

Next‑generation sequencing

Libraries were sequenced 2 × 150 (paired-end) at MedGenome, Inc. on the Illumina 
HiSeq X platform. RACE-like (Anchored Multiplex PCR) libraries were re-sequenced on 
the Illumina NovaSeq 6000, and FASTQs were concatenated prior to analysis. Five to ten 
percent PhiX was included during sequencing.
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