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Abstract 

As interest in using unsupervised deep learning models to analyze gene expression 
data has grown, an increasing number of methods have been developed to make 
these models more interpretable. These methods can be separated into two groups: 
post hoc analyses of black box models through feature attribution methods and 
approaches to build inherently interpretable models through biologically-constrained 
architectures. We argue that these approaches are not mutually exclusive, but can in 
fact be usefully combined. We propose PAUSE (https://​github.​com/​suinl​eelab/​PAUSE), 
an unsupervised pathway attribution method that identifies major sources of transcrip‑
tomic variation when combined with biologically-constrained neural network models.
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Background
As technologies to measure gene expression in biological samples have advanced 
over the last several decades, the tools and methods to extract biological mean-
ing from these high-dimensional measurements have developed in parallel [1]. The 
increasing number of available samples in large transcriptomic compendia has ena-
bled deep learning as a viable option for reference mapping [2], data integration [3], 
dimensionality reduction and visualization [4]. In particular, unsupervised machine 
learning approaches to solve these problems have become popular. For instance, 
tools like scVI use variational autoencoders (VAEs) to help analyze single cell RNA-
seq data [5]. Similarly, variational autoencoders have been used to learn low-dimen-
sional embeddings of bulk cancer RNA-seq data, improving the prediction of drug 
response [6]. Deterministic autoencoders have also been used in transcriptomic 
analyses, including the application of denoising autoencoders to large Pseudomonas 
aeruginosa and yeast datasets [7, 8]. While these deep learning approaches all are 
capable of modeling complex systems with high fidelity, they unfortunately share the 
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drawback of lacking interpretability. Their latent embeddings do not have inherent 
biological meaning, and further methods are required to understand mechanisms 
captured by these models [9].

Two competing trends have emerged to “open the black box” and elucidate the bio-
logical mechanisms learned by these models, and have so far been framed as orthogo-
nal approaches. The first trend could be described as post hoc interpretability, and aims 
to identify which genes were the most important contributors to each latent variable 
learned by an autoencoder. A variety of methods have been used to do this interpreta-
tion, and range from the use of feature attribution methods [10–12] to the direct analysis 
of weights in shallower autoencoders. For instance, Dincer et al. [13] apply the feature 
attribution method Integrated Gradients [12] to the latent variables of VAEs to identify 
the most important genes for each latent dimension, while Way et al. [14] measure the 
magnitude of each input weight to shallow, non-linear autoencoders. Likewise, in sin-
gle cell analysis, Svensson et al. [15] modify a popular VAE architecture to have a linear 
decoder, allowing enrichment tests to be run using the magnitude of weights in that lin-
ear decoder. Despite the successes of these approaches, these types of analyses may be 
very difficult as autoencoders are known to learn entangled representations, meaning 
that each latent variable may capture multiple biological processes [16]. Furthermore, 
generating feature attributions for dozens or hundreds of latent variables may be compu-
tationally inefficient.

Another recent trend could be described as biologically-constrained modeling, and 
aims to create models with latent spaces that are inherently interpretable. These models 
use prior information to define sparse connections between input nodes corresponding 
to genes, and latent nodes corresponding to biological pathways (or other pre-defined 
groups). These biologically-constrained networks have been used in a supervised setting 
to improve the prediction of survival or treatment resistance from cancer gene expres-
sion or mutational status [17, 18], and to improve Genome Wide Association studies by 
aggregating the effects of single nucleotide polymorphisms (SNPs) into SNP sets [19]. 
In particular, a variety of recent works have proposed using biologicaly-constrained 
autoencoders to model gene expression data [20–22].

Our paper aims to demonstrate that these two trends in biological interpretability are 
not mutually exclusive, and that principled attribution methods can improve the analysis 
of unsupervised models of gene expression analysis by quantifying the importance of 
pathways. We first outline a general workflow for unsupervised analysis of gene expres-
sion data, comparing classical linear approaches like principal component analysis 
(PCA) to more contemporary deep learning-based approaches. This outline allows us 
to identify a step in the workflow that has been neglected by previous methods. We then 
propose a novel, fully-unsupervised attribution method and demonstrate how it can be 
used to identify important pathways in transcriptomic datasets when combined with 
biologically-constrained autoencoders. This allows for fully unsupervised analysis of 
gene expression data. We next show how existing, feature-level attribution approaches 
still provide useful information for annotated, unsupervised models. Finally, we apply 
our approach to a large transcriptomic compendium of post-mortem brain data from 
patients with Alzheimer’s disease and demonstrate how our approach can identify Mito-
chondrial Respiratory Complex I as a potential drug target for this disease.
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Results
Overview of PAUSE approach

To understand how game-theoretic attributions can improve the unsupervised analy-
sis of gene expression data, it is first helpful to understand a representative unsuper-
vised workflow (Fig. 1a) [23, 24]. In the past, researchers have used linear approaches 
like Principal Components Analysis (PCA) to (1) learn a low-dimensional representa-
tion of gene expression data, (2) rank the latent dimensions according to the amount of 
variance in the original data explained by each dimension, and finally (3) interpret the 
biological meaning of the most important dimensions. Finding the importance of each 
latent dimension is straightforward in PCA, as the algorithm inherently arranges the 
coordinates in descending order of the amount of variance in the data explained by each 
component [25]. Interpreting the biological meaning of the coordinates is fairly straight-
forward as well, as the magnitude of the gene loadings for each component identify the 
important genes, which can then be tested for enrichments in particular biological pro-
cesses using tools like Enrichr [26] or StringDB [27].

While deep learning-based autoencoders are able to reconstruct gene expression with 
high fidelity, they fall short at steps (2) and (3) in the workflow described above. Both 
the relative importance of the different latent dimensions, and the biological meaning 
of these dimensions are opaque in deep autoencoders. “Interpretable” autoencoders 
(Fig. 1b) aim to improve step (3) for deep learning models by constraining the learned 
representation so that the latent dimensions correspond to known biological pathways. 
By “interpretable” autoencoder model, we refer to any model that learns a latent repre-
sentation with dimensions that correspond to biological pathways or functions (Fig. 1b). 
These models can learn pathway embeddings that are complex, non-linear functions of 
the input genes, but are restricted in that each learned latent pathway dimension only 
incorporates information from genes that are pre-annotated to that pathway using data-
bases like Reactome [28]. This restriction is encoded either as a hard constraint using 
sparse masks across layers [22], or as a soft constraint using regularization [20] (see the 
“Model architectures” section for more details).

While interpretable autoencoder models have latent nodes corresponding to biologi-
cal pathways, there is no clear-cut way to identify which pathways are the most impor-
tant in a dataset. Our approach, principled attribution for unsupervised gene expression 
analysis (PAUSE), aims to improve the utility of “interpretable” deep autoencoder mod-
els using techniques from the area of feature attribution (Fig.  1c). While the eigen-
values in PCA correspond to the amount of variance in the original expression space 
explained by that component, deep learning-based autoencoders lack an obvious cor-
respondence revealing how much variance is explained by each latent dimension. Using 
approaches from game theory for credit allocation among players in cooperative games, 
we derive a novel pathway attribution that can be thought of analogously to the eigen-
values in PCA, in the sense that this attribution value shows how much variance in 
the original gene expression space is explained by each latent pathway. By posing the 
reduction in reconstruction error as the reward to be allocated in a cooperative game in 
which the pathways are the players (see the “Methods” section for more details), solu-
tion concepts like the Shapley value [29] or Aumann-Shapley value [30] can be used to 
provide pathway attributions. While we primarily applied our pathway attributions to 
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Fig. 1  Principled attributions complement biologically-structured networks to create more interpretable 
unsupervised models. a An outline of a general workflow of unsupervised analysis of gene expression data, 
comparing classical linear approaches (left in each subpanel) and deep learning approaches (right in each 
subpanel). (1) First, a dimensionality reduction algorithm such as PCA (left) or a deep autoencoder (right) 
is applied to a dataset of gene expression values to learn a low-dimensional representation. (2) After this 
low-dimensional representation is learned, the learned dimensions must be ranked by their importance. This 
ranking is inherently provided in PCA, which sequentially maximizes directions of unexplained variance in the 
data. There currently are no principled approaches to provide this ranking in deep models, which is the gap 
in the literature filled by our novel loss attribution. (3) After finding the most important latent dimensions, 
the biological meaning of these dimensions is interpreted. In PCA (left), the contribution of different genes to 
each dimension can be found by examining the magnitude of the gene loadings. For deep learning models, 
feature attribution methods can be applied to determine gene contributions. b In standard autoencoders, 
the learned latent variables have opaque meanings, as their relationships with input genes are unknown. 
Biologically-constrained models increase the interpretability of latent variables by using sparse connections 
or regularization to ensure that latent dimensions correspond to pre-defined pathways. c We apply principled 
attribution methods to help rank the latent dimensions of autoencoder models and to interpret the 
biological meaning of the most important dimensions. Attributing the model’s reconstruction error to the 
latent dimensions quantifies the importance of each latent dimension. Attributing the output of each latent 
dimension to the input genes quantifies the contribution of each input gene to each learned pathway
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biologically-constrained models, they can be applied to any unsupervised autoencoder 
to identify the most important latent dimensions (see Additional file 1: Fig. S1, Methods)

Additionally, although the latent factors of biologically-constrained autoencoders are 
more interpretable than the latent factors of standard autoencoders, in the sense that 
they only represent the expression of genes within their annotated pathway, these latent 
variables are often not fully interpretable on their own. For example, the pathway mod-
ule variational autoencoder (pmVAE) architecture [22] learns multiple latent variables in 
the bottleneck layer of each pathway module, which helps to encode more biologically 
relevant information. However, this approach provides no way for understanding the dif-
ferences between the different latent nodes within a given pathway module. Are these 
latent variables sub-pathways supported by different genes with different expression pat-
terns? Furthermore, if there are important pathways in an expression dataset that are not 
represented in the knowledge base used to define the model architecture, can we still 
identify these pathways? We propose generating gene attributions, again using feature 
attribution techniques based on the Aumann-Shapley value, to identify the genes con-
tributing to important learned pathway embeddings, or to identify the genes contribut-
ing to densely connected auxiliary pathways (Fig. 1c).

Pathway attributions accurately identify major sources of variation

To empirically validate that the pathways identified by our pathway attributions corre-
spond to the most important sources of variation in real gene expression datasets, we 
adapt two benchmarks from the feature attribution literature [31]. The first is an imputa-
tion benchmark, and measures the extent to which the reconstruction error of a trained 
biologically-constrained autoencoder model increases when the learned embeddings for 
each pathway are replaced with an uninformative mean imputation. The better an attri-
bution method ranks important pathways, the more quickly the reconstruction error 
will increase. The second benchmark is a retrain benchmark, and measures the extent 
to which pathways identified as important can reconstruct gene expression space when 
used to train a new model. Attributions that do a better job of ranking pathways will 
decrease the reconstruction error more quickly (Fig. 2).

Previous approaches to identifying important pathways in autoencoder models have 
been limited in a variety of ways. For example, previous papers have used supervised 
metrics like logistic regression accuracy or Bayes factors to identify important pathways 
[20, 22]. While these approaches have been used to successfully identify important path-
ways, calculating these metrics depends on having labeled data, which means that this 
analysis is not truly unsupervised. In terms of fully unsupervised approaches, Higgins 
et al. [16] have proposed finding important latent factors of variation by measuring the 
Kullback-Leibler (KL) divergence between the learned latent distribution in VAEs and 
the prior distributions. While this approach does not require labeled data, it can only be 
applied to VAE models, and can not be applied to standard, deterministic autoencoders. 
Another fully unsupervised approach to ranking important pathways examines the L2 
norm of the weights connecting each latent pathway to the reconstruction output; how-
ever, this metric is obviously limited to models with linear decoders [21]. Unlike all of 
these approaches, our proposed pathway attribution (see the “Methods” section) is both 
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fully unsupervised, meaning it requires no labeled data, and model agnostic, meaning it 
can be applied to any model regardless of architecture or implementation details.

The three datasets used in the two benchmarks were selected because they have labels 
corresponding to known perturbations applied to the cells, which allowed us to com-
pare the information gleaned from our fully unsupervised analysis to that highlighted 
by supervised methods. These datasets have also been extensively analyzed in previous, 
related work, and include a dataset of peripheral blood monocytes (PBMC) stimulated 
with interferon-β [32], a dataset of intestinal epithelial cells stimulated with Salmonella 
enterica and Heligmosomoides polygyrus [33], and a dataset of Jurkat cells stimulated 
with a combination of anti-CD3/anti-CD28 antibodies to induce T cell activation [23] 
(see the “Methods” section for more details, including data preprocessing). The particu-
lar model architecture trained for this benchmark was a pathway module VAE (pmVAE), 
which is a sparse variational autoencoder model with deep, non-linear encoders and 
decoders [22]. Unlike standard autoencoders, which have dense connections between 
every gene and each latent node in the first encoder layer, and dense connections 
between every latent node in each successive layer, the pmVAE uses sparse connections 
to define “modules” of nodes that have dense connections between nodes within the 
modules and no connections between nodes in different modules. The first layer of the 
encoder (and the last layer of the decoder) is a sparse layer that connects each gene only 
to the modules corresponding to the pathways to which it has been annotated. In this 
model, each module can be thought of as a separate dense autoencoder, which all sum 
together at the output layer. Across both benchmarks and all three datasets, our pathway 
attribution method consistently identified the most important sources of dataset-wide 

Fig. 2  PAUSE pathway attributions accurately identify the major sources of variation in single cell datasets. 
To verify that our novel pathway attribution method (“PAUSE” in the plots above) is capable of identifying the 
major sources of transcriptomic variation across a variety of datasets, we apply two benchmarks of pathway 
identification. The first (a), termed our impute benchmark, measures how much the reconstruction error 
of a biologically-constrained autoencoder model increases as important pathways are replaced with an 
uninformative, imputed baseline. Better methods will increase the error faster, leading to a larger area under 
the curve (AUC). The second benchmark (b), termed our retrain benchmark, measures how well a model 
can reconstruct the observed expression when retrained using only the most important pathways. Better 
methods will decrease the error faster, leading to a smaller AUC. The AUCs for both the impute (c–e) and 
retrain (f–h) benchmarks are shown for ten separate train/test splits across three separate single cell gene 
expression datasets (intestinal cells, peripheral blood monocytes, and Jurkat cells). In each experiment, the 
PAUSE loss attribution method significantly outperforms other methods. The other methods shown here are 
logistic regression score (LR), Kullback-Leibler divergence (KLD), random ranking, and latent space variance 
(LSV). The boxes in c–h mark the quartiles (25th, 50th, and 75th percentiles) of the distribution, while the 
whiskers extend to show the minimum and maximum of the distribution (excluding outliers)
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transcriptomic variation better than previous approaches (two-sided Wilcoxon signed 
rank test, Bonferroni corrected p = 7.81× 10−3 , statistic = 0.0, see Fig.  2). When we 
repeat this benchmark with three additional single cell RNA-seq datasets, we find the 
same results (see Additional file 1: Fig. S2).

In addition to validating the performance of PAUSE on the pmVAE model, we also 
evaluated the performance of PAUSE on other architectures using this benchmark. 
Remarkably, we found that our pathway loss attributions outperformed directly exam-
ining the L2 norm of the decoder weights in an architecture with a linear decoder (see 
Additional file 1: Fig. S3). Next, we looked at the results of the imputation benchmark 
on an unconstrained VAE that does not incorporate any pathway information. Again, 
we see that PAUSE still significantly outperforms other methods at identifying pathways 
whose ablation leads to an increase in reconstruction error (see Additional file 1: Fig. 
S4). Interestingly, we observe that in this case, when the VAE does not have biological 
latent space constraints and is optimized only to minimize divergence from an isotropic 
Gaussian prior and reconstruct the input, KL divergence does quite well at identifying 
important pathways. However, PAUSE still significantly outperforms KL divergence, 
even in the absence of a pathway-based model architecture. In conclusion, our bench-
mark demonstrates that our pathway attribution method is able to accurately identify 
the major sources of transcriptomic variation across different datasets and autoencoder 
architectures, showing the benefit of using prinicpled attributions in conjunction with 
biologically-constrained models.

Pathway attributions identify biologically relevant pathways

After demonstrating in the previous section that our pathway attributions were capable 
of accurately identifying the major sources of transcriptomic variation in three scRNA-
seq datasets, we wanted to demonstrate that these major sources of transcriptomic vari-
ation corresponded to biologically interesting pathways. We therefore compared the top 
pathways found by our unsupervised approach to the top pathways according to a more 
conventional, supervised analysis (Fig. 3).

We first considered a biologically-constrained VAE (pmVAE, see the “Methods” sec-
tion) trained on a dataset of peripheral blood mononuclear cells (PBMCs), where the 
PBMCs were either untreated as controls or stimulated with interferon-β [32]. The latent 
nodes of this model were defined using Reactome pathways [28]. Because this is a well-
studied dataset with a known ground truth perturbation, we know that pathways related 
to interferon-β (IFN-β ) stimulation should be important, and because we have control/
stimulated labels for the cells, we can compare the pathways identified as important 
by our unsupervised analysis with the pathways identified by supervised analysis. For 
a supervised metric of pathway importance, we considered the accuracy attained by a 
logistic regression model trained on the pathway latent nodes to differentiate stimulated 
and controlled cells [22].

We find that our fully unsupervised pathway attributions are able to identify many 
of the same pathways as supervised approaches, without requiring access to labeled 
data (see Fig. 3a). For example, we see that the Reactome pathways “Cytokine Signal-
ing in Immune system,” “IFN Signaling,” and “IFN alpha/beta signaling,” are in the list 
of top ten pathways identified by both approaches. More interestingly, we can also 



Page 8 of 30Janizek et al. Genome Biology           (2023) 24:81 

examine where the pathway rankings are discordant. For example, “IFN Gamma Sign-
aling” is a top pathway according to the supervised approach, but not according to 
our unsupervised rankings. This demonstrates why our unsupervised approach can 
complement the supervised approach even when labels are present. Although certain 
genes are regulated by both type I and type II IFNs, other genes are expected to be 
selectively regulated by either type I or type II IFNs [34]. Looking at our unsupervised 
attributions shows that while there may be significant enough differences in expres-
sion of genes in the “IFN Gamma Signaling” pathway to differentiate stimulated and 
unstimulated cells, this pathway is not one of the major sources of variation in the 
dataset, at least when compared to pathways more directly related to IFN-β signal-
ing. Therefore, in addition to being useful when labeled data is not present, our unsu-
pervised attributions can provide additional utility even when labels are present by 
explicitly quantifying the amount of variance in the observed data explained by each 
pathway.

We next considered a VAE (again with latent modules defined by Reactome path-
ways) trained on a dataset of mouse intestinal epithelial cells where control cells were 
untreated, and stimulated cells had been exposed to the parasitic roundworm Helig-
mosomoides polygyrus [33]. Again, there is substantial overlap in the top pathways 
identified by our unsupervised approach and supervised metrics (Fig. 3b). For exam-
ple, the Reactome pathway “Innate Immune Response” is the most important pathway 
according to both supervised and unsupervised attributions. Next, we again can look 
to see where these approaches are discordant in their rankings. Examining the top 
ten pathways according to supervised attributions, we see that the pathway “MHC 
Class II Antigen Presentation” is a top pathway, despite not being highly ranked by 
our unsupervised metric (Fig. 3b). This pathway is particularly biologically plausible 
as an important process in this dataset, as the MHC Class II complex is constitutively 

Fig. 3  PAUSE loss attribution reveals biologically relevant pathways that overlap with pathways found using a 
supervised approach. Comparison of top pathways found using PAUSE loss attribution (y-axis, unsupervised) 
and logistic regression (LR) score (x-axis, supervised) in PBMC (a) and Intestinal (b) datasets. Gene sets in the 
blue rectangles are those ranked in the top 10 only by PAUSE, those in the yellow rectangles are ranked in the 
top 10 only by LR score, and those in the green rectangles are ranked in the top 10 by both methods. The size 
of the dots indicates gene set size
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expressed in the upper villi of the small intestine, indicating a potential role as non-
professional antigen presenting cells for intestinal epithelial cells [35]. Previous work 
has shown that in both epithelial cells and in other cell types, expression of the MHC 
Class II complex is regulated in response to pathogen exposure [36, 37]. The fact that 
this pathway is highlighted by supervised attributions, but not by our unsupervised 
approach, shows that these two approaches (supervised and unsupervised) should be 
considered complementary. While our PAUSE attributions can help identify the path-
ways responsible for explaining the largest quantities of variation in a given dataset, 
supervised attributions can help identify specific differences in expression between 
known groups. Analysis of additional single cell RNA-seq datasets can be found in 
Additional file 1: Figs. S5–6.

Gene attributions increase latent node interpretability

In addition to identifying important pathways, the interpretability of biologically-con-
strained models can be enhanced through the application of gene attribution values. 
These gene attribution values help identify which gene expression values are important 
determinants of each learned pathway representation. For example, previous work has 
analyzed the expression of Jurkat cells, an immortalized human T lymphocyte cell line, 
when stimulated with anti-CD3 and anti-CD28 antibodies to induce T cell activation 
[23]. This prior analysis trained a pathway module VAE (pmVAE) to reconstruct the 
expression of these cells, and found that having multiple nodes in the bottleneck layer of 
each pathway module led to embeddings that were more discriminative for T cell activa-
tion [22]. This raises the question of whether multiple nodes may be necessary in order 
to distinguish different processes of the biology of T cell activation.

We therefore generated gene attributions to understand the expression programs rep-
resented by the multiple nodes present within given pathway modules. The two most 
important genes for each of the four latent nodes in the TCR signaling module were 
PTPRC and PTPN22 (Additional file 1: Fig. S7). PTPRC enocdes a tyrosine phosphatase 
commonly known as CD45 antigen, while PTPN22 codes for another protein tyros-
ine phosphatase commonly known as PEP. These genes are known to play an impor-
tant, albeit complex, role in proximal TCR signaling, regulating the activity of Src family 
kinases downstream of T cell receptor activation [38].

Looking at the pairwise correlations between the activations of each of the four latent 
nodes in the TCR Signaling pathway module over all cells (see Fig. 4a), we see that while 
many of the pairs of nodes have a high degree of correlation or anti-correlation (poten-
tially indicating redundancy between these nodes), Node 1 and Node 2 have a relatively 
low correlation (Pearson’s R = 0.11). We can plot gene attributions for the top two genes 
for Node 1 (Fig. 4b, c) and Node 2 (Fig. 4d, e) in order to understand what precisely is 
being represented by the different nodes of the pathway module.

We see that Node 1’s output is high when PTPRC’s expression is high (Fig. 4b), and low 
when PTPN22 expression is high (Fig. 4c). This means that in cells where PTPRC and 
PTPN22 are co-expressed, the contributions of these two genes will cancel out and the 
latent node’s activation will have a low magnitude. Node 2’s output, in contrast, is highly 
negative when PTPRC expression is high (Fig.  4e) and highly negative when PTPN22 
expression is high (Fig.  4f ). When we visualize all of the cells in the dataset by their 
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embedding values for these two latent nodes after filtering out cells where the values of 
these top genes are dropped out (see Fig. 4f ), we see that Node 2 separates anti-CD3 and 
anti-CD28 antibody-stimulated cells (Wilcoxon rank-sums test statistic = −6.27 , p value 
= 3.39× 10−10 ), while Node 1 does not (Wilcoxon rank-sums test statistic = −0.95 , p 
value = 0.342 ). This demonstrates the utility of gene attributions. While previous work 
found that having multiple nodes in the bottleneck layer of each pathway module led to 
embeddings that were more discriminative for T cell activation [22], there was no direct 
way to distinguish which expression patterns the model was using to define each latent 
node.

In addition to differentiating sub-processes within an annotated pathway module, 
another use for gene attributions is identifying biological processes learned by unan-
notated, densely-connected modules. In addition to sparse modules corresponding to 
annotated biological pathways, densely connected modules can be jointly modeled to 
capture novel biology. In order to verify that densely connected modules could identify 
biological expression programs not represented in prior knowledge bases, we modeled a 
dataset where we know the ground truth perturbations (PBMCs stimulated with IFN-β ). 
We omitted a group of pathways related to the known perturbation by training a new 

Fig. 4  Gene attributions increase latent variable interpretability and differentiate TCR signaling pathway 
expression programs. Gene level attributions help to gain a deeper understanding of the expression 
programs represented by the latent variables of a biologically-constrained autoencoder trained on a dataset 
of Jurkat cells stimulated with anti-CD3 and anti-CD28 antibodies. a Pairwise correlations between the four 
latent variables in the pathway module corresponding to T cell receptor signaling. b–c Gene attribution 
dependence plots for the two most important genes, ranked by average magnitude gene attribution over 
all samples in the dataset, for TCR Signaling Latent Node 1. d–e Gene attribution dependence plots for the 
two most important genes, ranked by average magnitude gene attribution over all samples in the dataset, 
for TCR Signaling Latent Node 2. f Jurkat cells plotted by their embedding in the first two nodes of the TCR 
Signaling Pathway module. The first node, in which PTPRC and PTPN22 expression are not co-regulated, does 
not separate cells that have been stimulated by anti-CD3/anti-CD28 antibodies (Wilcoxon rank-sums test 
statistic = −0.95 , p value = 0.342 ), while the second node, in which PTPRC and PTPN22 expression levels are 
highly correlated, does separate cells that have been simulated by anti-CD3/anti-CD28 antibodies (Wilcoxon 
rank-sums test statistic = −6.27 , p value = 3.39× 10

−10)
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model without the corresponding modules for those pathways, but included a module 
connected to all genes with four nodes in its bottleneck layer. When we used gene attri-
butions to identify the important expression contributors for the latent nodes in the 
bottleneck layer of this densely-connected, unannotated module, we found that they 
corresponded to the expected ground truth biology (Additional file 1: Fig. S8). Specifi-
cally, the 50 most important genes for each densely connected node were significantly 
enriched for multiple pathways corresponding to biological ground truth (Additional 
file 1: Fig. S9).

As a control experiment, we repeated this procedure, but instead of omitting pathways 
that correspond to known biological ground truth, we omitted pathways that we expect 
to be unrelated to the given perturbation. As an example, we look at removing the Reac-
tome pathway “Regulation of PLK1 Activity at G2/M Transition,” which is involved in 
regulating a number of cellular proteins during mitosis [28]. We then again used gene 
attributions to identify the most important expression contributors to the densely-con-
nected nodes (Additional file 1: Fig. S10). In this case, we found no significant pathway 
enrichments for the top 50 genes for any of the auxiliary nodes. This control experiment 
shows that densely-connected nodes can specifically represent unknown, novel sources 
of biological variation, rather than all missing pathway information. Gene attributions 
allow these densely-connected nodes to be inspected to understand biological signal not 
represented in prior knowledge. While this experiment does not guarantee that a dense 
module will always find the most important sources of missing variation, it does dem-
onstrate that it is able to represent important pathways when they are omitted from the 
prior, and that it will not necessarily represent unimportant pathways that are omitted 
from the prior.

In conclusion, while pathway attributions help give a high-level view of important pro-
cesses in gene expression datasets, gene attributions help elucidate particular mecha-
nisms in greater detail. Furthermore, these attributions can help identify novel biology 
in cases where the prior knowledge used to define the biologically-constrained model is 
mismatched with the expression programs present in the dataset being modeled.

PAUSE identifies mitochondrial oxidative phosphorylation as an important process 

in Alzheimer’s brain samples

After testing the PAUSE approach by applying it to a variety of single cell datasets with 
known perturbations and well-characterized downstream effects, we wanted to use our 
PAUSE approach to gain insight into the biology of Alzheimer’s disease (AD). AD is the 
most common form of dementia, and accounts for an estimated 60–70% of worldwide 
cases [39]. Clinically, AD manifests with memory loss and cognitive decline, while neu-
ropathologically AD is associated with amyloid-β (Aβ ) plaques and abnormal tau tan-
gles in the brain [40]. We therefore applied PAUSE to a large collection of postmortem 
brain RNA-sequencing measurements from patients with AD, assembled by the AMP-
AD (Accelerating Medicines Partnership Alzheimer’s Disease) consortium. This dataset 
includes brain samples from a variety of sources, including the Religious Orders Study/
Memory and Aging Project (ROSMAP) [41], Adult Changes in Thought (ACT) [42], 
Mount Sinai Brain Bank (MSBB), and Harvard Brain Tissue Resource Center (HBTRC) 
studies (see the “Methods” section for more detail).



Page 12 of 30Janizek et al. Genome Biology           (2023) 24:81 

Because of the diversity of data sources combined in this dataset, it was essential to 
account for batch effects so that the embedding learned by our model represented true 
biological variation rather than technical artifacts (Fig.  5a). When a standard pmVAE 
model is trained on the data, we see that the latent space separates samples predomi-
nantly according to the data source from which the samples were derived (Fig. 5b). To 
control for these dataset effects, we therefore modified the pmVAE architecture to be 
a conditional pathway module VAE (cpmVAE) (Fig.  5a, Additional file  1: Fig. S11). In 
addition to the set of gene expression values corresponding to a particular pathway, each 
module takes as an additional input a vector of labels describing any unwanted sources 
of technical variation (like data source identity). By explicitly encoding the batch effects 
in these variables, the model is free to learn biological information in the latent space. 
When our cpmVAE model is trained on the data, we see that there is less separation in 
the latent space on the basis of source dataset (Fig. 5c, Additional file 1: Fig. S12). To 
assess the quality of the embedding learned by our cpmVAE model and further “san-
ity check” our approach, we showed that our cpmVAE model reconstructed the original 

Fig. 5  PAUSE analysis highlights the importance of Mitochondrial Respiratory Complex I in Alzheimer’s 
disease. a A conditional pathway module VAE (cpmVAE) is trained to integrate human post-mortem brain 
tissue samples from multiple Alzheimer’s disease (AD) studies. b TSNE plot of the latent space of a pathway 
module VAE (pmVAE) trained without batch effect correction by conditioning on study ID. c TSNE plot of 
the latent space of a cpmVAE trained with batch effect correction by conditioning on study ID. d Most 
important pathway latent variables in cpmVAE model according to PAUSE pathway loss attribution. Error 
bars indicate the standard deviation over local attributions e Most important gene expression contributors 
for top pathway (Oxidative Phosphorylation Node 3). Gene names bolded and in red encode proteins 
in Mitochondrial Respiratory Complex I. Error bars indicate the standard deviation over local attribution 
magnitudes
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gene expression space more accurately than a standard pmVAE model, had less clus-
tering by dataset source, and was more predictive of the neuropathological phenotype 
information we had for a small subset of samples than the original gene expression space 
(Additional file 1: Fig. S12).

When we generate PAUSE pathway attributions to interrogate the latent space learned 
by our cpmVAE model, we can see that the single pathway explaining the most observed 
variation in the biological latent space is the Hallmark Oxidative Phosphorylation path-
way (Fig. 5d). Oxidative phosphorylation in the mitochondria is one of the major meta-
bolic processes responsible for generating the ATP necessary for neuronal function, and 
dysregulation and differential expression of this pathway has previously been linked to 
AD [43]. While primary defects in oxidative phosphorylation are not thought to be likely 
causes of AD, and mitochondrial dysfunction is in fact thought to be the result of A β and 
tau protein accumulation [44], these changes in expression of oxidative phosphorylation 
genes likely play an important role in the pathophysiology of AD [45]. Furthermore, the 
expression of this pathway varies not only between patients with AD and without AD, 
but also varies greatly across AD patients, suggesting that this pathway may be related to 
the heterogeneity of clinical phenotypes observed in AD patients [46]. We additionally 
confirmed that there was significant overlap between the pathways identified by PAUSE 
and pathways identified by a supervised method on the subset of data for which we had 
neuropathological phenotype information (see Supplementary Table 1).

After identifying several nodes related to oxidative phosphorylation as the top gen-
eral processes in this dataset, we used gene attributions to further interrogate the spe-
cific function represented in the top pathway node, which is Oxidative Phosphorylation 
Node 3. We can visualize the individual gene attributions for this node using a summary 
plot (Fig. 5e). When we look at the top 20 genes by gene attribution, we see four genes, 
NDUFS3, NDUFA3, NDUFS7, and NDUFA2, that are all part of mitochondrial respira-
tory Complex I, which is responsible for the oxidation of NADH in the mitochondria [47].

Experimental validation of PAUSE analysis identifies mitochondrial Complex I as a potential 

AD therapeutic target

Unlike the single cell datasets with clear ground truth perturbations and well-studied 
downstream effects examined in the prior analyses, the biology underlying the differ-
ences in gene expression in real-world samples from patients with AD is less clearly 
characterized. Therefore, in order to verify that the genes and pathways identified by 
PAUSE are biologically-relevant, we could not reference a known ground truth, and had 
to experimentally validate our findings.

To gain insight into the biological relevance of the genes identified by our PAUSE anal-
ysis of the Alzheimer’s brain expression data, we used the nematode C. elegans, a well-
established animal model of A β proteotoxicity [48]. We conducted experiments with 
GMC101, a transgenic worm line displaying an age-associated aggregation of human A β
1–42 peptide resulting in rapid onset of age-associated paralysis. A stringent recipro-
cal best hits (RBH) approach (BLAST e-value ≤ 10−30 ; details in the “Methods” section) 
was used to identify nematode orthologs for human genes. This assay can be used to 
test the effects of various genes on A β proteotoxicity, as transgenic A β1–42 accumulates 
over time in the bodywall muscle of GMC101 worms, leading to a paralysis phenotype 
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mediated by A β proteotoxicity [49]. Gene expression perturbations that significantly 
increase the observed time to paralysis therefore are demonstrated to impact A β1–42 
toxicity in this model organism.

We used RNAi via bacterial feeding to reduce expression of 13 C. elegans genes encod-
ing homologs of human Complex I proteins in animals expressing toxic A β . This resulted 
in a striking delay in paralysis relative to control animals treated with empty vector (EV) 
RNAi (Fig. 6) (details in the “Methods” section). Suppression of paralysis by knockdown 
of Complex I genes was comparable, or often exceeded, the suppression of paralysis by 
our positive control, RNAi knockdown of the insulin-like receptor gene daf-2 (Fig. 6), 
one of the strongest known suppressors of A β toxicity in worms [50].

We observed that RNAi knockdown conferred protection against amyloid beta tox-
icity, as evidenced by delayed paralysis. This may indicate that mitochondrial Complex 
I activity contributes to the pathological consequences of high A β burden. Alterna-
tively, knock-down of mitochondrial Complex I components could induce a protective 
response that attenuates A β toxicity. This will be an important topic to address experi-
mentally through future study.

Discussion
By combining principled attributions with pathway-based representations, our PAUSE 
approach enables the interpretable and fully unsupervised analysis of gene expression 
datasets. In both the single cell and the bulk RNA-seq datasets analyzed, we found that 
the major sources of variation quantified by our pathway attribution approach corre-
sponded to biologically-meaningful processes, as confirmed by known ground-truth 
perturbations in the single cell analyses and by experimental validation in the AD data-
set. Unlike existing methods, our pathway attributions do not depend on having labeled 
data to identify important pathways. This enables fully unsupervised data exploration, 
and can complement supervised analyses when labels are present. Furthermore, this 

Fig. 6  C. elegans A β proteotoxicity assay validates importance of mitochondrial Complex I genes. a Paralysis 
curves for the reciprocal best orthologs of human Complex I genes. All tested RNAi conditions significantly 
suppress paralysis. b The same data as in a plotted as the median day of paralysis for each population of 
worms. Half of the conditions showed even stronger suppression than daf-2 RNAi conditions. Error bars 
indicate standard error of the mean across experiments. * p-value < 0.05. ** p-value < 0.01. *** p-value < 0.001



Page 15 of 30Janizek et al. Genome Biology           (2023) 24:81 	

approach can be applied to arbitrarily deep networks, unlike existing methods which 
depend on having a fully linear network or a linear decoder.

An important limitation of our unsupervised pathway attributions is that they do not 
always capture all pathways that differ significantly between two groups of interest, if 
those pathways do not represent major sources of expression variation (see Fig. 3b). We 
emphasize that our unsupervised attribution method measures a different quantity than 
supervised approaches, and should be considered a complementary approach rather 
than a replacement in applications where labeled data are present.

An assumption of our approach is that pathway databases provide good representa-
tions of the underlying biology of the system being modeled, which is an assumption 
shared by any method that incorporates pathway information into the modeling archi-
tecture. We note, however, that our incorporation of gene attributions specifically helps 
to alleviate this problem. Our gene attributions, like the pathway attributions, can be 
applied to arbitrarily deep networks, and allow for the biological interpretation of mod-
els with multiple latent variables per pathway. These attributions also allow the user to 
understand what biology is captured by the model in densely connected nodes that are 
not associated with a particular pathway.

Importantly, PAUSE was able to identify mitochondrial Complex I as a critical factor 
mediating A β-related pathophysiology in AD, pointing to the promise of mild inhibition 
of Complex I as a potential new paradigm for developing future AD therapeutics. This 
finding is supported by prior data indicating that mild inhibition of Complex I reduced 
A β and tau levels in mouse models of familial AD [51], that diets rich in capsaicin — a 
natural product that can inhibit Complex I — are associated with lower serum A β levels 
in the elderly [52], and that capsaicin reduced AD-associated changes in the hippocam-
pus of rats with type 2 diabetes [53].

Conclusions
We anticipate that our approach of combining principled attributions with interpret-
able model architectures will prove to be a broadly useful strategy in domains beyond 
gene expression. Rather than viewing attribution methods or biologically-meaningful 
representations as individual panaceas for machine learning interpretability, we hope 
that researchers will view these approaches as composable tools, each addressing unique 
needs. For example, principled feature attribution methods are currently applied to 
computer vision models, but most of these methods generate attributions at the level 
of pixels, which are not the most human-interpretable features and struggle to repre-
sent higher-level concepts [54, 55]. On the other hand, generative models like GANs 
can more clearly illustrate complex patterns differentiating domains, but lack the rigor-
ous quantification of feature attribution methods [54, 56]. We believe future work that 
is able to rigorously quantify contributions of human-interpretable concepts in deep 
learning models will be useful in domains like microscopy, computer vision, and digital 
pathology.

Additionally, while biological pathways represent one useful representation, they 
will not necessarily be the only meaningful representation for all data types. For exam-
ple, in the area of computer vision, researchers have proposed using additional labeled 
data to train medical image models with representations encoding high-level clinical 
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concepts, such as the presence or absence of bone spurs in x-ray images of knees for 
osteoarthritis severity determination [57]. Future work defining other useful conceptual 
representations will be helpful in biological applications, while finding methods such as 
the sparsely-constrained architectures used in this manuscript to learn representations 
without the need for costly additional labels will be useful in other domains.

Even in biology, pathway annotations may not always provide the most useful repre-
sentations. In particular, translating interpretable approaches to multi-modal datasets 
will be an important future direction. Defining interpretable representations capable 
of grouping features across data modalities will be important to integrate these diverse 
datasets. For example, one could design a transcription factor-based latent space, link-
ing both the expression measurements of genes annotated to be regulated by each tran-
scription factor, and the chromatin accessibility of genome regions containing sequence 
motifs related to the binding of each transcription factor.

Methods
Model architectures

Biologically interpretable autoencoders are unsupervised deep learning models with 
latent variables corresponding to known biological pathways or other gene groupings. 
Methods to create biologically interpretable autoencoders can be grouped into two 
broad strategies. The first involves directly modifying the architecture of a network with 
sparse, masked connections. This approach is taken by methods such as VEGA (VAE 
Enhanced by Gene Annotations) [21], which masks the weights in the linear decoder of 
a variational autoencoder (VAE) so that each latent variable is only connected to genes 
in the pathway represented by that latent variable. The second involves a “soft” modifica-
tion of the network weights using weight regularization during training. For example, 
the expiMap method (explainable programmable mapper), which is also a VAE with a 
linear decoder, allows all connections from all latent variables in its decoder to poten-
tially have non-zero weight, but adds an L1 regularization penalty specifically to the 
weights corresponding to genes not present in the original pathway definitions [20].

In our experiments, we primarily used a fully deep architecture similar to that pro-
posed in the pathway module variational autoencoder (pmVAE) approach [22]. This 
autoencoder network’s encoder and decoder both have multiple non-linear layers. To 
better describe these networks, we can start with a description of a typical, unmodified 
VAE [58]. Standard VAEs are a pair of neural networks, an encoder with parameters θ 
and a decoder with parameters ψ , optimized to learn a low-dimensional distribution 
over latent variables z from high-dimensional data x , such as gene expression data. 
These networks are trained by stochastic gradient descent to maximize the variational 
lower bound on the likelihood of the data:

In order to learn a low-dimensional latent space z that corresponds to biological 
pathways, the pmVAE approach uses sparse masked weight matrices to separate the 
weights of the encoder and decoder neural networks into non-interacting modules 
for each pathway. These modules may have multiple hidden layers in both the encoder 
and decoder network, and may have multiple latent variables associated with each 

(1)logpθ (x) ≥ Eq(z|x;θ)[logp(x|z;ψ)] −KL(q(z|x; θ)||p(z)) = −LELBO.
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pathway. The network’s first layer is masked with a binary assignment mask, which 
ensures that each gene is only connected with non-zero weight to the hidden nodes 
of the modules corresponding to its pathways. Each subsequent layer is masked with 
a binary separation mask, which is a block diagonal matrix ensuring that non-zero 
connections only occur within pathway modules. In addition to the sparse masking 
modifications made to the encoder and decoder architectures, the pmVAE method 
also alters the training objective to add a local reconstruction loss:

where x̂(p) is the reconstructed expression of the genes in pathway (p), x(p) is the 
observed expression of the genes in pathway (p), NNp

 is a weighting term to weight each 

module’s local reconstruction loss dependent on the number of genes in a particular 
module Np compared to the total number of genes N, and K is the total number of mod-
ules considered.

In our experiments on bulk RNA-seq brain data, the brain gene expression samples 
were compiled from multiple data sources. In order to disentangle the batch effects, 
represented by a vector c, from the biological variation of interest, we wanted to train 
a conditional pathway module VAE (cpmVAE), and therefore maximize the condi-
tional variational lower bound objective:

These condition labels are passed to each pathway module in the encoder, and again 
to each pathway module in the decoder. In order to ensure that the learned embed-
ding is fully independent of the unwanted sources of variation encoded in the condi-
tional labels, we add a regularization term to the loss based on the Hilbert Schmidt 
independence criterion (HSIC) between the latent embedding z and the dataset labels 
c [59, 60]. Therefore, our total loss function optimized for the cpmVAE architecture 
is:

We implemented our cpmVAE model (and the pmVAE models) using the PyTorch 
deep learning library [61]. For both the cpmVAE and pmVAE models, we included 
BatchNorm1D layers following all but the final layers of both the encoder and decoder 
networks. We optimized the networks using an Adam optimizer with an initial learning 
rate of 0.001, and decreased the learning rate by a factor of 10 following each epoch if 
there was not a decrease in global reconstruction error on a held out validation set. All 
models were trained for 200 epochs, and the model checkpoint with the lowest recon-
struction error on a held out validation set was used for downstream analysis. For sin-
gle cell benchmark experiments, each pathway module had a hidden layer of 12 nodes, 
followed by a pathway latent space of 1 node. For all other experiments, each pathway 
module had a hidden layer of 12 nodes, followed by a pathway latent space of 4 nodes. 
For the cpmVAE experiments, the HSIC loss was multiplied by a factor of 1× 106 , to 
ensure this term was around equal magnitude with the other loss terms.

(2)L
(local)
recon =

1

K
p

N

Np
�x̂(p) − x(p)�22,

(3)logpθ (x|c) ≥ Eq(z|x,c;θ)[logp(x|c, z;ψ)] −KL(q(z|x, c; θ)||p(z|c)) = −L
c
ELBO.
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For our experiments involving models with linear decoders (see Additional file 1: Fig. 
S3), we used the Interpretable Autoencoder architecture proposed by Rybakov et al. [62]. 
This model is similar to the expiMap method [20], but is a deterministic autoencoder 
rather than a VAE. We trained these networks using the code from the intercode reposi-
tory (https://​github.​com/​theis​lab/​inter​code), and for both experiments the network was 
trained using the hyperparameters described in (https://​github.​com/​theis​lab/​inter​code/​
blob/​main/​noteb​ooks/​inter​code-​api-​Kang18.​ipynb): 80 epochs with a batch size of 62 
samples, a learning rate of 0.001, and the regularization hyperparameters of �0 = 0.1 , 
�1 = 0.93 , �2 = 0.0 , and �3 = 0.57.

For the experiment demonstrating how PAUSE enables a similar unsupervised work-
flow between an unconstrained VAE and a classical PCA approach (see Additional file 1: 
Fig. S1), we used an autoencoder with 4 hidden layers in the encoder, 2000 in the first 
layer, 1000 in the second layer, 500 in the third layer, 250 in the fourth layer, then 10 
nodes in the bottleneck dimension (each a normal distribution parameterized by a mean 
and a variance node, with backpropagation enabled using the reparameterization trick). 
The decoder network had the reverse structure, with a first hidden layer of 250 nodes, 
then 500, 1000, and 2000, before generating the full reconstruction. This model was 
trained for 20 epochs using an Adam optimizer with learning rate set to 0.001, and a 
batch size of 16.

For the results of our impute benchmark on a standard VAE (see Additional file 1: Fig. 
S4), we use the VAEmodel class found in the models.py of the linked github reposi-
tory. The number of nodes in this model’s layers is the same as in the pmVAE benchmark 
experiments. The pmVAE model is comprised of pathway modules, each with 12 nodes 
in a hidden layer followed 1 node in the latent space. If we call the number of path-
ways used to construct a pmVAE for a given dataset num_pathways, we construct the 
standard VAE with 12 x num_pathways nodes in a hidden layer and num_pathways 
in the latent space. The model was trained for 100 epochs using an Adam optimizer with 
a learning rate set to 0.001 and a batch size of 16.

Attributions

Feature attribution is one of the largest and most well-studied classes of methods for 
machine learning interpretability. Methods in this class are based on concepts from 
cooperative game theory, like the Shapley value [29] and Aumann-Shapley value [30]. 
By framing the output of a complex, black box model as a game, and the input features 
as players in that game, these concepts can be used to understand which input features 
of a model most impacted that model’s predictions. For example, the feature attribu-
tion method SHAP defines a cooperative game to be the expected value of a machine 
learning model evaluated on a sample of interest, conditional on the features present 
in each coalition, and then uses the Shapley value to allocate credit to those features 
[10]. Another feature attribution method, Integrated Gradients, calculates an Aumann-
Shapley value by integrating the gradient of the model’s output with respect to its input 
features, and can be used when machine learning models are differentiable, such as neu-
ral network models [12].

We propose a novel attribution method to understand which latent factors are 
important in unsupervised neural networks, based on Integrated Gradients [12] and 

https://github.com/theislab/intercode
https://github.com/theislab/intercode/blob/main/notebooks/intercode-api-Kang18.ipynb
https://github.com/theislab/intercode/blob/main/notebooks/intercode-api-Kang18.ipynb
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the Aumann-Shapley value [30]. However, rather than attributing the output of a 
supervised machine learning model to its input features, we attribute the reconstruc-
tion loss of an autoencoder model to its latent features. To make our formulation gen-
eral enough to encompass both variational and standard autoencoders, we define an 
encoder network f : Rd �→ R

h and a decoder network g : Rh �→ R
d . For a decoder, we 

can define the reconstruction error, ℓ(z) = �x − g(z)�22 , as a function of a latent input 
z, which is either a sample drawn from the distribution parameterized by the encoder 
network given an input sample x in the case of a variational autoencoder, or simply 
the deterministic embedding of the encoder network in the case of a standard autoen-
coder. To quantify the contribution of a particular latent node i (which in the case of 
an interpretable autoencoder, corresponds to a biological pathway), we can therefore 
apply the following formula to get a local pathway importance value:

where z is the value of the learned pathway embedding for a particular sample, z′ is a 
baseline value for that embedding, such as a vector of all 0s or the mean of that embed-
ding’s value over the dataset, and α is a scalar representing the distance on the straight-
line path being integrated between the baseline and the actual value of the sample.

These local attributions have a variety of desirable properties [12], such as com-
pleteness, meaning that the attributions for each pathway node sum to the difference 
between the reconstruction error of the model at the input z (when the pathway infor-
mation is “present”) and the baseline z′ (when the pathway information is “absent”). 
Completeness is important in that it gives the attributions a natural scale: each path-
way’s attribution represents the amount of variance explained by the model for the 
original sample that can be credited to that pathway. These local attributions are also 
implementation invariant, meaning the attributions are always identical for two func-
tionally equivalent networks. This is important, in that it ensures the attributions 
reflect real functional differences between networks, rather than relying on artifacts 
based on particularities of the model employed.

To go from local pathway importance (the contribution of a particular pathway for a 
particular sample) to global pathway importance (the contribution of a pathway over 
an entire dataset), we can take the expected value of the local attributions over the 
samples in the original data:

Since these attributions can be calculated so efficiently, rather than sampling we cal-
culate the local attributions for every point in the dataset. Because the local attribu-
tions allocate the reduction in the sample-level reconstruction error to each pathway, 
the global attributions allocate the reduction in the dataset-level reconstruction error 
to each pathway. Since the mean squared error is proportional to the variance in the 
original expression space explained by the model, allocating the reconstruction error 
to each pathway tells us how much variance is explained by each pathway.

(5)φ
pathway
i (z) = (zi − z′i)×

∫ 1

α=0

∂ℓ(z′ + α(z − z′))

∂zi
dα,

(6)�
pathway
i = Ez∼D[φ

pathway
i (z)].
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We also note that our method is agnostic to the exact form of the loss used to train the 
model. For example, approaches like scVI model RNA-seq data as discrete counts under 
a negative binomial (or zero-inflated negative binomial) distribution by optimizing the 
decoder to parameterize one of these distribution types. For a model like this, rather 
than using the mean squared reconstruction error as the function ℓ(x) in the PAUSE def-
inition, one could instead use the negative log likelihood of the observed data under the 
model. A notebook demonstrating the application of PAUSE to an autoencoder param-
eterized in this manner is available in the “Additional Notebooks” section of the Github 
repository.

For our gene-level attributions, we want to understand which genes are important 
contributors to each of the latent pathway nodes. For a particular node in the latent 
space k that we wish to explain, we define the function fk(x) : Rd �→ R as the kth node 
in the encoder network’s latent space. We can therefore quantify gene j’s contribution to 
pathway node k by applying the Integrated Gradients formula to this function to get:

where x is the observed expression for a particular sample, x′ is a baseline value for gene 
expression, such as a vector of all 0s or the average gene expression over the dataset, and 
α is a scalar representing the distance on the straight-line path being integrated between 
the baseline and the actual value of the sample.

To summarize local gene attributions into global gene attributions, we take the average 
of the magnitude of the local attributions over the samples in the original data:

It is necessary to average the magnitudes rather than the raw values for gene attributions 
to avoid cancelation effects from attributions with different signs [31]. This was not a 
problem for pathway attributions, as all attributions should have the same sign, as add-
ing more pathway information should never increase the loss.

All attributions were calculated using the Path Explain repository (https://​github.​
com/​suinl​eelab/​path_​expla​in), which is a Python library for explaining feature impor-
tances and feature interactions in deep neural networks using path attribution methods 
[63–65]. All attributions were generated using the “attributions” method of the PyTorch 
explainer; the argument “num_samples” was set to 200, while the argument “use_expec-
tation” was set to “FALSE.”

Pathway gene set definition

We use pathway modules defined by gene set annotations from the Reactome database 
for all single cell experiments [28]. This database contains a total of 674 gene sets (with 
a median gene set size of 27 genes). The number of gene sets included for a given model 
depends on the dataset. For all single cell datasets, we only include gene sets that contain 
a minimum of 13 genes from the given dataset. This yields a total of 200 gene sets for 
the PBMC INF-β dataset, 129 gene sets for the intestinal epithelium dataset, 341 gene 
sets for the Jurkat anti-CD3/anti-CD28 dataset, 170 gene sets for the cancer cell lines 

(7)φ
gene,k
j (x) = (xj − x′j)×

∫ 1

α=0

∂fk(x
′ + α(x − x′))

∂xj
dα,

(8)�
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gene,k
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https://github.com/suinleelab/path_explain
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dataset, 242 gene sets for the K562 CRISPR perturbation dataset, and 203 gene sets for 
the BMMC AML dataset.

For the bulk Alzheimer’s brain expression expermients, the pathway module archi-
tecture of the networks was defined using the Hallmark gene sets from MSigDB. These 
pathways are highly curated to “summarize and represent specific well-defined biologi-
cal states or processes and display coherent expression” [66].

Single cell expression datasets

PBMC INF‑β

This dataset, from Kang et al. [32], contains human peripheral blood mononuclear cells 
(PBMCs) from eight patients with Lupus who were either treated with INF-β or left 
untreated as a control. We followed the same preprocessing steps taken in prior analy-
sis of this dataset [22, 62], which consists of library size normalization, removal of low 
variance genes and log transformation. After preprocessing, the final dataset we use con-
tains 13,576 samples with 979 genes. The dataset contains 6359 control and 7217 stimu-
lated cells.

Intestinal epithelium

This dataset, from Haber et al. [33], profiles the response of mouse small intestinal epi-
thelial cells to pathogen exposures, specifically Salmonella enterica and H. polygyrus. 
Here, we include healthy control cells and cells 10 days after being infected with H. poly-
gyrus. Preprocessing follows the same steps outlined by Weinberger and Lin [67] and 
involves retaining only the top 2000 most highly variable genes followed by library size 
normalization and log transformation. After preprocessing, the final dataset we use 
contains 5951 samples with 2000 genes. The dataset contains 3240 control and 2711 
H.polygyrus-stimulated cells.

Jurkat anti‑CD3/anti‑CD28

This dataset, from Datlinger et  al. [23], contains human Jurkat cells (immortalized 
T-lymphoctyes) that were either starved or stimulated with anti-CD3 and anti-CD28 
antibodies. Preprocessing follows the approach described in Gut et  al. [22], who filter 
out genes and cells with low expression, perform library size normalization and log 
transformation, and filter out low variance genes. After preprocessing, the final dataset 
we use contains 1288 samples with 2139 genes. This dataset contains 607 control and 
681 stimulated cells.

Cancer cell lines

This dataset, from McFarland et al. [68], contains the transcriptional response of cells 
from 24 cancer lines to idasanutlin, a negative regulator of the tumor suppressor p53. 
Some cell lines contain wild type TP53, while others contain inactive mutant TP53. Pre-
processing of this dataset follows the same procedure outlined by Weinberger and Lin 
[67] and involves retaining only the top 2000 most highly variable genes, library size nor-
malization, and log transformation. After preprocessing, the final dataset we use con-
tains 3097 samples with 2000 genes. This dataset contains 671 wild type samples and 
2426 mutant TP53 samples.
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K562 CRISPR perturbation

This dataset, from Norman et  al. [69], measures the transcriptional response of K562 
cells to CRISPR perturbations of single genes and pairs of genes. The authors annotate 
clusters of cells according to transcriptional response. Here, we analyze unperturbed 
control cells and cells annotated as belonging to the “granuloctye/apoptosis” cluster. Pre-
processing of this dataset follows the same steps outlined by Weinberger and Lin [67] 
and involves retaining only the top 2000 most highly variable genes, library size normali-
zation, and log transformation. After preprocessing, the final dataset we use contains 
11,895 samples with 2000 genes. This dataset contains 7275 control and 4620 perturbed 
cells.

BMMC AML

This dataset, from Zheng et al. [70], contains single cell RNA-seq values of bone mar-
row mononuclear cells (BMMCs) of patients with acute myeloid leukemia (AML), taken 
before a stem cell transplant. The dataset also contains measurements from healthy 
control samples. Preprocessing of this dataset follows the same steps from Weinberger 
and Lin [67] and involves retaining only the top 2000 most highly variable genes, library 
size normalization, and log transformation. After preprocessing, the final dataset we use 
contains 11,982 samples with 2000 genes. This dataset contains 4457 healthy samples 
and 7525 pre-transplant AML samples.

Bulk brain expression datasets

For experiments with AD, we used data from the ROSMAP, ACT, HBTRC, MAYO, 
and MSBB studies. Around half of the people in each cohort had been diagnosed with 
dementia by the time of death. ROSMAP RNA-Seq data and MSBB RNA-Seq data were 
made available by Sage Bionetworks on the AMP-AD Knowledge Portal with Synapse 
IDs syn3505732 and syn7391833, respectively. The ACT RNA-Seq data20 was collected 
by the Allen Institute for Brain Science, Kaiser Permanente Washington Health Research 
Institute (KPWHRI), and the University of Washington (UW), and it was made avail-
able with Synapse ID syn5759376. Mayo Clinic Brain Bank data was made available at 
Synapse ID (syn5550404; https://​doi.​org/​10.​1038/​sdata.​2016.​89), and the Harvard Brain 
Tissue Resource Center (HBTRC) study was made available at the following Synapse 
ID (syn3159435). In each study, we used the protein-coding genes that have a nonzero 
RNA-Seq read count in at least one-third of the samples. Overlapping these genes across 
the three studies resulted in 16,252 genes which we used in our experiments. We used 
normalized and log-transformed RNA-Seq read counts for all datasets. For the subset of 
samples with neuropathology data, MSBB neuropathology data was made available by 
the AMP-AD Knowledge Portal of Sage Bionetworks through synapse.org with Synapse 
ID syn6101474. We accessed neuropathology data from the ROSMAP and ACT studies 
through data use agreements.

Benchmark experiments

To benchmark how well our PAUSE pathway attributions identified important factors of 
latent variation explaining the observed gene expression measurements, we adapted two 
benchmarks of feature importance from the feature attribution literature [10]. The first 

https://doi.org/10.1038/sdata.2016.89
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benchmark, our impute benchmark, measures how much the reconstruction error of a 
model increases when the pathways identified as important by an attribution measure 
are removed from a model. After training a pmVAE model [22] (12 nodes in a single hid-
den layer, and a single latent node for each module) on each of the 3 single cell RNA-seq 
datasets, pathways were ranked by one of five methods: (1) PAUSE attributions; (2) LR 
score, the accuracy of a logistic regression model trained to classify the ground truth 
perturbation using the latent pathway information [22, 62]; (3) KL Divergence between 
the learned posterior distribution and the isotropic gaussian prior; (4) random; and (5) 
the magnitude of the learned latent space scale parameter for each pathway. After attain-
ing a pathway ranking for each method, pathway information is removed by masking 
the real latent embeddings with a constant value. The increase in reconstruction error 
over the dataset is then measured after each pathway is removed. Attribution methods 
that do a better job of identifying important pathways will increase the reconstruction 
error more quickly, leading to a larger area under the curve. These curves were sum-
marized using the scikit-learn metrics auc function [71]. The second benchmark, which 
we termed a retrain benchmark, follows the same initial steps as the impute benchmark 
(train models and rank pathways), but then trains new models using only modules cor-
responding to the top pathways. In this benchmark, methods that perform better will 
decrease the reconstruction error more quickly as pathway modules are added. Finally, 
to benchmark the standard, unconstrained VAE models and the models with linear 
decoders, we followed the same steps as the impute benchmark, but trained the inter-
code models and VAE models as described above in the section on Model Architectures, 
rather than pmVAE models.

Computational efficiency

We have recorded the compute time and resources needed for our analyses. We will 
focus our compute time analyses on a typical dataset used in these analyses, in this case, 
the Zheng et al. BMMC dataset [70] where we look at 11,982 samples, each with meas-
urements for 1907 genes. In this case, we include 203 pathways in our sparse autoen-
coder. For model training, we use one NVIDIA RTX A4000 GPU. The mean train time 
over 10 random initializations, with max_epochs set to 100, was 13.3 min. PAUSE attri-
butions were calculated using the Path Explain repository (https://​github.​com/​suinl​
eelab/​path_​expla​in), which is a Python library for explaining feature importances and 
feature interactions in deep neural networks using path attribution methods. All attri-
butions were generated using the “attributions” method of the PyTorch explainer; the 
argument “num_samples” was set to 200, while the argument “use_expectation” was set 
to “FALSE. With this experimental setup, the mean time to compute PAUSE attributions 
was 22.54 s. In contrast, it took an average of 1.34 s to get supervised attributions using 
logistic regression.

Sanity checks for bulk expression cpmVAE model

Before interpreting the learned embedding for our conditional pathway module VAE 
(cpmVAE) model trained on the AD dataset, we wanted to perform several sanity checks 
to ensure the model was sufficiently plausible and reliable. We first wanted to ensure that 
our proposed architecture (cpmVAE) was able to reconstruct the data with at least the 

https://github.com/suinleelab/path_explain
https://github.com/suinleelab/path_explain
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same accuracy as the previously proposed, non-conditional pmVAE model. We therefore 
randomly split the data into a train set (75% of samples) and a test set (25% of samples), 
trained both a pmVAE and a cpmVAE on the training set for 50 epochs, and measured 
the reconstruction error on the held out test set for each model. We repeated this pro-
cedure a total of 10 times with different random train/test splits, and compared the dis-
tribution of test reconstruction errors for the two models (Additional file 1: Fig. S12a). 
We found that the distribution of test reconstruction errors attained with the cpmVAE 
model was lower than the distribution of test reconstruction errors attained by the pre-
viously proposed pmVAE model (Wilcoxon rank-sums test statistic = 1.96, p = 0.049).

Next, we wanted to ensure that the dataset integration was successful, and that the 
conditioning and HSIC regularization indeed led to a pathway embedding that encoded 
less information about the data sources than the standard pmVAE embedding. To meas-
ure how clustered cells were according to dataset source in the latent space, we first 
embedded the pathway latent spaces of the cpmVAE model and the pmVAE model into 2 
dimensions using the scikit-learn implementation of TSNE with the perplexity parame-
ter set to 40.0 [71, 72]. We then applied k-means clustering to the latent space (with k set 
to the number of true data sources), and computed the adjusted Rand index (ARI) of the 
clustering [73]. When we compare the distribution of ARIs for the pmVAE embedding 
to the distribution of ARIs for the cpmVAE embedding (Additional file 1: Fig. S12b), we 
see that the embedding learned by the cpmVAE model has significantly less clustering 
according to dataset source (Wilcoxon rank-sums test statistic = 3.78, p = 1.57× 10−4).

After demonstrating that the cpmVAE model removed unwanted sources of variation 
from its pathway embedding, we wanted to ensure that our cpmVAE embedding still 
retained biological information. For a small subset of the brain expression samples (664 
samples), associated amyloid-β protein density measurements via immunohistochemis-
try (Aβ IHC) were available. To ensure that biological information related to neuropatho-
logical phenotype was not being lost by our model, we wanted to measure how well A β 
IHC could be predicted from the latent space, as compared to the original full transcrip-
tomic representation. Our hypothesis was that if the biologically relevant information in 
the latent space was being preserved, prediction of A β density should be no worse when 
using the cpmVAE embedding than when using the original gene space embedding. For 
20 random train/test splits of the data, we compared the Spearman correlation between 
predicted and actual A β density for linear models trained on the full gene expression 
measurements to the Spearman correlation between predicted and actual A β density for 
linear models trained only on the cpmVAE pathway embeddings (Additional file 1: Fig. 
S12c). All linear models were trained using the scikit-learn RidgeCV function [71], with 
a hyperparameter search for alpha values ranging from 1e−3 to 1e−2. We see that the 
cpmVAE embedding features actually lead to significantly more predictive models of A β 
density than the original gene expression features (Wilcoxon rank-sums test statistic = 
2.81, p = 4.90× 10−3).

While these results are certainly suggestive of an improvement in the control of nui-
sance variables and an improvement in one biological signal represented, they also do 
not necessarily demonstrate that all of the nuisance variation has been removed, or that 
all of the biological signal is optimally preserved, as there are likely signals in the data-
set from biological processes not related to density of A β , and the preservation of these 
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signals is not explicitly assessed here. Prior work has been done on the problem of how 
much correction should be applied when trying to extract biological signatures from 
gene expression compendia [74]. The simulations in this paper show that choices sur-
rounding correction depend upon the number of sources of variation being controlled, 
the size of the dataset in question, and the magnitude and structure of the signals to 
be extracted. Knowing information about the magnitude and structure of the signals of 
interest in real-world, non-synthetic datasets is almost always not possible, and would 
serve as interesting future work to help guide modeling decisions about nuisance factor 
correction.

Finally, to compare the overlap between supervised approaches and pathway attribu-
tions from PAUSE on the AD dataset, we generated a ranked list of pathways using the 
supervised LR score method for the 664 brain expression samples with associated AB 
IHC protein density measurements (see Additional file  2: Table  S1). We can see that 
the pathways identified by the LR score, in this case, do significantly overlap with the 
top pathways identified by our unsupervised attributions. For example, both supervised 
and unsupervised attributions identify pathways related to sources of oxidative stress: 
the Reactive Oxygen Species pathway and the Peroxisome pathway for the supervised 
attributions, and the Mitochondrial Oxidative Phosphorylation pathway for the unsu-
pervised attributions. Not only are these pathways all related to potential sources of 
oxidative stress, but they also share overlapping genes. In particular, genes encoding dif-
ferent subunits of the NADH:ubiquinone oxidoreductase complex are present in both 
the Mitochondrial Oxidative Phosphorylation pathway and the Reactive Oxygen Species 
pathway. The supervised and unsupervised approaches also overlap in identifying TNF 
alpha signaling via NF-kB as an important pathway in this dataset, which is, again, a key 
pathway known to mediate neuroinflammation.

Identification of C. elegans homologs

To enable biological testing of the human genes identified using our computational 
analysis, we obtained the Reciprocal Best Hits (RBHs) between human and C. elegans. 
We first identified all unique protein sequences for each potential marker gene using the 
biomaRt R package available on CRAN [75, 76]. Then, we used the NCBI BLAST tool to 
identify the C. elegans orthologs for each complete human protein query sequence [77, 
78]. We downloaded the C. elegans protein sequences from wormbase.org/species/c_
elegans (release WS266). We took into account only the protein pairs mapped from 
human to C. elegans with a BLAST e-value smaller than 10−30 . For each C. elegans iso-
form, we identified the corresponding human genes, again using the NCBI BLAST tool, 
and used only the orthologs that achieved a BLAST e-value smaller than 10−30 . This pro-
cess resulted in high-confidence RBHs for us to test in C. elegans.

C. elegans strain, cultivation, and RNAi treatment

Standard procedures for C. elegans strain maintenance and manipulation were used, as 
previously described [79, 80]. All experiments were performed using the GMC101 strain 
expressing the human A β1–42 peptide under the unc-54 promoter [49]. Experimental 
worm populations of GMC101 animals were obtained from the Caenorhabditis Genet-
ics Center (CGC) and cultivated on NGM plates with OP50 E. coli at 15C [49, 81]. Care 
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was taken to ensure that the animals were never starved and the plates remained free of 
contamination.

The gene-specific RNAi clones were obtained from the commercial Ahringer or 
Vidal C. elegans RNAi-feeding libraries (BioScience, Nottingham, UK). Each bacterial 
clone was struck-out onto LB plates containing carbenicillin (50 μg/ml) and tetracy-
cline (10 μg/ml). Single colonies were then seeded into 5 ml LB + carbenicillin (50 μg/
ml) and tetracycline (10 μg/ml) for growth overnight on a 37 °C rotator. One hundred 
microliters of each overnight culture was then inoculated into 10 ml of LB containing 
carbenicillin (50 μg/ml) and tetracycline (10 μg/ml) and IPTG (5mM) and incubated 
on a 37 °C rotator for 4 h. Each bacterial growth was then centrifuged at 3500 X G for 
25 min, decanted, and the pellet resuspended in 0.5 ml of LB containing carbenicillin 
(50 μg/ml), tetracycline (10 μg/ml), and IPTG (5 mM). To verify that the RNAi plasmid 
DNA contained the expected gene target, each RNAi clone was purified and assessed 
through PCR (polymerase chain reaction) with sequence-specific primers or through 
Sanger sequencing.

Nematode paralysis assays

Paralysis assays were performed by visually inspecting recordings of the animals daily 
to determine if they were capable of normal locomotion or if they were paralyzed and 
unable to transit the agar plate. A custom-built robotic system, the WormBot [82], was 
equipped with a digital camera and was used to obtain images of individual wells of a 
12-well plate at 10-min intervals over the entire course of the experiment. Each well 
contained 30–40 individual GMC101 animals expressing A β . Using a custom-built web 
interface that enabled manual annotation of serial images from each plate, the age at 
which each animal stopped moving could be easily determined. We applied this system 
to the transgenic A β model line GMC101 to determine the time of paralysis onset for 
each individual animal across all RNAi experiments. Statistical significance of mean 
paralysis time-points between RNAi conditions was determined by a weighted log-rank 
test [83, 84]. All key results were independently verified using standard manual micro-
dissection methodologies.

Prior to loading on the experimental plates, animal populations were propagated on 
high-growth plates seeded with NA22 E. coli. Worm populations were developmen-
tally synchronized by hypochlorite treatment, and the remaining eggs were deposited 
on unseeded plates overnight. Synchronized larval stage 1 animals were washed off 
unseeded plates and moved onto standard C. elegans RNAi plates containing carbenicil-
lin (50 mg/ml), tetracycline (10 mg/ml), and IPTG (5 mM) 48 h at 20 °C. These develop-
mentally synchronized, late larval stage 4-populations were then washed and transferred 
to their respective RNAi conditions on 12-well plates. We used standard RNAi condi-
tions plus FuDR (100 ug/ml) to prevent progeny and nystatin (200 mg/ml) to prevent 
fungal growth [79]. Each RNAi condition was tested in 2–3 wells as technical replicates. 
At least three biological replicates, each started on different weeks, were conducted for 
each RNAi clone. Animals were maintained at ambient room temperature (generally 
22–24 °C) over the course of the paralysis assay.
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