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Abstract 

Studies have shown a link between colorectal cancer (CRC) and gut microbiome 
compositions. In these studies, machine learning is used to infer CRC biomarkers using 
global explanation methods. While these methods allow the identification of bacteria 
generally correlated with CRC, they fail to recognize species that are only influential 
for some individuals. In this study, we investigate the potential of Shapley Additive 
Explanations (SHAP) for a more personalized CRC biomarker identification. Analyses of 
five independent datasets show that this method can even separate CRC subjects into 
subgroups with distinct CRC probabilities and bacterial biomarkers.

Background
A growing number of studies have reported a link between the alteration in gut microbi-
ome compositions and colorectal cancer (CRC). The elevated abundance of certain bac-
terial species such as Fusobacterium nucleatum and Parvimonas micra in CRC patients 
is often associated with the development of the disease [1–3]. These findings have moti-
vated the idea of using fecal biomarkers for CRC diagnosis.

To obtain potential CRC biomarkers and to classify CRC vs. healthy groups, research-
ers have leveraged the potential of machine learning (ML) algorithms. Among various 
algorithms, random forest is often used in recent microbiome studies [3–5] due to its 
predictive power and its ability to generate feature importance. The feature importance 
information is used to find out which bacteria are most correlated with CRC. A species 
with high feature importance indicates that it has a high contribution in differentiating 
CRC and healthy groups.

Furthermore, previous studies often used random forest built-in feature importance 
that is based on the mean decrease in Gini impurity. This kind of feature contribution 
method is referred to as the global explanation or global feature contribution technique 
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since it explains ML model outcomes by considering the entire input data. Although this 
method allows us to discover bacteria that are generally correlated with CRC, it fails to 
recognize species that are only influential for a smaller group of patients. For instance, it 
is possible that for some patients, certain species of bacteria have a higher contribution 
in distinguishing healthy vs disease phenotype compared to F. nucleatum, P. micra, and 
other widely known CRC-associated bacteria. To obtain such information, it is better to 
use local explanations instead of global explanations.

Unlike global explanation which considers the whole data inputs, local explanations 
focus on each individual input. It can generate feature contributions for every single ML 
prediction. In other words, local explanation techniques make it possible to discover the 
most contributing bacteria for each person. Moreover, this will also allow us to examine 
inter-individual differences between subjects within the disease group. As a result, we 
will be able to further classify the disease group into subgroups of CRC patients based 
on the contribution of each bacterial species to the classifier.

Despite the advantages mentioned above, the current studies in the microbiome com-
munity have not explored the potential of local explanation-based techniques. Further-
more, to our knowledge, there is no tool that allows researchers to use these techniques 
for microbiome data analyses.

In this study, we investigated the potential of using a local explanation technique 
called the Shapley Additive Explanations (SHAP) for gut microbiome data analyses. We 
explored the advantages of using SHAP for individual feature contribution analyses, 
principal component analyses (PCA), and CRC subtyping. In the end, we also created 
a python library to help microbiome researchers perform similar analyses. We believe 
that this method will be beneficial for the microbiome community and will encourage 
researchers to leverage local explanations for a more personalized feature importance 
identification and phenotype subtyping.

Results
Local explanations show different sets of influential bacteria among CRC patients

In our analysis, we included 5 publicly available bacterial abundance datasets from dif-
ferent microbiome studies. To obtain these datasets, we utilized the curatedMetagenom-
icData R package [6]. The information about sample size and country of origin of each 
dataset is summarized in the following table. From now on, we will refer to each dataset 
using the dataset name shown in the table.

To generate some examples of local explanations, we used the YachidaS_2019 dataset 
as the test data and the other dataset as the train data. We trained a random forest clas-
sifier using the Scikit-learn library [10] on the train data and evaluated the result using 
the area under the receiver operating characteristic curve (AUC) as the evaluation met-
ric. The result shows a mean AUC of 0.72. Next, we utilized the TreeExplainer frame-
work developed by Lundberg et al. [11] to calculate and visualize SHAP values. The local 
explanations of four randomly chosen CRC subjects from the YachidaS_2019 dataset are 
shown in Fig. 1.

Each explanation consists of SHAP values that represent the contribution of every fea-
ture (bacteria) to a prediction made by the classifier. In each waterfall plot, the SHAP 
values are ordered vertically from the largest to the smallest values, meaning that the 
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most influential bacteria for a specific person are listed on top. For instance, for the first 
patient (subject ID: SAMD00114931), Peptostreptococcus stomatis has the largest con-
tribution to the classifier prediction, followed by an F. nucleatum and Solobacterium 
moorei. For each local explanation, all of its SHAP values sum up to the classifier output 
(predicted CRC probability). For example, all SHAP values of the first patient add up to 
0.73, which is the CRC probability predicted by the classifier. This property is known as 
local accuracy or additivity [11].

The local explanations allow us to observe different patterns of bacterial contributions 
among CRC patients. This result cannot be achieved using any global explanation meth-
ods including the random forest’s built-in Gini impurity-based method. Using these 
explanations, we can see that for the patient with subject ID SAMD00114911 in Fig. 1, 
widely known CRC-associated bacteria such as F. nucleatum might not have a high con-
tribution for these specific individuals. Instead, Clostridium symbiosum was detected as 
the most influential bacteria for this subject.

Moreover, to observe the directions of effects, we plot the SHAP values of all individu-
als as a set of beeswarm plots known as the summary plot shown in Fig. 2 (left). This 
plot summarizes the SHAP values of all subjects where each dot represents a value for 
a subject. The bacteria are ordered from top to bottom based on their mean absolute 
SHAP values, which correspond to the global feature importance. The x-axis position of 
the dot quantifies the impact that a bacterial species has on the classifier prediction for 
a specific person. The colors represent the original feature values (relative abundance) 
where blue and red correspond to low and high abundance, respectively. The figure 
shows that for the top 9 bacteria, most dots with high relative abundance (colored in 
red) are located on the positive side of the x-axis. This means that a high abundance of 
these bacteria is associated with a higher probability of CRC. By contrast, most blue dots 
are accumulated in the negative x-axis, showing that lower abundances of these bacteria 

Fig. 1 Waterfall plots of local explanations that correspond to four CRC subjects. At the bottom part of each 
plot, we can see the base value (0.53) which represents the expected value of the CRC class (the mean of 
model output over the training data). All SHAP values in each local explanation sum up to the predicted CRC 
probability of each subject (local additivity property of SHAP)
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are associated with a lower probability of CRC. On the other hand, Eubacterium eligens 
shows the opposite pattern, suggesting that a higher abundance of this species is asso-
ciated with a lower CRC probability and vice versa. This insight into the direction of 
effects cannot be obtained using widely used global explanation methods such as the 
random forest’s built-in feature importance.

Furthermore, we can observe that some beeswarm plots have a very long right tail 
(Fig. 2, left). This shows that bacteria with relatively low global feature importance can 
still have a high impact on some individuals. For instance, the dot marked by the red cir-
cle in Fig. 2 indicates that even though C. symbiosum has a relatively low global feature 
contribution, it still shows a high local contribution to the classifier prediction for this 
specific person. If we only depend on global explanation methods such as the random 
forest’s mean decrease in Gini impurity, we will not be able to get such information.

Analyses of 5 independent datasets show that local explanations lead to more 

interpretable PCA results

Principal component analysis (PCA) is often used as a dimensionality reduction tech-
nique for data visualization and exploration. We compared the results of performing 
PCA on SHAP values vs. relative abundance data across all datasets. To do this, we first 
calculated the SHAP values by performing leave-one-dataset-out (LODO) analysis. 
For instance, in one iteration, we used the YachidaS_2019 dataset as test data and the 
remaining dataset as train data. For each iteration, we trained a random forest classifier 
on the train data and measure the AUC using the test data. After that, we finally calcu-
late the SHAP values of the test data using the trained model and an explainer. We did 
this analysis for every dataset. Please refer to the “Methods” section for a more detailed 
explanation of the LODO analysis.

Fig. 2 Summary plot (left) and bar chart of global feature importance calculated by taking the mean of 
absolute SHAP values (right). The summary plot (left) allows us to observe the direction of effects and 
to discover specific bacteria that have low global feature importance but are very influential for some 
individuals. The point marked by a red circle on the left represents such bacteria. The bar chart of global 
feature importance (right) was created by calculating the mean(|SHAP value|) of every bacteria. It shows 
the average impact of each bacterium on the model output. This bar chart is similar to the global feature 
importance obtained using the random forest’s Gini impurity-based method. Unlike the summary plot, this 
bar chart is unable to show the directions of effects or reveal certain bacteria that have low global feature 
importance but high local feature importance
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After obtaining the SHAP values, we performed PCA on these values. We chose to 
calculate the first two PCs (PC1 and PC2), calculated the PC loadings, and visualized the 
results (Fig. 3). For comparison, the PCA result of the relative abundance data is shown 
in Fig. 4.

Figure 3 shows the projection of SHAP values onto the first two principal components. 
Looking at the results from all the datasets, we can consistently observe a clear sepa-
ration between the healthy and CRC subjects along PC1. By contrast, the PCA results 
of relative abundance data (Fig. 4) do not show a clear separation between healthy and 

Fig. 3 PCA biplot of SHAP values. Blue and brown dots represent the healthy and CRC subjects, respectively. 
The LODO AUC is shown on the title of each plot. CRC-associated bacteria such as Fusobacterium nucleatum 
(F. nucleatum), Parviomnas micra (P. micra), Solobacterium moorei (S. moorei), Peptostreptococcus stomatis 
(P. stomatis), and Gemella morbillorum (G. morbillorum) show high PC loadings suggesting their strong 
correlations to the principal components

Fig. 4 PCA plots of the relative abundance data. Blue and brown dots represent the healthy and CRC 
subjects, respectively. Unlike in Fig. 3, here, we cannot observe a clear separation between the control and 
CRC groups
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CRC samples. Moreover, we can observe that relevant CRC-associated bacteria such as 
F .nucleatum, P. micra, Solobacterium moorei, Peptostreptococcus stomatis, and Gemella 
morbillorum show high PCA loadings in the case of SHAP value-based PCA (Fig.  3). 
This shows that the SHAP value embedding (also called the local explanation embed-
dings) can capture relevant information to help us observe the variation of interest 
(healthy vs. CRC) better than the original form of the abundance data.

In addition, we also colored the points on the scatter plot by the predicted CRC prob-
ability (Fig. 5) obtained from the classifier output. We can observe a consistent pattern 
in all datasets in which the individuals located on the right side of PC1 tend to have a 
higher CRC probability and vice versa. This shows another advantage of applying PCA 
on SHAP values as it can give us a more interpretable PCA result in terms of the trend in 
CRC probability across the PC space.

Local explanation embeddings can be used to cluster CRC subjects

Since there are a clear separation between CRC and healthy subjects (Fig. 3) and a con-
sistent trend of CRC probability (Fig.  5), it is possible to cluster the CRC data points 
into subgroups of CRC and hypothesize that the resulting subgroups would have similar 
CRC probabilities. To test this, we performed K-means clustering on PC1 and PC2 of 
the SHAP values that belong to the CRC subjects for each dataset. The number of clus-
ters was chosen using the elbow method (see Additional file 2: Fig. S1).

Figure 6 shows the resulting K-means clusters of CRC subjects in each dataset. Four 
clusters were detected in each dataset. As shown in Fig. 7, in each dataset, specific clus-
ters showed a higher CRC probability than the others. CRC subgroups identified as clus-
ter 1 in all datasets show the highest median of CRC probability compared to the rest of 
the clusters. Similarly, subgroups identified as cluster 2 in every dataset have the lowest 
CRC probability median. Further statistical analyses show that cluster 1 of all datasets 
is enriched by F. nucleatum compared to healthy subjects and other clusters (see Addi-
tional file 2: Figs. S2-S6). This might explain why cluster 1 has the highest CRC probabil-
ity than the remaining CRC clusters (Fig. 7).

Fig. 5 PCA plots of SHAP values overlaid by CRC probability. We can observe a clear trend of increasing CRC 
probability from the left to the right side of PC1
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From these results, we can see that this analysis is beneficial for researchers to conduct 
clustering on the CRC group by focusing on the variation of interest (CRC probability). 
Using this cluster information, researchers can further conduct statistical analyses to 
examine dominant bacteria that are associated with each cluster.

SHAP‑based Microbiome Analyses Tool (SHAPMAT)

We created a python library called the SHAP-based Microbiome Analyses Tool (SHAP-
MAT) to help researchers implement the pipeline that we have presented in this study. 
This library provides implementations for data preprocessing (abundance and preva-
lence filtering), SHAP value computation, local explanation visualization, PCA, and 
clustering. Using this library, microbiome researchers can readily perform a more per-
sonalized feature importance identification to find potential CRC biomarkers. In addi-
tion, the tool can also be used to get a more interpretable PCA for data exploration and 
to obtain CRC clusters using local explanation embeddings. Please refer to the “Meth-
ods” section for the details of the implementation.

Fig. 6 Result of K-means clustering on the local explanation embeddings of CRC subjects

Fig. 7 Boxplots showing the distribution of CRC probabilities across different clusters in each dataset
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Discussion
We explored the potential of using local explanations for gut microbiome data analyses, 
particularly in the context of CRC classification and its potential biomarker identifica-
tion. Using local explanations, we discovered different patterns of bacterial contribu-
tions to the CRC probability among individual CRC subjects (Fig. 1). We also showed 
that using the summary plot (Fig. 2, left), users can uncover local patterns that are hid-
den in the dataset that would otherwise be impossible to spot using the existing global 
explanation methods such as the Gini impurity-based technique.

Moreover, using 5 independent datasets from different microbiome studies, we dem-
onstrated the potential of using SHAP values to generate a more interpretable PCA 
result for microbiome-disease data exploration. Microbiome data are highly dimen-
sional, where the number of features (taxa) is a lot higher than the total samples [12]. 
Reducing this data dimension and projecting it onto a lower-dimensional space are very 
helpful for data exploration and visualization. In particular, PCA is often used for visual-
izing similarity among samples in a 2D or 3D space and is a useful step prior to the clus-
tering or classification of samples [13]. Unfortunately, PCA results do not always show 
the variation or trend of interest. This is because the algorithm is designed to find the 
directions with the largest variation and not the ones that are relevant for separating 
phenotypes of interest [13]. In our observation, we observe this from the PCA plot of 
the relative abundance data (Fig. 4). We can see that there is no clear separation between 
healthy and CRC samples. On the other hand, by performing PCA on SHAP values 
instead of relative abundance data, we were able to create a plot that shows a clearer sep-
aration between healthy and CRC samples (Fig. 3). We can also see the trend of increas-
ing CRC probability along the PC1 (Fig. 5), where samples on the right side of PC1 tend 
to have a higher probability of getting CRC and vice versa.

Furthermore, we also showed that it was possible to cluster CRC subjects into several 
subgroups based on the local explanation embeddings. The resulting clusters differ in 
their CRC probability. Further statistical analyses showed that in all datasets, distinct 
species of bacteria are enriched in these clusters. For instance, the cluster with the high-
est CRC probability (cluster 1) in every dataset is always enriched by CRC-associated 
bacteria such as F. nucleatum.

Conclusion
In summary, we explored the potential of using explainable AI for gut microbiome-based 
CRC classification. We showed that SHAP could be used to obtain more personalized 
feature importance that can be used to identify potential bacterial biomarkers for CRC. 
Our proposed method is also beneficial for data exploration in the context of microbi-
ome-disease association through the generation of interpretable PCA results. In addi-
tion, it can also be used to uncover potential CRC subgroups which differ in their CRC 
probability and associated bacteria. Finally, we also created a software implementation 
to help microbiome researchers reproduce similar results.

There is still room for improvement. For example, while we only focused on CRC, 
other types of microbiome-associated diseases such as ulcerative colitis, Chron’s dis-
ease, and liver disease [14] can also be analyzed in the same manner using our method. 
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Furthermore, creating a web interface application with the same functionalities is also 
one of the future works that will benefit the microbiome community by making it even 
easier to explore the local explanation-based feature importance technique without hav-
ing to code at all.

Methods
Datasets

We used the curatedMetagenomicData R package [6] to obtain five independent taxo-
nomic abundance datasets shown in Table 1. The R package uses MetaPhlAn3 to obtain 
the taxonomic abundance. Only CRC subjects and healthy controls were selected, ade-
noma samples were not included in the analysis.

Data filtering

SHAPMAT provides two steps of data filtering: abundance filtering and prevalence fil-
tering. For abundance filtering, users can specify an abundance threshold (default: 
 10−15). Data points that are below this threshold will be set to zeros. In addition, there 
is also prevalence filtering where users can specify a prevalence threshold (default: 0.9). 
For each feature (bacteria), if the percentage of the zero abundance is above the preva-
lence threshold, then it will be removed.

Leave‑one‑dataset‑out (LODO) analysis

The leave-one-dataset-out (LODO) analysis was done to calculate SHAP values for each 
dataset. For instance, in one iteration, we used the YachidaS_2019 dataset as test data 
and the remaining dataset as train data. We used the scikit-learn [15] library to train 
a random forest (RF) model and calculated the SHAP values of the test data using the 
TreeExplainer [11]. The input to this explainer includes the test data and the trained RF 
model. The LODO workflow is shown in Fig. 8.

After obtaining the SHAP values, SHAPMAT provides functionalities for applying 
PCA and K-means clustering. In our analysis, we selected the SHAP values of the cor-
rectly predicted CRC subjects. Then, we performed PCA to get the first two principal 
components and finally cluster the result using k-means.

Table 1 Information about the datasets

Dataset name Groups (n) Country

YachidaS_2019 [3] Control (146)
CRC (185)

Japan

YuJ_2015 [7] Control (54)
CRC(74)

China

WirbelJ_2019 [5] Control (65)
CRC(60)

Germany

ZellerG_2014 [8] Control (61)
CRC(53)

France

VogtmannE_2016 [9] Control (52)
CRC(52)

USA
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Shapley additive explanations (SHAP)

Shapley Additive Explanations (SHAP) is an explainable AI method that is used to 
explain the output of a machine learning model. This method was developed based on 
a concept from game theory called the Shapley value. In coalitional game theory, this 
value tells us how to distribute payout among the players in a coalition, in a fair manner. 
SHAP applies this idea to explain a machine-learning prediction of an instance by esti-
mating the contribution of each feature to the prediction.

A SHAP value φi of a feature i for a prediction p can be defined as follows:

where n is the total number of features [16]. Basically, this equation calculates the dif-
ference between a model prediction with and without feature i in the coalition S.

• (p(S ∪ i) − p(S)) represents the difference in predictions when we include and exclude 
the feature i. For example, in our study, this can be seen as the difference between 
two CRC probabilities made by two ML models that use two different sets of feature 
coalitions: with and without a certain bacterial species (e.g., F. nucleatum). This value 
is also called the marginal contribution.

• |S|!(n−|S|−1)!
n!

 represents the weighting for the marginal contributions.
• Finally, the whole equation sums up all possible combinations of weighted marginal 

contributions, resulting in a SHAP value of the feature i for one specific prediction p.

SHAPMAT uses the TreeExplainer implementation [11] to calculate SHAP val-
ues. This implementation is optimized for tree-based models such as random forest 
and XGBoost, resulting in a faster calculation speed. Since the large feature counts of 
microbiome data can slow down SHAP calculation, the choice of TreeExplainer can 
help alleviate this issue. Moreover, this implementation is also relevant and beneficial 
for microbiome research since tree-based models are frequently used in current disease-
microbiome association studies [14].

φi(p) =

S⊆N/i

| S |!(n− |S| − 1)!

n!
(p(S ∪ i)− p(S))

Fig. 8 Workflow of the leave-one-out-dataset (LODO) analysis. This diagram shows one iteration of the LODO 
analysis
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Furthermore, to better understand the data flow in SHAPMAT, please refer to Fig. 9. 
As we can see, if we have a relative abundance table with m rows and n columns, the 
resulting SHAP values of this data will also have the same dimension (m × n). Further-
more, performing PCA to get the first two principal components will reduce the dimen-
sion into m × 2. It is also possible to specify the number of components other than 2. 
Finally, K-means clustering will assign cluster labels ci to each sample using the informa-
tion from the two principal components.

Statistical analyses

To investigate the dominant bacteria in each cluster, we performed the Kruskal-Wallis H 
test on the relative abundance data across CRC clusters in each dataset. Then, to exam-
ine if the resulting bacteria can be potential CRC biomarkers, we conducted the Mann-
Whitney U test to compare each CRC cluster with the healthy samples. We used 0.05 as 
the p-value threshold for both tests. Please refer to Additional file 1: Tables S1 and S2 for 
the results.
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