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Introduction
Since their development, high-throughput chromatin profiling assays such as histone 
ChIP-seq, DNase-seq, and ATAC-seq have proven crucial for deciphering gene regula-
tory elements and characterizing their dynamic activity states across cell types and tis-
sues (together referred to as “cell types” for the rest of this work). Because each assay 
makes cell type-specific measurements, these assays must be performed for each cell 
type of interest separately. However, comprehensively profiling a large collection of cell 
types with assays targeting diverse attributes of chromatin is prohibitive due to practi-
cal constraints on material, cost, and personnel. Hence, even the largest repositories of 

Abstract 

A promising alternative to comprehensively performing genomics experiments is to, 
instead, perform a subset of experiments and use computational methods to impute 
the remainder. However, identifying the best imputation methods and what measures 
meaningfully evaluate performance are open questions. We address these questions 
by comprehensively analyzing 23 methods from the ENCODE Imputation Challenge. 
We find that imputation evaluations are challenging and confounded by distributional 
shifts from differences in data collection and processing over time, the amount of avail‑
able data, and redundancy among performance measures. Our analyses suggest 
simple steps for overcoming these issues and promising directions for more robust 
research.
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epigenomic and transcriptomic data are still incomplete in the sense that they are miss-
ing tens of thousands of potential experiments [1–6].

To address this challenge, predictive models for imputing missing datasets have been 
proposed as an inexpensive and straightforward way to obtain complete draft epige-
nomes [7–11]. These models leverage the complex correlation structure of signal pro-
files from available experiments to impute signal for experiments that have not yet been 
performed. Recently, imputation models have been scaled to impute tens of thousands 
of experiments [12, 13] spanning dozens of assays in hundreds of human cell types. 
Although progress has clearly been made in developing imputation approaches, the field 
has thus far only explored a small portion of the space of potential imputation models. 
Notably, only one of the five methods surveyed above uses nucleotide sequence as input 
when making imputations.

We organized the ENCODE Imputation Challenge to encourage active development of 
imputation models. The challenge consisted of two stages and participants were encour-
aged to share ideas and reorganize into new teams between stages. In the first stage, 
participants were ranked based on their ability to impute a fixed validation set consisting 
of experiments randomly selected from within our data matrix. The second stage also 
measured imputation performance on a held-out set, but with two crucial differences 
from the first stage: first, the test data was collected during the challenge to ensure a 
truly prospective evaluation, and second, the test data was collected almost exclusively 
for poorly characterized cell types (only three of the 12 cell types in the test set have 
more than two training experiments).

Our initial expectation was that this challenge would primarily serve as an analysis of 
the components of imputation models and, ultimately, identify those that worked well. 
However, we found that fairly evaluating the imputations in the second stage was much 
more challenging than expected, and so the challenge instead served as an impetus to 
describe, and correct, distributional shifts in large collections of genomics datasets. 
Specifically, we found that a distributional shift occurs between the more recently col-
lected paired-end data and the older single-end data available on the ENCODE portal. 
Although we initially expected that this shift was caused by the higher quality of paired-
end data, our investigation revealed that it actually arose because of a minor difference 
in the deduplication step that significantly altered the signal. Without correcting for this 
difference, we found that a baseline method outperformed all but two of the submissions 
using the performance measures defined before the challenge began, and those two sub-
missions only performed marginally better than the baseline. After correction, more 
than half of the participants outperformed the same baseline.

We identified three key challenges in fairly evaluating imputation methods. First, dif-
ferences over time in experimental procedure or data processing create distributional 
shifts across experiments which must be corrected for ensure a fair evaluation, and this 
correction must be more than a simple rescaling of the signal. This concern is particu-
larly important when dealing with data sources, like the ENCODE Portal that contain 
data collected over long periods of time. Second, while epigenomic imputation is most 
useful for cell types with few experiments, previous imputation work was evaluated 
using k-fold or leave-one-out cross-validation applied to an entire compendium. These 
evaluation settings over-emphasized the performance on well-characterized cell types 
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and, unfortunately, good performance on well-characterized cell types is not always an 
indicator of performance on poorly characterized ones. Third, although designing sev-
eral performance measures is necessary to capture the many aspects of a high-quality 
experimental readout, designing these measures without accounting for the first two 
issues can exacerbate redundancy in the measures, limiting their usefulness. As a rel-
evant example, scale-based measures that are appropriate when the predictions and tar-
gets are on the same scale will become increasingly redundant as differences in scale 
increase. We anticipate that giving proper consideration to these three issues in future 
works will be crucial for developing imputation methods that perform the best in 
practice.

Accordingly, this work focuses on characterizing the effect that these issues had on 
evaluating imputation methods, with the goal of providing guidance on how to fairly 
evaluate such methods in the future. When collecting a test set, one should ensure that 
processing steps have been uniformly applied to raw data and that the data have been 
collected using similar procedures. When differences in processing arise that cannot 
be undone, we propose handling distributional shifts by using a quantile normalization 
approach that separately normalizes signal in peaks and signal in background. We also 
propose a set of new performance measures that focus on orthogonal aspects of imputa-
tion performance. Finally, we note that performance not generalizing from well charac-
terized cell types to poorly characterized ones is the expected behavior, and so does not 
have a simple fix like the other issues do. Rather, this disparity can only be evaluated by 
explicitly including both well-characterized and poorly characterized cell types in the 
evaluation. At a higher level, one should ensure that at least one setting used to evaluate 
their approach matches how they expect the method to have the most impact in prac-
tice, namely, on poorly characterized cell types.

Results
The ENCODE Imputation Challenge

The ENCODE Imputation Challenge was held in two phases (see “The challenge for-
mat” section for a complete description). In the first phase, participants were introduced 
to the problem, given access to the training and validation data, and were subsequently 
ranked based on the validation set performance of their respective methods. In the 
second, primary, phase, each participant was ranked based on their method’s ability to 
impute a held-out test set that they did not have access to. Participants submitted 23 
models to the second stage of the challenge. Each group was allowed to submit up to 
three models to encourage inclusion of unorthodox solutions with at least one submis-
sion. As a result, the models encompassed a diverse range of strategies (see Table 1). The 
models differed primarily along three axes. The first axis was the signal preprocessing, 
with almost every method further preprocessing the data from the given -log10 signal 
p-values. The second axis was the data sources used to construct input features. Most 
methods followed previously published methods by only using assay measurements as 
inputs (denoted “functional” in Table 1). However, five of the methods used nucleotide 
sequence as input, eight methods used the average activity baseline, and three used Avo-
cado’s imputations. The third axis was the manner in which the underlying tensor struc-
ture of the data was modeled. Some methods explicitly modeled the data as a tensor 
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(e.g., imp and Lavawizard), whereas other methods only implicitly modeled the structure 
through rule-based approaches or similarity methods (e.g., the Hongyang Li and Yuan-
fang Guan (HLYG) and KNN-based approaches).

An initial inspection of the imputations revealed that most methods captured the 
general shape of the signal well. Examples drawn from H3K27ac in brain microvascular 
endothelial cells and DNase-seq in DND-41 cells (Fig. 1A/B, Additional file 1: Fig. S1) 
suggest two sources of error: the misprediction of a small number of peaks relative to 
the total number of true peaks and the misprediction of the precise signal value within 
correctly predicted peaks. Focusing on the misprediction of peaks, we noted that some 
methods made similar mistakes as the average activity baseline, whereas others made 
similar mistakes as the Avocado baseline (gray highlights in Fig. 1A/B). Unsurprisingly, 
methods that used Avocado’s imputations as input had the highest genome-wide corre-
lation with Avocado’s predictions (it is worth noting that CUImpute1 only used Avoca-
do’s imputations for some, but not all, assays). In contrast, methods that explicitly used 
the average activity did not always exhibit higher correlation with it than other methods 
(Additional file 1: Fig. S2). This finding suggests that, because the average activity can be 
directly derived from the training set, many types of models are able to implicitly learn it 
even when not explicitly trained on it.

Next, we comprehensively evaluated the methods using a battery of performance 
measures that were specified at the beginning of the challenge (see “Performance 
measures” section, Additional file  2). We found that performance on these measures 
depended heavily on the imputed assay (Fig. 1C/D). For instance, most models exhibited 
four orders of magnitude higher MSE on H3K4me3 than on H3K9me3. However, several 

Table 1 Methodologies of imputation methods. The table lists the modeling strategies and input 
features used by each of the models, as reported by the teams. The models include k‑nearest 
neighbors (KNN), deep tensor factorization (DTF), autoencoders (AE), convolutional neural networks 
(CNN), hidden Markov models (HMM), and gradient‑boosted decision trees (GBT). The authors of 
Aug2019Impute and CostaLab v2 did not describe their methods

Name Model Norm Inputs

Sequence Functional Average Avocado

Aug2019Impute

BrokenNodes/v2 KNN arcsinh �

BrokenNodes v3 KNN arcsinh � �

CostaLab v2

CUImpute1/CUWA/ICU ensemble arcsinh � � �

Guacamole/Lavawizard DTF arcsinh � �

HLYG/v1/v2 GBT quantile � � �

imp/imp1 DTF+AE Cauchy �

KKT‑ENCODE CNN arcsinh �

LiPingChun DTF arcsinh � �

NittanyLions KNN �

NittanyLions2 KNN quantile �

SongLab CNN log1p �

SongLab2 HMM �

SongLab3 CNN log1p � � �

UIOWA CNN quantile � �
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assays that exhibited the highest MSE also exhibited the highest Pearson correlation, 
indicating that the scale of MSE across assays is likely more related to the dynamic range 
of the assay rather than the accuracy of the imputations. Unsurprisingly, a projection 
of all imputed and experimental tracks clustered predominately by assay type (Silhou-
ette Score = 0.4601), as opposed to by cell type (SS = − 0.4028) or imputation method 
(SS = − 0.3133, Additional file 1: Fig. S3). Accordingly, we used a rank-based transform 
to account for differences in dynamic range when calculating global performance meas-
ures across experiments (see the “Performance measures” section) to ensure that assays 
with large dynamic ranges did not dominate the evaluation. After calculating the global 
performance of each method, we found that there was a gradient of methods that per-
formed increasingly well, and a set of methods that performed relatively poorly (Fig. 1E). 
The best performing methods, and hence the winners of the challenge, were Hongyang 
Li and Yuangfang Guan v1 (abbreviated as “HLYGv1”) in first place, Lavawizard and 
Guacamole (two similar methods from the same team) tied for second place, and imp in 
third place.

Given the diverse modeling strategies of the winning teams, our primary take-away 
from these results is that there does not appear to be a single key insight that led to good 
overall performance on the measures used in the challenge. HLYGv1 used nucleotide 
sequence as input, but so did KKT-ENCODE and UIOWA Michaelson; all three models 
submitted by Hongyang Li and Yuanfang Guan used gradient boosted trees (GBTs), yet 
their models exhibited both good and poor performance. However, these results do sug-
gest certain models to be wary of: convolutional neural networks and k-nearest neighbor 
models underperformed deep tensor factorization (DTF) and GBT models. This is likely 

Fig. 1 Results from the ENCODE Imputation Challenge. A The H3K27ac signal for brain microvascular 
endothelial cells that is observed (in blue), from baseline methods, and from the winning three teams in the 
challenge. B The same as A except for DNase‑seq signal in DND‑41 cells. C The average MSE for each method 
across test set tracks and bootstraps but partitioned by assay type. D The same as C except for Pearson 
correlation. E The overall score, calculated as described in the “Performance measures” section, across all test 
set tracks and performance measures shown for each bootstrap for each team. The baseline methods and 
winners are colored
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because the similarities used by KNN models are a less sophisticated version of the rep-
resentations learned by tensor factorization approaches and that the specific structure 
presented in the data is not well modeled by simple applications of convolutions.

However, when we compared model performance to the baseline methods, we made 
two important observations. First, almost every team outperformed the Avocado base-
line, as one might expect because the participants had access to the Avocado model and 
predictions during the development process and because the default settings were used 
for Avocado despite them being tuned for significantly larger amounts of training data. 
Second, the average activity baseline performed extremely well, coming in third in our 
ranking and first place in five of the nine performance measures used (Additional file 2). 
Both of these observations are a reversal from the first round in the challenge, where 
Avocado outperformed all the participants but almost all the participants outperformed 
the average activity baseline (Additional file  1: Fig.  S4). This reversal in performance 
between the two baselines is partially because the evaluation setting changed from over-
representing well characterized cell types to focusing on poorly characterized ones and, 
as we will see later, partially due to the performance measures used for the challenge.

Accounting for distributional shift

A visual inspection of the experimental signal from test set experiments suggested sig-
nificant distributional differences in peak signal values between the training and test sets 
for some assays (Fig.  2A). This shift was confirmed by considering the distribution of 
the training and test set signals within peaks (Fig. 2B). Most obviously, the signal val-
ues within H3K4me3 peaks from test set experiments were generally much higher than 
the signal values within peaks from training and validation set experiments. Although 
one would expect a locus to exhibit different signal in different cell types because of real 
biology, one would also expect that the distribution of signal values within peaks across 
entire experiments would be similar for experiments of the same assay. Because distribu-
tional shifts have major ramifications for the scale-based performance measures used in 
the challenge, we next investigated the source of these distributional differences.

After considering several potential covariates that could explain this distribution shift, 
including multiple measures of experimental quality (Additional file 1: Fig. S5), we found 
that the primary driver was a subtle difference in how the test set experiments were 
processed. By design, the test set experiments were performed during the challenge to 
ensure a truly prospective evaluation. However, experimental methods have changed in 
the many years since the training data were collected. Most notably, collecting paired-
end data is now the standard approach for ENCODE datasets because the procedure 
yields higher quality data and is now cheap enough for broad usage; however, almost 
all of the training set experiments predate this switch and involve single-end data. The 
processing of single-end and paired-data data is largely similar, but a crucial difference 
occurs in the deduplication step. Specifically, deduplication of single-end reads using 
PICARD [14] allows the mapping of only one read start to each position on the genome 
on each strand. In contrast, deduplication of paired-end data can result in more than one 
read-start per position on each strand because read-pairs are only removed if the read 
start of both ends are duplicates. Consequently, the number of reads mapping within 
peaks from paired-end data can be significantly higher than what one would get using 
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single-end data. Importantly, the shift is not simply caused by paired-end data being 
higher quality, as we first explored, but rather differences in the deduplication step.

We confirmed that differences in processing, rather than differences in data quality, 
explained the distributional shift by reprocessing the paired-end datasets (except for 
ATAC-seq which requires paired-end data) as single-end data. Specifically, for each 
paired-end experiment in the test set, we concatenated the FASTQ files of reads from 
both ends and ran the same single-end processing pipeline that was run on the other 
single-end experiments in the challenge. We found that the reprocessed data had distri-
butions of peak signal values significantly closer to the training set, as measured by the 
Kolmogorov-Smirnov (KS) statistic, for four of the histone modification assays including 
H3K4me3 (Fig. 2B). The remaining two histone modification assays already resembled 
the training set before reprocessing. However, we found that the distribution of DNase-
seq peak signal values had a larger KS-statistic after reprocessing than before. This is 
likely because 21 of the 38 training set experiments contained paired-end data, which 
would shift the distribution of signal values in the training set up. Although the most 
principled next step would be to reprocess all of the experiments used in the challenge 

Fig. 2 Distributional shift and quantile normalization. A Experimental signal measuring H3K4me3 in BE2C 
cells from an unnormalized training set experiment (gray), an unnormalized test set experiment in SJSA1 cells 
(green), the test set signal after quantile normalization (blue), the test set signal after single‑end reprocessing 
(red), and the test set signal after single‑end reprocessing and quantile normalization (purple). B Distributions 
of signal values within peaks in chr16/17 for each reprocessed assay across the unnormalized training set 
(gray), the unnormalized test set (green), the single‑end reprocessed test set (red), and the single‑end 
reprocessed and quantile‑normalized test set (purple). The KS statistics between the training set distribution 
and the test set distributions are shown in the legends and the CDFs are summarized using 25 dots for 
visualization purposes. C An example locus that exhibits a DNase peak in both the training and test sets. D 
A re‑scoring of the challenge participants against single‑end reprocessed and quantile‑normalized test set 
signal
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and subsequently re-training and re-evaluating each submission, this analysis was not 
possible because we only required that the three challenge winners submit code that 
could retrain their models on new datasets. Given no perfect solution, we chose to con-
tinue with the single-end reprocessed test set tracks for our subsequent analyses.

We found that reprocessing the histone modification data significantly reduced the 
distributional shift but did not perfectly correct it. The remaining differences are likely 
related to small changes in experimental protocol over time, such as improvements in 
sequencing technology, antibodies used, and read lengths measured. A general-purpose 
correction for the remaining differences is to explicitly quantile normalize the data such 
that the signal values in the testing experiments exhibit the same signal distribution as 
those in the training experiments. Quantile normalization is powerful because it is a 
non-linear method, in contrast to min-max or z-score scaling, and has been extensively 
applied to genomics datasets, including those measuring bulk gene expression [15], sin-
gle-cell RNA-seq [16], and ChIP-seq data when combined with a spike-in reference [17]. 
We account for differing proportions of the genome exhibiting peaks across cell types 
by separately quantile normalizing the signal within peaks and the signal in background 
regions (see the “Quantile normalization” section for details). Finally, because the distri-
bution of signal is significantly different across assays, we apply this quantile normaliza-
tion to each assay separately. After normalization, we confirmed that the distribution 
of within-peak test signal values was almost identical to the distribution of within-peak 
training signal values across all assays (Fig. 2B), even for the DNase-seq experiments.

In theory, one could apply quantile normalization to the original paired-end test set 
data and, by definition, produce signal values with the same distribution without the 
need for reprocessing. However, when looking at a representative DNase peak, we found 
that the reprocessed data was not a simple monotonic transform of the original data 
(Fig. 2C). Specifically, the paired-end data exhibited a peak shape unlike that observed 
in the single-end data, and simply quantile normalizing the signal does not fix the dif-
ferences in shape. More comprehensively, when considering a 10-Mbp region of chr1 on 
each of the 48 reprocessed experiments, we clearly observed that paired-end data is not 
a monotonic transformation of single-end data (Additional file 1: Fig. S6). Although the 
assays associated with activity, such as H3K4me3 and DNase-seq, exhibit Spearman cor-
relations up to 0.938 between the paired-end and single-end processed signals, repres-
sive marks exhibit Spearman correlations as low as 0.037, and the average Spearman 
correlation across all tracks was only 0.453. Further, even though some assays exhibit 
high correlation, this value is inflated by the large number of low-signal values and, 
indeed, the largest variability comes at loci with high signal values.

Moving forward with our method of reprocessing the test data using single-end set-
tings and then quantile normalizing to correct the remaining differences, we next re-
scored the originally submitted imputations (Fig.  2D, Additional files 3 and 4). We 
observed that the number of methods outperforming the average activity baseline 
increased from two to 16 and that BrokenNodes_v3 rose from sixth place to first place 
in the rankings. Although HLYGv1 remains within the top three, the other two winners 
descended in the rankings. This might be explained by HLYGv1 using quantile normali-
zation, albeit a slightly different version than the one we used, during training. Interest-
ingly, many of the methods performed similarly to each other, reinforcing the idea found 
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in the original challenge that there is not necessarily one way to do imputation. Indeed, 
the best performing model is a simple KNN-based approach using arcsinh-transformed 
data and the second best performing model uses gradient-boosting trees on quantile 
transformed data. Critically, we note that it would not be fair to use these rankings to 
declare challenge winners because we did not give the teams an opportunity to retrain 
or tune their methods on the transformed data. Rather, our take-away is that the distri-
butional shift is partially responsible for the good performance of the average activity 
baseline but does not fully explain it.

Designing more informative performance measures

Although the measures used in the challenge were devised to rank methods indepen-
dently for each experiment based on their genome-wide (or across large portions of 
the genome) performance, this property meant that they ultimately exhibited a high 
degree of redundancy with each other (Additional file  1: Fig.  S7). Essentially, by uni-
formly weighting all positions along the genome, methods with low genome-wide MSE 
were likely to have low MSE within promoters, gene bodies, or the top 1% of signal as 
well. Exacerbating this issue, MSE-based measures were disproportionately confounded 
by the large distributional shift described in the previous section in comparison to the 
shape-based measures. Illustrating this, we found that most of the residual—some-
times over 99% in H3K4me3 assays—came at correctly predicted peaks (Additional 
file 1: Fig S8). Realizing this weakness, we next designed three new types of performance 
measures that, respectively, reweighted genomic bins based on signal strength, consid-
ered multiple experiments simultaneously, and focused on shape within active areas. All 
evaluations in this section are done against the reprocessed, quantile-normalized test set 
signal.

Partitioning by signal strength

A strategy for measuring performance in a complementary way to uniformly weighted 
genome-wide performance is to explicitly calculate the performance with respect to 
the magnitude of either the observed or imputed signal (Fig. 3A/B). Rather than being 
limited by considering only the top 1% bin of signal, such as by using the mse1obs or 
mse1imp measures, considering all signal bins provides a finer-grained view of model 
performance. As an example, if the imputations exhibit high accuracy when the imputed 
signal is high, then one may be confident that predicted peaks are correct when using 
imputations for which there is no corresponding experimental data; in contrast, if the 
imputations exhibit low accuracy when the imputed signal is high but higher accuracy 
when the imputed signal is low, then one might be more skeptical of imputed peak calls 
but more trusting of regions not called as peaks, e.g., facultative peaks that are not active 
in the studied cell types. Although any measure can be partitioned by signal magnitude, 
we focus on accuracy between binarized imputed signal and peak calls for the experi-
mental signal. Accuracy was excluded from the original set of performance measures 
because the sparsity of peaks can make it difficult to interpret genome-wide; in this set-
ting, we anticipate accuracy to be more valuable in the signal bins where one might rea-
sonably find a peak. Importantly, we did not use rank-based classification measures (e.g., 
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AUROC or AUPR) here, because once the signal is partitioned by strength, applying a 
rank-based measure to each bin is less meaningful than when applied genome-wide.

When we partitioned genomic loci based on experimental signal, we found that 
model performance aggregated across all tracks generally falls into three regimes: 
(1) when the imputed or experimental signal is low, the accuracy is high, (2) when the 
imputed or experimental signal is between 1 and 10 the accuracy severely drops, and 
(3) when the imputed or experimental signal is high, the accuracy returns to being high 
(Fig. 3C). Although the second regime includes peak calls that may be incorrect due to 

Fig. 3 Additional performance measures. A Experimentally observed signal for H3K27ac in brain 
microvascular endothelial cells. B An example of partitioning the track from A into logarithmically spaced 
bins (the rows). C The accuracy between binarized imputations and MACS2 peak calls for each signal bin 
when using the experimental signal to define the bins. D The same as C except using the imputed signal 
to define the bins. E The same as A but a different locus. F The same as B except calculating bins using the 
number of cell types that each locus exhibits a peak in. G The precision of the binarized imputed signal 
against MACS2 peak calls when evaluated separately for each bin. H The same as G except the recall instead 
of the precision. I The average area under the curves, calculated as shown in C, across all test set tracks for 
each participant. J The average area under the curves calculated as shown in D across all test set tracks 
for each participant. K The precision score calculated in the same manner as I/J. L The same as K, except 
the recall score. M The average H3K4me3 profile of experimental (blue), quantile‑normalized (magenta), 
and imputed signals at strand‑corrected promoters. N The average Pearson correlation between imputed 
and quantile‑normalized signal across all promoters and H3K4me3 test set tracks. O The average Pearson 
correlation between imputed and quantile‑normalized signal across all observed DNase peaks and DNase 
test set tracks
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ambiguously low signal, it also includes the most difficult to call peaks (thus, the rela-
tively low accuracy) and should be emphasized by performance measures. When focus-
ing on H3K27ac signal in brain microvascular endothelial cells we can also see that 
rankings flip between the first and second regime (Fig.  3C–D); imp1 and LavaWizard 
both outperform the average activity and HLYGv1 when the experimental signal is low, 
but perform significantly lower when the experimental signal is higher.

Interestingly, the ranking of methods is almost reversed when partitioning genomic 
loci using the imputed signal instead of the experimental signal (Fig. 3D). HLYGv1 and 
the average activity are among the top performers when partitioning by experimental 
signal but are among the worst performers when partitioning by imputed signal. An 
explanation for this flip is that these approaches measure notions of precision and recall, 
respectively, which have a known trade-off. Because the average activity is essentially a 
union of peaks across cell types in the training set, it will have a high recall but a low 
precision. Methods, such as HLYGv1, that rely too heavily on the average activity will 
exhibit the same tradeoff (Fig. 3C/D).

A straightforward way to condense these curves into a single value for a perfor-
mance measure is to take the average value across the curve. This value is essentially a 
re-weighting of genome-wide accuracy that uniformly values each bin of signal values 
rather than each locus and so will downweight the more common low signal value loci 
and upweight the less common higher signal values ones. Notably, the winners of the 
ENCODE Imputation Challenge did not perform the best across all test set experiments 
when partitioning by either experimental signal or by imputed signal (Fig. 3I/J). Indeed, 
the top two performers when partitioning by experimental signal (Song Lab 3 and Nit-
tanyLions2) came in 12th and 19th respectively in the original evaluation.

Prediction of facultative peaks

A primary source of error for imputation models comes from loci that exhibit peaks 
in activity for some, but not all, cell types (i.e., facultative peaks). Evaluating whether 
the imputations can distinguish between cell types that do and do not exhibit signal at 
a given locus is crucial for ensuring that the imputations are cell type-specific. How-
ever, because traditional genome-wide performance measures treat each experiment 
independently, they cannot explicitly evaluate this property. To better understand how 
well these methods can identify what cell types loci are active in, for each assay, we par-
titioned genomic positions by the number of experiments that exhibit a peak for that 
assay and then evaluated each partition separately. For example, if a locus exhibited a 
DNase-seq peak in 3 out of 5 cell types, that locus would be grouped for evaluation with 
other loci that also exhibited DNase-seq peaks in 3 out of 5 cell types (Fig. 3E/F). This 
analysis is similar to the one presented by Schreiber et al. [11].

We observe trends that are reminiscent of partitioning loci by signal strength. As the 
number of cell types that exhibit peaks increases, so too does the precision and recall of 
the methods (Fig. 3G/H). This indicates that, generally, imputation methods are better at 
predicting peaks at facultative peaks than they are at predicting cell type-specific activity. 
Interestingly, we noted that several methods had relatively high precision when the number 
of cell types the peak was expressed in is low. Given that performance was extremely vari-
able in this regime, we think that focusing on this measure in future studies will be useful 



Page 12 of 22Schreiber et al. Genome Biology  (2023) 24:79

when comparing models. Consistent with the role that the average activity plays as essen-
tially the union of peaks across cell types, we see that it has a low aggregate precision score 
across all test set tracks but has the second highest aggregate recall score (Fig. 3K/L). Put 
another way, the average activity is very good at identifying peaks that are common across 
many cell types but very poor at identifying the cell types that cell type-specific peaks occur 
in. Somewhat surprisingly, the Avocado baseline had the highest aggregate precision score, 
but the challenge winners that most resemble it (Lavawizard and imp) did not exhibit the 
most similar performance.

Relative peak shape

The performance measures that have been proposed so far predominantly involve genome-
wide calculations, even if they involve re-weighting loci contributions. An alternate form 
of performance measure is to focus on specific forms of biochemical activity at loci that 
are known to be relevant. The MSEProm, MSEEnh, and MSEGene measures attempt to 
quantify this by focusing on promoters, enhancers, and gene bodies respectively, but meas-
ure the performance of all assays at these loci. Next, we investigate two more performance 
measures that follow the reasoning of Ernst et  al. [7] that only specific assays should be 
measured at these loci.

The first measure evaluates the shape of H3K4me3 signal at promoter regions. This his-
tone modification is known to be enriched at promoter elements and is indicative of active 
transcription. Further, after correcting for the strand of the promoter, the mark exhibits a 
distinctive bimodal pattern (Fig. 3M). We reasoned that focusing on the ability to recapture 
this shape would provide an orthogonal evaluation to the other performance measures pro-
posed so far. We calculated the average Pearson correlation between the imputed signal and 
the quantile-normalized experimental signal across all gene promoters for all test set tracks 
measuring H3K4me3. Most of the methods outperformed the average activity baseline but 
only one of the challenge winners were in the top five according to this measure (Fig. 3N).

The second measure evaluates the shape of DNase signal at observed DNase peaks. We 
anticipated that recapturing the shape of DNase signal would be more challenging because 
DNase does not exhibit a pattern that is as consistent as H3K4me3 at promoter regions. 
Further, the subtle patterns encoded in DNase signal can be useful for deciphering the pre-
cise regulatory role that the underlying nucleotide sequence is playing. Consistent with 
predicting DNase signal being a more challenging task, we found that methods exhibited 
a wider range of performances than they did with H3K4me3 prediction (Fig. 3O). We also 
found that only three methods outperformed the average activity baseline. This might ini-
tially be counterintuitive, because chromatin accessibility is fairly cell type-specific. How-
ever, because this evaluation is limited to observed DNase peaks, methods are not being 
penalized for incorrectly predicting that non-peak regions are exhibiting peaks. This obser-
vation indicates that accessible loci largely retain the shape of their peaks across cell types 
when binned at 25 bp resolution.

Discussion
Based on our experience running this challenge, we have several recommendations for 
the organizers of future challenges involving genomic datasets. First, ensure that par-
ticipants are compared against naive baselines such as the average activity. Without this 
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baseline, we might not have identified as easily the distributional shift or the worse per-
formance on sparsely characterized cell types. Second, participants should be required 
to submit code that can reproduce the training of their models so that more in-depth 
analysis can be done later. Potentially, the organizers should provide a scaffold that the 
participants fill in with their own code so that the organizers do not need to decipher 
each submission to use it properly. Third, organizers should explicitly look for distribu-
tional shifts across data splits, and even between pairs of datasets, as a quality control 
step. For example, paired-end datasets from cancer cell lines can often contain large 
regional distribution shifts and outliers driven by cell line-specific copy number vari-
ation. Even when these shifts are explained by biological processes rather than experi-
mental biases, tailoring an analysis that accounts for these shifts can be an important 
aspect of a fair evaluation. Finally, organizers should design performance measures that 
have minimal redundancy with each other, potentially as measured using the average 
activity before the challenge begins. Naturally, without a singular end-goal in mind it can 
be difficult to balance the various aspects of performance in a manner that will satisfy 
everyone, but having redundant performance measures is clearly not helpful.

When the challenge was originally designed, participants were not required to sub-
mit working code in order to lower the barrier to entry and allow participants to use 
their own custom hardware. Although this likely increased participation, it also caused 
a recurring problem in our later analyses because we could not retrain models on repro-
cessed data, or on different subsets of data. For example, reprocessing all the data using 
the single-end settings would likely have been the correct thing to do from a theoreti-
cal point of view but was impossible as a practical matter because we did not have the 
required code. Likewise, we had hypothesized that part of the reason for changes in 
rankings between the first and second stages (including in our baselines) was because 
the first stage involved evaluation on a randomly selected held-out test set of experi-
ments, which are biased towards well-characterized cell types, and the second stage 
explicitly evaluated only poorly characterized cell types. Because we could not re-train 
the models and evaluate them on cell types giving variable amounts of information, we 
could not comprehensively pursue this line of inquiry using the challenge data.

An unaddressed, but important, issue is determining the most informative target for 
imputation methods to predict. The most common target in imputation literature has 
been the statistical significance from a peak-calling algorithm. Predicting the statistical 
significance can be more informative than predicting read counts directly because read 
counts can suffer from unwanted experimental biases and the peak-calling algorithm 
can explicitly consider a control track. Our challenge setting is consistent with that lit-
erature. However, an issue with predicting p-values is that fewer tools take those as input 
than take read counts as input. In fact, performing peak calling using imputations is not 
obvious because it is unclear that simply thresholding the uncalibrated p-values is the 
correct approach. Potentially, future iterations of the imputation work could involve 
imputing read counts but allowing models to directly incorporate the control tracks and 
other covariates such as sequencing depth, single-end or paired-end status, and data 
quality metrics as well [18]. Although there would be some engineering challenges with 
such a task, such as designing alternate loss functions or performance measures based 
on counts, imputation of read counts might be more readily adopted.
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As a final consideration, one should explicitly consider the best, context-specific, strat-
egy for normalizing signal from genomic assays. Although one of our major findings was 
a distributional shift across samples using the same assay driven by endedness, a much 
more common shift involves assays exhibiting different distributions of signal natively. 
For example, broad histone marks associated with repression, e.g., H3K9me3, gener-
ally exhibit more dispersed reads and hence lower signal p-values than narrow histone 
marks, e.g., H3K4me3. A consequence of these differences is that loss functions and 
performance measures that rely on scale, such as MSE, will be affected. We noted that 
all submitted sets of predictions exhibited much higher MSE for H3K4me3 than they 
did for H3K9me3, but we did not conclude that the models are necessarily worse when 
predicting H3K4me3 than H3K9me3. Several methods exists for normalizing signal of 
genomic assays [19–23], but finding the right method for normalizing across both sam-
ples and assays will be helpful for fairly training and evaluating any method that operates 
on massive numbers of tracks.

Conclusion
A central theme of this work is that evaluating models that rely on large collections of 
genomic datasets can be more difficult than one might initially expect and, consequently, 
that results can be confounded even when one does not make any obvious mistakes. In 
our analysis, we identified three issues that made analysis of imputation models more 
difficult than we initially thought: distributional differences in the underlying data, pre-
vious evaluation focusing on well-characterized cell types and in larger compendia, and 
performance measures that were either redundant or sensitive to the first two issues. 
We addressed these issues by proposing a quantile normalization approach that treats 
peak and background signal separately and proposing new performance measures that 
were less redundant with each other and covered more aspects of performance than the 
original measures.

Although the issues we described made the analysis of the results of this challenge 
more difficult, we made several important findings that we hope will guide the design 
and analysis of predictive models that rely on genomics data in the future. Specifically, 
even outside the context of a challenge, being aware of distributional shifts and evaluat-
ing a newly proposed model with a wide set of performance measures can help ensure 
that the model is robust in practice. Further, the difficulties that we faced are not unique 
to the setting of imputation. Indeed, these issues can affect any model that is trained or 
evaluated using large collections of publicly available datasets.

Methods
The challenge format

We acquired candidate imputation models by hosting the ENCODE Imputation Chal-
lenge (https:// www. synap se. org/ encod eimpu te), a public challenge for imputing epig-
enomic profiles, which began on February 20, 2019, and concluded on August 14, 2019. 
The challenge evaluated how well predictive models could impute held-out epigenomic 
experiments using other functional genomic experiments and nucleotide sequence as 
input (see challenge site for more details). Overall, we acquired 267 datasets from the 
ENCODE Portal to use as the training set, 45 datasets from the ENCODE Portal to use 

https://www.synapse.org/encodeimpute
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as a validation set, and performed 51 new experiments to use as a test set for prospective 
evaluation (Fig. 4, Additional file 5). These experiments spanned 35 different genomics 
assays and 51 different cell types. We used chromosomes 1-22 and chrX and excluded 
chrY and chrM from the challenge.

The challenge was divided into two stages. In the first stage, participants were pro-
vided with the training and validation datasets as well as a real-time public leaderboard 
of performance on the held-out validation set. On this leaderboard, teams BrokenNodes 
and Hongyang_Li_and_Yuanfang_Guan tied for first place at the conclusion of the first 
stage (Additional file 1: Fig. S4, Additional file 6). In the second stage, the teams were 
allowed to re-organize, and participants were encouraged to refine their models using 
lessons learned from the first stage. Participants were not allowed to use data other than 
what was provided but were allowed to process it however they chose. The winners of 
the second stage, and of the entire challenge, were the top three teams based on perfor-
mance on the held-out prospective test set, which the teams did not have access to.

Fig. 4 The challenge data matrix. The matrix shows the experiments used in the challenge, colored based 
on whether they were in the training set (blue), the validation set (orange), or the blind test set (green). White 
squares indicate that an experiment has not yet been performed. The marginal bar plots show the number of 
experiments in each assay and cell type
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The challenge was well attended with 196 people signing up on Synapse. Eight teams 
submitted results for the first round. After teams merged before the second round, 23 
imputation models were submitted. Of these models, only one did not submit the full set 
of required imputations. Although our method for calculating team rankings as a part of 
the challenge accounted for missing imputations, our subsequent analyses excluded this 
model.

Performance measures

Prior to the start of the challenge, we specified nine different performance measures to 
be used in the challenge. Although we provided the signal at basepair resolution, these 
measures were calculated at 25bp resolution. These performance measures included (1) 
the genome-wide mean-squared-error (MSE), (2) the genome-wide Pearson correlation, 
(3) the genome-wide Spearman correlation, (4) the MSE calculated in promoter regions 
defined as ±2 kb from the start of GENCODEv38 annotated genes [24] (MSEProm), (5) 
the MSE calculated in gene bodies from GENCODEv38 annotated genes (MSEGene), (6) 
the MSE calculated in enhancer regions as defined by FANTOM5 annotated permissive 
enhancers [25] (MSEEnh), (7) the MSE weighted at each position by the variance of the 
experimental signal for that assay across the training set, (8) the MSE at the top 1% of 
genomic positions ranked by experimental signal (mse1obs), and (9) the MSE at the top 
1% of genomic positions ranked by predicted signal (mse1imp). We note that 8 and 9 
make a calculation similar to recall and precision, respectively.

We used a multi-stage process, originally developed for the ENCODE Transcription 
Factor Binding Challenge [26], to aggregate these performance measures into a sin-
gle score to determine the challenge winners. First, ten equally sized bootstraps were 
drawn from the pool of all genomic positions, and each of the nine performance meas-
ures was calculated for each team on each of the bootstraps for each experiment. For 
each bootstrap-experiment pair, the scores were converted to rankings across teams 
for each performance measure, and these rankings were then averaged across perfor-
mance measures. This resulted in a score for each team in each bootstrap-experiment 
pair. This score was then converted back into a ranking over teams for each bootstrap-
experiment pair. Next, these rankings were aggregated across experiments by calculating 
1
|E| e∈E min(0.5, re) where E is the set of all experiments, e is an individual experiment, 
and re is a team’s ranking on experiment e divided by the number of teams. Finally, a 
rank was calculated across teams for each bootstrap, and the 90th percentile score, i.e., 
the second-best bootstrap rank, was used to determine the winners. This procedure is 
implemented at https:// github. com/ ENCODE- DCC/ imput ation_ chall enge [27].

Baseline methods

The methods submitted by the participants were compared to two baseline methods. 
The first baseline was the average activity, which is a straw-man imputation approach 
that simply predicts the average training set signal at each position in the genome across 
all cell types for a given assay type [28]. Consequently, this approach cannot make cell 
type-specific predictions. However, it represents the simple rule that regions of the 
genome that always exhibit peaks in signal and that regions of the genome that never 
exhibit peaks will continue to do so in other cell types. The second baseline was the 

https://github.com/ENCODE-DCC/imputation_challenge
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Avocado model, using the same model architecture and training procedure described 
by Schreiber et al [12]. Importantly, this model was not tuned for this dataset—it was 
applied as-is using the default settings and hyperparameters.

Although we had initially expected that ChromImpute [7] would serve as a baseline 
in this challenge, for logistical reasons ChromImpute was not applied to the challenge 
data until well after the challenge concluded. Because the participants did not have 
access to these predictions, as they did with the other two baselines, we did not include 
ChromImpute in the original rankings or analysis. However, we have included a rank-
ing of methods that includes ChromImpute in a re-analysis of the challenge participants 
using six of the measures used to evaluate the original ChromImpute method [7], as a 
reference (Additional file  1: Table  S1/Fig.  S9). These measures emphasize the relative 
distribution of signals, and included Pearson correlation, three measures quantifying 
percentage overlap between positions exhibiting high signal, and AUC measures for pre-
dicting peaks in observed signal from imputed signal values and vice versa. In order to 
obtain team ranks on these measures, we first ranked each team’s prediction for each 
test track on each measure separately. We then averaged ranks across metrics and re-
assigned integer ranks in each track for each team. Each team’s final rank was then com-
puted from the average of their predictions’ track ranks for the 51 test tracks.

Quantile normalization

We developed a three-step quantile normalization method for normalizing signal across 
genomic experiments. Because signal distributions differ significantly across assays, we 
applied this normalization separately for each assay. Importantly, the normalization is 
also done separately for signal in peak and background regions (as defined by MACSv2 
peak calls for the experiment [29]) to account for peaks spanning differing proportions 
of the genome across cell types. In the first step, quantiles are derived separately from 
each training set experiment. That is, if there are N training set experiments, Mp peak 
quantile bins, and Mb background quantile bins, one would extract the peak quantiles 
Qp ∈ R

N ,Mp and the background quantiles Qb ∈ R
N ,Mb . Quantiles are extracted by rank-

ing all signal values for an experiment (in peaks or outside of peaks, respectively), bin-
ning those ranks into either Mp or Mb equally sized bins, and assigning to each bin the 
average signal value from positions within the bin. In the second step, an average is taken 
across experiments for each quantile bin to construct reference quantiles Rp ∈ R

Mp and 
Rb ∈ R

Mb . Finally, Rp and Rb are applied to the test set tracks, with Rp being applied only 
within signal peaks and Rb being applied only within background regions. Because peak 
regions are more complex and span a larger range between the minimum and maxi-
mum value, i.e., dynamic range, than the background, we set Mp to be 1000 and Mb to be 
50. Given that this procedure is designed to combat distributional shift, we note that it 
should be applied to test set experiments before evaluation.

Although a strength of this approach is that it can handle differing proportions of 
peaks across cell types, partitioning loci in this manner may introduce minor issues 
that are worth keeping in mind. First, the same value may map to two different values 
depending on if it is in a peak or in a background region. Second, if the peak boundaries 
are extremely conservative, there may be edge artifacts introduced due to the minimum 
peak quantile being higher than the maximum background quantile.
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Data processing

We processed the DNase and ATAC-seq experiments using a uniform pipeline [30]. First, 
FASTQ files containing read sequences and quality scores for the training and validation 
sets experiments were downloaded from the ENCODE Portal, and FASTQs for the test 
set experiments were acquired from our own experiments. For ATAC-seq experiments 
(but not DNase-seq), we first trimmed adapters and then mapped reads to the hg38 ref-
erence human genome using the Bowtie2 [31] aligner. After mapping, reads were filtered 
to remove unmapped reads and mates, non-primary alignments, reads failing platform/
vendor quality checks, and PCR/optimal duplicates (-F 1804). Reads mapping reliably to 
more than one location (MAPQ < 30), i.e., multi-mapping reads, were removed. Dupli-
cate reads were then marked with Picard MarkDuplicates [14] and removed. For sin-
gle-end DNase datasets, a single read was chosen from a set of duplicate reads, whereas 
for paired-end datasets, read-pairs were chosen if any one of the two reads in the pair 
was unique. Although this is the standard approach for de-duplicating single-end and 
paired-end data, this step had unintended consequences for the challenge, which we 
describe in the “Accounting for distributional shift” section. For ATAC-seq data, 5′ ends 
of filtered reads on the + and − strand were shifted by + 4 and − 5 bp respectively to 
account for the Tn5 shift. Reads from biological and technical replicates were merged. 
We normalized the sequencing depth across datasets by subsampling them to a maxi-
mum of 50 million reads (after excluding reads mapping to mitochondria). This num-
ber of reads is consistent with best practices for ChIP-seq experiments [32] Although 
there are several ways to represent the signal from sequencing experiments, e.g., read-
counts and fold-change, we chose to use the statistical significance of the fold-change to 
be consistent with previous imputation literature [7, 10–12]. We used the MACSv2 peak 
caller to compute the fold-enrichment and statistical significance. MACsv2 was applied 
to smoothed counts (150 bp smoothing window) of read-starts (5′ ends of reads) at each 
position in the genome relative to the expected number of reads from a local Poisson-
simulated background distribution. We filtered out all peaks that overlapped with the 
ENCODE Exclusion list consisting of abnormal high signal regions [33]. We provided 
the genome-wide signal tracks containing the statistical significance of enrichment (i.e., 
the -log10 p-values) at each basepair in the genome. The processing pipeline is open-
source and available at https:// github. com/ ENCODE- DCC/ atac- seq- pipel ine under the 
MIT license.

Next, we processed the histone ChIP-seq experiments using the ENCODE process-
ing pipeline [34]. For each experiment, we downloaded FASTQ files from the ENCODE 
Portal for at least two replicate experiments and a control experiment. All reads were 
mapped to the hg38 reference human genome using the BWA aligner [35]. After map-
ping, the process was similar to the ATAC-seq/DNAse-seq pipeline. Reads were filtered 
to remove unmapped reads and mates, non-primary alignments, reads failing platform/
vendor quality checks, and PCR/optical duplicates (-F 1804). Multi-mapping reads 
(MAPQ < 30) were also removed. Duplicates were identified using Picard MarkDupli-
cates and subsequently removed, with the same single-end vs. paired-end differences as 
mentioned for DNase datasets. Reads from the biological and technical replicates were 
then merged. We normalized the sequencing depth across datasets by subsampling 
each to a maximum of 50 million reads. We used the MACSv2 peak caller to calculate 

https://github.com/ENCODE-DCC/atac-seq-pipeline
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fold-enrichment and statistical significance of counts of extended ChIP-seq reads (reads 
were extended in the 5′ to 3′ direction based on the predominant fragment length), 
relative to the number of extended reads from the control experiment, and filtered out 
peaks that overlapped with the ENCODE Blacklist [33]. The statistical significance of the 
enrichment was computed using a local Poisson null distribution whose mean param-
eter is estimated from the control experiment. For the purposes of this challenge, we 
provided the genome-wide signal tracks containing the statistical significance of enrich-
ment (i.e., the -log10 p-values) at each basepair in the genome. The processing pipeline 
is open-source and available at https:// github. com/ ENCODE- DCC/ chip- seq- pipel ine2 
[34] under the MIT license.

New performance measures

We introduce several new performance measures that can be used to evaluate imputa-
tion methods. These measures largely involve partitioning the data into subsets and then 
calculating standard metrics on the subsets separately. In addition to the continuous-
valued experimental signal Xc ∈ R

n and the imputations Y c ∈ R
n from a single method 

being evaluated, we also consider binarized versions of both ( Xb,Y b ∈ {0, 1}n ), where 
n is the length of the genome. The binarized versions of imputations are calculated 
as Y b = Y c ≥ 2 , corresponding to a signal p-value of 0.01, and Xb is an indicator for 
whether each locus is within a MACS2 peak call.

Our first measure involve partitioning the genome according to signal strength. In 
these cases, we first bin the experimental signal into logarithmic scaled bins of size 0.1 
from 10−1 to 102.5 . Given an experimental signal bin, we collect the set of loci genom-
ewide, loci, that fall within that bin, and calculate accuracy(Xb

loci,Y
b
loci) for each method 

where accuracy is a standard implementation of the accuracy measure. We repeated this 
procedure for each experimental signal bin. Afterwards, we repeated the same proce-
dure using loci derived from imputed signal and binarized experimental signal.

Our next measure involves partitioning the genome according to cell type specificity. 
The specificity of a locus is defined as the number of cell types that Xb (or Y b ) has a value 
of 1 for a given assay. Specifically, we construct a matrix A ∈ {0, 1}m,n as the stacking of 
Xb or Y b vectors across m experiments from the same assay. Then, we can calculate the 
specificity score as the column sum of this matrix, e.g., Sj =

m∑

i=0

Ai,j . Similarly to the pre-

vious measure, we can now partition the genome using S by taking all loci that have the 
same value. We can then calculate precision(Xb

loci,Y
b
loci) and recall(Xb

loci,Y
b
loci) using 

standard implementations of precision and recall.
These performance measures yield one value per bin. To aggregate performance across 

bins, we simply report the average value for each method. This corresponds, conceptu-
ally, to a reweighting of the standard metrics to evenly weight each bin, rather than each 
locus.

The next performance measure is correlation of H3K4me3 signal at promoter regions, 
which are defined as ±2kbp centered at the starts of genes as defined by the GENCODE 
v38 annotated gene set. This value is 1

|genes|

∑

gene∈genes
corr(Xc

gene,Y
c
gene) where gene is the 

span of positions defined as a promoter region. Conceptually, it is the average correla-
tion between the experimental and imputed signal across all promoters.

https://github.com/ENCODE-DCC/chip-seq-pipeline2
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The final performance measure is the correlation of DNase signal at peaks. In con-
trast with the promoter regions, these peaks are cell type-specific. However, the value 
is calculated similarly, as 1

|peaks|

∑

peak∈peaks

corr(Xc
peak ,Y

c
peak) , with peaks being the set of 

MACS2 peak calls.
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