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Abstract 

Background: Alternative splicing is a widespread regulatory phenomenon that 
enables a single gene to produce multiple transcripts. Among the different types of 
alternative splicing, intron retention is one of the least explored despite its high preva‑
lence in both plants and animals. The recent discovery that the majority of splicing is 
co‑transcriptional has led to the finding that chromatin state affects alternative splic‑
ing. Therefore, it is plausible that transcription factors can regulate splicing outcomes.

Results: We provide evidence for the hypothesis that transcription factors are involved 
in the regulation of intron retention by studying regions of open chromatin in retained 
and excised introns. Using deep learning models designed to distinguish between 
regions of open chromatin in retained introns and non‑retained introns, we identified 
motifs enriched in IR events with significant hits to known human transcription factors. 
Our model predicts that the majority of transcription factors that affect intron reten‑
tion come from the zinc finger family. We demonstrate the validity of these predictions 
using ChIP‑seq data for multiple zinc finger transcription factors and find strong over‑
representation for their peaks in intron retention events.

Conclusions: This work opens up opportunities for further studies that elucidate the 
mechanisms by which transcription factors affect intron retention and other forms of 
splicing.

Availability: Source code available at https:// github. com/ fahad ahaf/ chrom ir
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Introduction
Alternative splicing is a widespread regulated phenomenon that enables a single gene 
to encode structurally and functionally different transcripts  [1, 2]. The primary forms 
of alternative splicing are exon skipping, intron retention (IR), and alternative 3′ and 5′ 
splicing. While exon skipping is well studied, IR remains an under-appreciated phenom-
enon [3]. IR is the primary form of alternative splicing in plants [4, 5], and recent studies 
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have shown it to have a high prevalence in human [6, 7]. Many disease-causing muta-
tions are pathogenic through their effect on splicing, often leading to IR  [6, 8, 9]. For 
example, IR is associated with genetic variants with deleterious effect on the function of 
tumor suppressor genes [10].

In recent years, efforts have been made to understand the regulation of IR and the fac-
tors that contribute to it. Braunschweig et al.  [7] recently published a draft IR splicing 
code: a predictive model that uses a total of 136 features thought to be associated with 
IR in mammals. These features include base composition of an intron and its flanking 
exons, features that describe gene architecture, and splice site strength. This model is 
limited in that it does not model sequence elements that contribute to the regulation of 
IR. The discovery that splicing occurs co-transcriptionally suggests that chromatin state 
might be relevant to alternative splicing [11, 12]. Recent work provides evidence for the 
regulatory contribution of chromatin state to exon skipping [13], and our labs have pro-
vided preliminary evidence for its role in regulating IR in plants [14]. Open chromatin 
is one of the most important signatures for the study of chromatin structure. One of 
the primary tools for probing open chromatin is through exposure of DNA to deoxyri-
bonuclease I (DNase I), which is an enzyme that cleaves DNA. Regions of the genome 
that are sensitive to its action—DNase I hypersensitive sites (DHSs)—have been used 
as an indicator of chromatin accessibility in vivo [15]. DHSs have been used extensively 
to identify several types of regulatory elements such as promoters, enhancers, silencers, 
and insulators [16, 17]. Furthermore, when a regulatory protein binds DNA, it protects 
it against the action of DNase I [18] and leaves a footprint which can be identified using 
DNase I-seq data [19, 20]. When it comes to alternative splicing, Mercer et al. [13] have 
shown an association between DHSs and exon-skipping, reporting that higher numbers 
of DHS-containing exons are alternatively spliced. Furthermore, this study reports that 
DHS exons with promoter and enhancer-like features have a higher fractional overlap 
with alternative splicing. Braunschweig et  al.  [7] explored the co-transcriptional regu-
lation of splicing, reporting higher chromatin accessibility in retained introns and that 
polymerase II elongation speed affects IR and vice-versa. In another work, it has been 
reported that zinc finger transcription factors (TFs) have a regulatory role in exon skip-
ping  [21]. Recently, we studied the association between chromatin accessibility and 
intron retention in plants  [14]. We identified potential regulatory elements occurring 
primarily in the 3′ flanking exons of IR events, several of which significantly match plant 
zinc finger binding site motifs. As further motivation for considering the role of TFs in 
splicing regulation, we provide evidence for extensive TF binding within human genes 
using ChIP-seq data. We collected ChIP-seq data in K562 for 11 different TFs and com-
puted the number of peaks per Mb in intergenic regions and compared it to the number 
of peaks in intragenic regions. The results shown in Fig. 1 clearly demonstrate that for 
this selection of TFs the number of intragenic peaks is higher. A similar observation was 
made in plants [22]. This suggests a regulatory role of TFs beyond the regulation of gene 
expression.

Deep neural networks have become the tool of choice for exploring complex biologi-
cal phenomena such as gene expression and chromatin state  [23–28]. A remarkable 
advantage of these models is their ability to capture the underlying patterns in large 
noisy datasets directly from sequence with minimal pre-processing, learning motifs 
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of the regulatory proteins involved as part of the training process. Deep learning has 
been used in genomics for TF binding prediction [29–31], chromatin accessibility analy-
sis [23–25], prediction of chromatin structure and its modifications [32, 33], identifica-
tion of RNA-binding protein sites [28, 34, 35], and prediction of splice site usage from 
sequence [36, 37]. Several labs have developed sophisticated models of exon skipping on 
the basis of large collections of genomic features [38–40], but have not considered the 
role of chromatin.

In this study, we demonstrate that deep learning models can distinguish with good 
accuracy regions of open chromatin associated with IR from other intronic regions of 
open chromatin. By analyzing the motifs learned by the network, we find that specific 
families of TFs are associated with IR events, mostly members of the zinc finger fam-
ily of TFs; results of ChIP-seq experiments for multiple zinc finger TFs in the K562 cell 
line, one of three tier 1 ENCODE cell lines, support our findings for this association. 
Analysis of knockdown experiments of some of these TFs suggest they function as splic-
ing enhancers by binding the flanking exons of IR events. Our work provides convincing 
evidence for a novel role of TFs in the regulation of IR, proposing a promising direction 
for further research.

Results
DHSs associated with IR can be accurately predicted from their sequences

In order to discover the sequence elements that regulate IR via its coupling with chro-
matin state, we trained and evaluated deep learning models to distinguish DHSs asso-
ciated with IR events from non-IR DHSs in human and assessed and compared their 
performance. As IR DHSs, we used regions in which a DHS overlapping IR event was 
detected in at least one DNase I-seq experiment in a compendium of 164 samples; IR 
events were extracted from the Ensembl gene models as described in the “Methods” 

Fig. 1 TF binding across the genome. We computed the number of ChIP‑seq peaks per Mb for a selection of 
TFs, distinguishing between intergenic and intragenic peaks. Intergenic counts excluded the promoter region 
while intragenic counts excluded the first exon and intron to remove the effect of the promoter region
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section. For non-IR DHSs, we used intronic regions exhibiting a DHS where no IR is 
known to occur. In this work, we chose to focus on the purely convolutional architecture 
shown in Fig. 2, that has demonstrated its effectiveness for predicting chromatin acces-
sibility by Kelley et al. [23]. The model hyperparameters were tuned for our problem as 
described in the “Methods” section. Using this model we obtained accuracy of 0.546 as 
measured using the area under the precision-recall curve (AUC-PRC) (see Fig.  3a). A 
more sophisticated model that uses a combination of convolutional and recurrent layers 
with multi-head attention achieved a similar level of accuracy (see Fig. 3a and Additional 
file 1: Fig. S1). We note that both deep learning architectures outperformed a baseline 
approach that uses the gkm-SVM method [41]. This method achieved an AUC-PRC of 
0.503. ROC curves are provided in Additional file 1: Fig. S1.

Our results were generated using a one-hot encoding of the sequence of DHS regions. 
We note that word2vec embeddings provided a small improvement in accuracy, as 
shown in Additional file 1: Fig. S1. However, this came at a cost of reduced interpret-
ability of the models, leading to reduced ability to infer motifs associated with the 
learned convolutional filters (see discussion in the Additional file 1). Therefore, we chose 
to focus on models that used one-hot encoding as input. During the revision of the 
manuscript, we discovered 72 duplicate DHSs out of the 7500 training examples in the 

Fig. 2 A deep learning model for predicting whether a region of open chromatin exhibits IR. The model 
receives as input the sequences of intragenic DHSs labeled as associated with IR or non‑IR; the one hot 
encoding is processed through three layers of convolution, followed by three fully connected layers 
and the output layer that predicts a binary response that indicates whether a DHS exhibits IR or not. The 
convolutional filters of the first layer are used to extract position weight matrices (PWMs) that are searched 
against a database of known TFs
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original dataset provided by Kelley et al.  [23]. Some of these occurred across the train 
and test set. At a threshold of 80% sequence identity, we also found using CD-HIT [42] 
39 sequences whose similarity is above that threshold. We re-trained the classifier with-
out the duplicates and similar sequences and found that the accuracy was unchanged.

The zinc finger family of TFs are enriched in IR events

The filters of convolutional networks can be readily interpreted as motifs. To do so, 
we implemented the strategy described elsewhere  [23, 29] (see “Methods” section for 
details). We analyzed the motifs that were derived from the convolutional filters for both 
the top positive and the top negative examples and searched both sets of motifs against 
the Human CIS-BP TF database [43] using TomTom [44]. We found that 22 IR-associ-
ated motifs had significant hits against multiple known human TFs at a q-value < 0.01 . 

Fig. 3 Classification accuracy and motifs detected by the network. a Precision‑recall curves for the two 
deep learning architectures and the gkm‑SVM. The AUC‑PRC values are also provided in the legend. b The 
distribution of TF families enriched in IR vs non‑IR events. c The top three matches for the IR and non‑IR 
convolutional layer filters against the CISBP database. In each match, the known TF motif is shown in the top 
row and the bottom row shows the CNN filter/motif. The motifs shown above the line are associated with IR 
DHSs, and those below the line are associated with non‑IR DHSs
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In comparison, 23 of the non-IR motifs had significant matches. Figure 3c shows some 
of the top hits for both IR and non-IR motifs, and a complete list is found in the github 
repository of the project. The median information content of the IR motifs was 4.21, 
and 4.26 for the non-IR motifs. The other architectures provided motifs with similar 
information content (see Additional file 1: Tables S4 and S5). Furthermore,when com-
paring the TF hits for the IR motifs with an adjusted p-value of 0.01 or better for the 
three different architectures (the purely convolutional network and variants that include 
attention with and without a recurrent layer), we found that 21 out of the 25 motif hits 
discovered by the purely convolutional architecture were common across the three 
architectures.

Most of the IR motifs had significant hits in the C2H2 zinc finger family of TFs (C2H2 
ZF). Non-IR motifs on the other hand, were predominantly matched to the Homeodo-
main and Sox families of TFs (see Fig. 3b). Zinc finger TFs have previously been impli-
cated in the regulation of alternative splicing [21], particularly exon skipping. Here we 
report a role of this family in the regulation of IR. We note that some of our filters do not 
match a unique transcription factor. For example, the filter that matched MAZ, was also 
a good match for ZNF263. This is not surprising due to the similarity of the binding sites 
of zinc finger TFs. Below we provide additional evidence for the role of zinc finger TFs in 
regulating IR.

We also searched for motif matches to RNA-binding proteins in the CISBP-RNA data-
base [45] using the same methodology employed for TFs. At the same p-value threshold 
used for searching for TF hits, we found three significant hits in the IR motifs, and two 
significant hits in non-IR motifs. This is compared with 22 TF hits in IR motifs and 23 
TF hits in non-IR motifs. Details of those matches are found in the github repository of 
this project. This suggests that TFs play a major role in IR in comparison to RNA-bind-
ing proteins, perhaps as a result of our focus on regions of open chromatin.

TF ChIP‑seq analysis supports model predictions

To validate our findings using experimental data, we downloaded K562 ENCODE ChIP-
seq datasets for all the zinc finger TFs identified by our model, resulting in six datasets. 
Using these datasets, we tested TF binding enrichment in IR vs. non-IR events, follow-
ing a strategy similar to our previous work [14]: for each TF, we measured the overlap 
of its ChIP-seq peaks with IR and non-IR events and tested its significance using the 
Fisher exact test. All the TFs demonstrated highly significant enrichment in IR events 
(see Table 1), validating our in silico findings that the C2H2 ZF family plays a role in the 
regulation of IR.

RNA‑seq of TF Knockdowns suggest IR TFs function as splicing enhancers

To obtain a better understanding of the way the TFs predicted to be associated with IR 
function to regulate IR, we analyzed RNA-seq datasets of the K562 cell line with knock-
down/silencing of several IR-associated TFs: MAZ, SP1, SP2, and E2F4. To evaluate the 
effect of the knockdown of each TF, we looked for differential IR events in the knock-
down samples with respect to baseline K562 using iDiffIR [46]. In all cases, there were 
many more up-regulated IR events, i.e., events with increased IR with respect to the 
wild-type that are statistically significant at a p-value of 0.05 and above (see Table  2). 
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This suggests that these TFs predominantly function as splicing enhancers. Furthermore, 
we searched for the hits for the motifs of each TF in the differentially retained introns 
compared to introns that are not differentially retained. We found that in introns that 
showed a statistically significant increase in IR levels, there was a much higher number 
of hits for the motif of each TF compared to IR events where no significant difference in 
retention was observed; this difference was statistically significant (see Table 2), further 
support for the role of these TFs as splicing enhancers.

Regulatory interactions between TFs in IR events

It is well known that TFs often function in tandem with each other to regulate their 
targets. To extract such regulatory interactions, we have recently developed a method 
called SATORI to interpret deep architectures that use attention layers and extract sta-
tistically significant interactions between its convolutional filters [47]. SATORI uses the 
so-called attention matrix, which encodes relations between different positions of the 
sequence; subsequent analysis of the convolutional filters that are active provides a pro-
file of interactions between pairs of TFs that are associated with those filters. By compar-
ing those profiles to those in a background set of sequences, we obtain interactions that 
are statistically significant. Using SATORI, with the negative examples as a background 

Table 1 Enrichment of C2H2 ZF TF binding in IR compared to non‑IR events quantified using ChIP‑
seq peaks of the corresponding TF. We note that for the bottom three TFs, the p‑value is for the 
significance of enrichment in non‑IR events

TF IR TF occupancy (%) Non‑IR TF occupancy (%) p‑value

EGR1 12.51 7.16 1.27E−45

MAZ 11.42 6.06 9.75E−51

ZBTB7A 10.6 5.52 3.15E−49

SP1 3.04 1.53 7.64E−16

SP2 1.32 0.77 7.21E−06

ZNF263 1.14 0.67 2.81E−05

FOXK2 5.2 6.12 3.01E−04

GATA1 0.77 1.07 5.0E−03

JUN 2.68 4.86 3.21E−23

Table 2 RNA‑seq results for TF knockdown experiments in K562. For each TF, we provide the 
number of statistically significant IR events that are up‑regulated (down‑regulated), i.e., exhibit 
increased (decreased) retention with respect to the wild‑type. Within the up‑regulated events we 
provide the number of events with occurrences of the motif compared to the background set 
composed of IR events. This is done in both the intron and the flanking exons. The significance of 
the difference in the rates of occurrence of the motif is provided in the last column. In all cases the 
significance was exhibited in the flanking exons, except for E2F4 which exhibited similar levels of 
significance in both the introns and flanking exons

TF Up‑regulated Down‑regulated Motif occurrences p‑value

Intron Exon

MAZ 69 34 23% (25%) 31% (16%) 0.001

SP1 86 18 69% (64%) 86% (51%) 1.3E−9

SP2 99 25 31% (27%) 41% (16%) 1.4E−9

E2F4 174 58 18% (12%) 18% (11%) 0.008
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set to assess statistical significance we detected over 400 TF interactions in DHSs associ-
ated with IR at a significance level of 0.05. The top 20 predictions are shown in Fig. 4, and 
the complete list is provided in the results directory of the project’s github repository. 
A histogram for the number of interactions between TF families is provided in Addi-
tional file 1: Fig. S2. A majority of the interactions involve the C2H2 ZF family, which 
is expected since C2H2 ZF TFs have the most hits from our model. To validate these 
interactions, we searched for matches in annotated interactions in the TRRUSTv2 [48] 
database that annotates TF regulatory roles and their interactions by text-mining the 
biomedical literature. Of the interactions detected by our model, we found 23 over-
lapping interactions in TRRUSTv2, which currently contains 8324 interactions. This is 
highly significant, with a p-value equal to 0 in a hypergeometric test. We also obtained 
significant overlap with protein-protein interactions from the HIPPIE database [49]: 17 
of the detected interactions had support in HIPPIE, with a hypergeometric p-value of 
1E−52. The interactions overlapping with TRRUSTv2 and HIPPIE database are listed 
in Additional file  1: Tables S2 and S3, respectively. As further support for predicted 
interactions, we looked at ChIP-seq data in K562 for the interactions EGR1-MAZ and 
EGR1-ZNF263 and evaluated the overlap between the peaks in intragenic regions. For 
the EGR1-MAZ interaction, we found 21,592 intragenic peaks for EGR1 and 16,613 for 
MAZ. Out of those peaks, 9065 were within 150 bp of each other. Using Locus Overlap 
Analysis [50, 51] to evaluate the significance of the overlap, we obtained a p-value of 0. 
For the EGR1-ZNF263 interaction we found 21,592 intragenic ChIP-seq peaks for EGR1 
and 1619 for ZNF263. Out of those peaks, 715 were within a window of 150 bp of each 
other with a p-value of 1E-17. Finally, we looked at the average distance between motifs 
predicted to interact and found that TF motifs preferentially interact in proximity, with 
a median distance of 120 bp, which is significantly less than what we would expect by 
chance (p-value of 3.65E−13 in the Mann-Whitney U test). These results suggest that 
regulation of IR is orchestrated by complex interactions among TFs, predominantly 
from the C2H2 ZF family.

Fig. 4 TF interactions. a The most frequent TF interactions in IR events. b The distribution of distances 
between detected TF interactions. The dotted blue line represents the median distance across all significant 
interactions
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Discussion
In our motif analysis, we found that the C2H2 zinc finger family of TFs has a strong 
association with IR events: Over 65% of the motifs associated with IR have significant 
hits to C2H2 ZF TFs. This is consistent with previous work reporting that zinc fin-
ger TFs influence exon skipping [21], and suggests that the C2H2 ZF family plays an 
important role in the regulation of alternative splicing in general.

To validate our predictions on the association of these TFs with IR, we used ChIP-
seq data for multiple zinc finger TFs: MAZ, EGR1, SP1, ZBTB7A, SP2, and ZNF263. 
We observed much higher occupancy of these TFs in IR events in the K562 human 
cell line, validating the model’s predictions. Robson et  al.  [52] have reported that 
MAZ4 elements that contain four copies of the MAZ binding sequence influence 
alternative splicing. More recently, it was demonstrated that MAZ acts in conjunction 
with CTCF to remodel chromatin to affect changes in alternative splicing [53]. They 
have also demonstrated that like CTCF, MAZ can slow the elongation of RNAPII and 
affect splicing outcome.

There are multiple potential mechanisms by which TFs can affect co-transcriptional 
splicing. First, TFs are known to be critical in establishing chromatin state, which 
in turn can regulate alternative splicing by a purely kinetic model of the coupling 
between transcription and splicing whereby higher speeds of transcription in regions 
of accessible chromatin give less time for the spliceosomal machinery to recognize 
and splice those introns co-transcriptionally  [11, 54, 55]. An alternative explanation 
of this phenomenon is that accessible chromatin is a mark of binding of TFs or other 
regulatory proteins that recruit splicing factors directly or indirectly through chro-
matin modifications to affect the outcome of splicing   [7]. Wet-lab experiments are 
required to explore these hypotheses and provide more mechanistic details on how 
TFs regulate IR and other forms of alternative splicing.

Our model of retained introns considered only chromatin accessibility. There are 
other aspects of chromatin organization that can be considered: histone modifica-
tions and DNA methylation. Through their effect on chromatin organization, histone 
modifications impact the speed of RNAPII elongation and thereby alternative splic-
ing [54]. Luco et al.  [56] proposed the adaptor system model whereby DNA-binding 
proteins recognize a histone modification and recruit a splicing regulator that affects 
the splicing outcome (see also  [57]). Methylation-dependent alternative splicing has 
been shown to be widespread [58], and its patterns have been observed to delineate 
exons and their boundaries [59, 60]. Histone modifications and methylation patterns 
can thus provide another layer of information relevant to the regulation of IR.

In this work, we focused on the local coupling of accessible chromatin and IR. 
We expect that non-local interactions through chromatin loop anchors like those 
that allow enhancers to affect promoter activity [61] can affect IR; evidence for their 
impact on exon skipping has recently been reported in human [62]. Recent work has 
demonstrated the role of a specific enhancer within a chromatin loop and its role in 
regulating alternative splicing [63]. Future work can incorporate them in the context 
of a comprehensive model of alternative splicing.
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Conclusions and future work
Using deep learning to model intragenic DHSs allowed us to explore the regulatory 
elements that are predictive of IR in an unbiased fashion and identify TFs as key 
contributors to the regulation of IR. Further experimental work is required in order 
to validate the role of TFs in IR regulation. This will be supported by extensions 
of the model that allow tissue-specific prediction of the IR state of regions of open 
chromatin, and create the chromatin-mediated IR code. Furthermore, the modu-
larity of deep learning will allow the extension of the model to incorporate other 
sources of data indicative of chromatin state such as histone modifications. Much 
in the same way chromatin loop anchors allow enhancers to affect the activity of 
promoter regions and affect gene expression [61], there is recent evidence for their 
impact on exon skipping [62]. Therefore, we expect that chromatin interaction infor-
mation captured by Hi-C or Micro-C data is likely to improve the model and pro-
vide a more holistic view of IR regulation. Such data can be incorporated in a deep 
learning model with modules that use graph convolution; recent work has shown the 
effectiveness of this approach for modeling various aspects of chromatin state [64].

Methods
Data collection, processing, and representation

We used DNase I-seq data from 125 human immortalized cell-lines and tissues from 
the ENCODE database  [65] and 39 cell types from the Roadmap Epigenetics con-
sortium [66] as processed by [23]: every DNase I-seq peak was extended to a length 
of 600 bp around its midpoint and adjacent peaks are greedily merged until no two 
peaks overlap by more than 200  bp. For our analysis we focused on over a million 
DHSs that occur within genes.

Next, we extracted IR events from the Ensembl GRCh37 (hg19) reference annota-
tions, utilizing code from SpliceGrapher [67] and iDiffIR [46]. In total, we identified 
58,305 unique IR events out of which, 15,400 had overlapping DHSs. These consti-
tute our positive examples. We used a strict criterion requiring a DHS to overlap 
the retained intron, i.e., DHSs overlapping only the flanking exons did not qualify. 
All other intragenic DHSs that did not overlap an IR event were labeled as negative 
examples. The number of negative examples was roughly twice the size of the posi-
tive set.

We used two methods to transform the sequences into input for our neural net-
works: one-hot encoding and sequence embedding. For one-hot encoding, a 
sequence is represented as a 4 × N  matrix where N is the length of the sequence. 
Each position in the sequence is represented by the columns of the matrix with a 
non-zero value at a position corresponding to one of the four DNA nucleotides. 
To represent a sequence using embedding, we first decomposed it into overlap-
ping k-mers of length k  and then used a word2vec model  [68] to map each k-mer 
into an m-dimensional vector space. This gave us an embedding matrix of dimen-
sions (N − k + 1)×m . This representation is designed to preserve the context of the 
k-mers by producing similar embedding vectors for k-mers that tend to co-occur.
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Network architecture

In this work, we investigated several network architectures. The primary network ele-
ment, a one-dimensional convolutional layer, scans a set of filters against the matrix 
representing the input sequence. Formally, we can express the convolution operation 
as:

where X is the input matrix, i is the current output index, and j is the index of the filter. 
W  is the weight matrix with size A× B where A is the length of the filter (window size) 
and B is the number of input channels: 4 for DNA one-hot encoding, d in case of word-
2vec embeddings, and number of previous layer filters in case of higher convolutional 
layers. The output of a convolutional layer is produced by applying a non-linear activa-
tion function to the result of the convolution operation. We use the rectified linear unit 
(ReLU) which is given by:

Next, the size of the output is reduced by max-pooling where the maximum value in 
a window of a pre-determined size is selected. This reduces the input size for the next 
layer and also leads to invariance to small shifts in the input sequence.

We also incorporated a multi-head self-attention layer as the basis for an alternative 
deep learning model. Attention is a powerful feature that is able to model dependen-
cies within an input sequence regardless of their distances [69]. By doing so, it guides 
the network to focus on relevant features within the input and ignore irrelevant 
information. Our implementation uses the same architecture used for the SATORI 
method [47], and consists of a single convolutional layer followed by a max-pooling 
layer and a multi-head attention layer. We also used a recurrent layer as an option 
in conjunction with the multi-head attention layer, since it provided improved per-
formance in other datasets  [47]. RNNs have an internal state that enables them to 
capture distant feature interactions in the input sequence. Specifically, we employed a 
bi-directional RNN with Long Short-Term Memory (LSTM) units [70]. In a bi-direc-
tional RNN, a forward and a backward layer are used that traverse the input in both 
directions, improving the model’s performance. The bi-directional LSTM layer was 
used between the convolutional layer and the multi-head attention layer. Code for all 
the architectures is available in the project’s github repository.

Network training and evaluation

First, the data was split into training, validation, and test sets with 80% , 10% , and 10% 
of the total data, respectively. Next, using the training and validation sets, we tuned 
the network hyperparameters by employing a semi-randomized grid search that uses 
a 5-fold cross-validation strategy. For the Basset-like model variant, we started with 
the hyperparameters reported in  [23] and fine-tuned their values. The hyperparam-
eters are summarized in Additional file  1: Table  S1. All the models were evaluated 

(1)xi,j =

A−1

a=0

B−1

b=0

W
j
a,bX i+a,b,

(2)f (x) = max(0, x).
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using the test set using the area under the ROC curve (AUC-ROC) and the area under 
the precision-recall curve (AUC-PRC).

Gapped kmer SVM

As a baseline we used the large-scale gapped kmer SVM (gkm-SVM), called the LS-
GKM  [41]. This version can handle bigger datasets (50k–100k examples) and exhibits 
better scalability. We run the package with the following parameters: −m 20000 and −T  
16 which specify the size of the memory cache in MB and number of processing threads, 
respectively.

Motif extraction and analysis

To interpret the deep learning models, we extracted sequence motifs using the weights 
(filters) of the first convolutional layer, similar to the methodology described by Kel-
ley et  al.  [23]. We selected the positive examples (DHSs overlapping IR events) in the 
test set with prediction probability greater than 0.65. This cutoff was chosen as a trade-
off between the number of qualified examples and confidence in the prediction. For 
the negative examples, we used a cutoff value of less than 0.35. Next, for each filter, we 
identified regions in the set of sequences that activated the filter with a value greater 
than half of the filter’s maximum score over all sequences. The highest scoring regions 
from all the sequences are stacked and for each filter, a position weight matrix is cal-
culated using the nucleotide frequency and background distribution. We generated the 
sequence logos using the WebLogo tool [71]. The resulting PWMs were searched against 
the human CIS-BP database [43] using TomTom [44] with distance metric set to Euclid-
ean. This was performed separately for motif hits in IR and in non-IR events, allowing us 
to associate motifs with IR or non-IR. For filters which yielded significant hits in both IR 
and non-IR, we chose the more significant hit.

TF ChIP‑seq analysis

We downloaded ChIP peaks of all the TFs that were detected as enriched in IR events 
from the ENCODE database [65]. Next, we used our previously published pipeline [14] to 
test the enrichment of a given TF ChIP peaks in IR events. Briefly, we quantified the over-
lap of ChIP peaks with IR events and compared them to the overlap with non-IR events. 
The significance of overlap was tested using the Fisher exact test. The accession num-
bers for the ENCODE K562 ChIP-seq datasets used in our analysis are as follows: EGR1: 
wgEncodeEH001646, MAZ: wgEncodeEH002862, ZBTB7A: wgEncodeEH001620, SP1: 
wgEncodeEH001578, SP2: wgEncodeEH001653, ZNF263: wgEncodeEH000630, FOXK2: 
GSE91647, GATA1: wgEncodeEH000638, JUN: wgEncodeEH000620.

TF knockdown RNA‑seq analysis

We downloaded RNA-seq data for knockdown of the following TFs in K562 from 
the ENCODE database: MAZ, SP1, SP2, E2F4 (accession numbers GEO:GSE88056, 
GEO:GSE127134, GEO:GSE127145, and GEO:GSE88612). In addition, we used wild-
type K562 (accession number GEO:GSE33480). We computed differential IR events in 
the knockdown samples with respect to baseline K562 using iDiffIR  [46]. Analysis of 
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motif hits in differentially retained introns was performed using BioPython  [72] using 
the motif of each TF retrieved from Jaspar [73].

Discovering interactions between TFs

To discover regulatory interactions between TFs we used SATORI  [47], which takes 
advantage of the self-attention matrix to infer possible interactions between sequence 
motifs. When running SATORI, we used the default parameters with exception to the 
following: --attncutoff 0.08 and --usevalidtest True. The postprocessing 
was performed using Jupyter notebooks provided with SATORI.
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