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Background
DNA methylation is significant for the development and plays an important role in gene 
silencing, protection against spurious repetitive element activity, genomic stability dur-
ing mitosis, and parent-of-origin imprinting [1]. Moreover, alteration of the DNA meth-
ylation pattern caused by the environment and aging may contribute to the development 
of disease, especially cancer [2, 3]. Currently, 5-methylcytosine (5mC), N6-methyl-
adenosine (6mA), and 4-methylcytosine (4mC) are three main DNA methylation types, 
named according to the type of nucleotide, the type of molecule added, and the position 
of modification within the nucleotide [4]. Different methylations have diverse functional 
mechanisms. For example, among them, 5mC is generated by binding methyl groups at 
the fifth site of cytosine (C). It is associated with transcriptional inhibition, and thus with 
classical epigenetic phenomena such as genomic imprinting and X chromosome inacti-
vation [5]. 6mA, usually with methylation at the sixth position in adenosine (A), plays a 
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crucial role in chromosome replication, cell defense, cell-cycle regulation, and transcrip-
tion [6]. It has been extensively detected in viruses, bacteria, protists, fungi, algae, etc. 
As the other important epigenetic modification, 4mC protects host DNA from the deg-
radation of restriction enzymes and corrects prokaryotic DNA replication errors, and 
controls the DNA replication and cell cycle of prokaryotes [7]. Therefore, DNA methyla-
tion identification is fundamentally essential for revealing the functional mechanisms.

DNA methylation can be determined experimentally through next-generation 
sequencing (NGS) approaches such as whole-genome bisulfite sequencing (WGBS) [8] 
or reduced-representation bisulfite sequencing (RRBS) [9]. The techniques can deter-
mine the global genomic distribution of DNA methylations at the nucleotide level and 
provide golden standard datasets for DNA methylation-related downstream task anal-
ysis. However, the detection of DNA methylation using traditional experimental tech-
niques is often costly and time-consuming [10]. In addition, bisulfite sequencing cannot 
profile DNA methylation in repetitive genomic areas due to short-read sequencing [11, 
12]. Thus, recent research is more focused on developing computational approaches, 
particularly machine learning-based approaches, to detect DNA methylations directly 
using genomic sequences. These methods formulate DNA methylation identification as 
a binary prediction task and train machine learning models to distinguish true methyla-
tion sites from non-methylation sites.

Over the last few decades, a series of sequence-based approaches using either tradi-
tional machine learning or deep learning are well developed for the prediction of DNA 
methylations. Taking 4mC methylation prediction as an example, Tang et al. proposed 
DNA4mC-LIP, an ensemble learning method by combining six existing predictors 
through a linear integration strategy to make predictions [13]. DeepTorrent [14] is a 
deep learning-based predictor that integrates inception module, attention module, and 
transfer learning to improve the predictive performance of 4mC sites. As the predic-
tion of 6mA sites, MM-6mAPred [15] makes use of the transition probability between 
adjacent nucleotides based on a Markov model. To simplify the model construction, 
SNNRice6mA [16] builds a simple and lightweight deep learning model using Convo-
lutional Neural Network (CNN) to identify 6mA sites in the rice genome. Later on, Li 
et al. proposed Deep6mA [17], a hybrid deep learning network of CNN and Long Short-
Term Memory (LSTM), with more accurate 6mA prediction. BERT6mA [18] is a similar 
model but uses transformer to build predictive models, demonstrating the effectiveness 
of natural language processing techniques with applications in 6mA prediction. As for 
5mC site detection, iPromoter-5mC fuses the results of several models that predict the 
one-hot encoded sequence through full connection layers [19]. BiLSTM-5mC mainly 
uses Bidirectional Long Short-Term Memory (BiLSTM) to extract features of sequences 
encoded by nucleotide property and frequency for the 5mC prediction [20]. However, 
most existing approaches can only distinguish one single type of DNA methylation. 
They are difficult to generalize to other methylation types. iDNA-MS [21] is the first 
machine learning predictor, which is designed for generic detection of different meth-
ylations across different species. The iDNA-MS utilizes manual features such as K-tuple 
nucleotide frequency component and mono-nucleotide binary encoding with traditional 
machine learning algorithms like support vector machine (SVM) and random forest 
(RF). The shortcoming of iDNA-MS is that the feature design highly requires a lot of 
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prior knowledge and meanwhile lacks adaptability among different methylation predic-
tion tasks. To address this problem, in our previous work, we designed a deep learning 
model, namely iDNA-ABT [22] that uses the architecture of Bidirectional Encoder Rep-
resentations from Transformers [23] (BERT) to automatically and adaptively learn dis-
tinguishable features and make relatively accurate predictions for different methylation 
types in different species.

As seen above, more and more research efforts attempt to explore the potential of 
deep learning in the prediction of DNA methylations, and certain progress has been 
made in the improvement of predictive performance. However, existing deep learning 
predictors have not fully explored the power of feature representation learning, espe-
cially in the discovery of key sequential patterns that are important for elucidating the 
DNA methylation mechanisms. This also results in the deep learning models with poor 
interpretation and not being able to dig out the important influence of sequence-based 
models in DNA methylation prediction. On the other hand, existing approaches fail to 
answer other important questions: (1) whether background genomic sequences contain 
extra distinguishable information that can guide the development of DNA methylations, 
and (2) whether DNA methylation occurring exists the conservation and specificity of 
sequential patterns across species or cell lines from computational perspectives is also a 
key problem.

With the development of natural language processing, there are some advanced tech-
niques such as BERT [24] that are capable of sufficiently exploring and learning high-
latent contextual information in natural language texts. Inspired by this, we here consider 
genomic sequences as “biological texts” and take different-scale sequential determinants 
as different “biological words”. Therefore, we propose iDNA-ABF, a multi-scale biologi-
cal language learning model to successfully build the mapping from natural language to 
biological language, and the mapping from methylation-related sequential determinants 
to their functions. Specifically, we introduce a model well pretrained with large-scale 
genomic sequences to learn biological contextual semantics and propose a multi-scale 
processing strategy to capture discriminative methylation information from different 
scales. We further utilize adversarial training and transfer learning to improve the pre-
dictive performance and enhance the robustness of our model. Benchmarking results on 
seventeen datasets across different methylations and species show that our model sig-
nificantly outperforms the state-of-the-art sequence-based methods. Importantly, our 
model provides interpretable prediction and analysis at sequence level by exploring the 
local sequential characteristics based on attention mechanisms. The results reveal that 
our model can accurately and adaptively locate the sequential regions that are closely 
associated with methylations, demonstrating that there might exist “biological language 
grammars” that are participating in functional regulations in cellular progress.

Results
The proposed iDNA‑ABF outperforms the state‑of‑the‑art methods

To evaluate the performance of our proposed iDNA-ABF, we compared it with four 
state-of-the-art predictors, including iDNA-ABT, iDNA-MS, BERT6mA, and Deep6mA. 
Of the four predictors, the former two (iDNA-ABT and iDNA-MS) are generic predic-
tors for different methylation predictions while the other two (BERT6mA and Deep6mA) 
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are originally designed for 6mA site prediction. The reason to include the two 6mA pre-
dictors for performance comparison is that they are the state-of-the-art predictors based 
on deep learning. Moreover, their models are flexible and can be well extended for other 
methylation predictions like 5hmC and 4mC, not only for 6mA. All the compared pre-
dictors were respectively trained on seventeen training datasets across different species 
and different methylation types, and evaluated on the corresponding independent test-
ing datasets (see “Datasets” section for details). The evaluation results in terms of ACC 
and MCC are shown in Fig. 1A and B, respectively. The detailed results in other metrics 
such as SN and SP are presented in Additional file (Additional file 1: Table S1). As clearly 
seen in Fig. 1A and B, our model outperforms the four existing predictors on 15 out of 17 
datasets (Additional file 1: Table S1), with only two exceptions—5hmC_M.musculus and 
6mA_A.thaliana, in which our model is actually comparable with the best predictors as 
well. To be specific, the average ACC of our model on all datasets is higher than that of 
two runner-up predictors iDNA-ABT by 1.34% and BERT6mA by 3.73%, respectively. 
In particular, on the three datasets (4mC_C.equisetifolia, 4mC_S.cerevisiae, and 6mA_S.
cerevisiae), our iDNA-ABF performs better than the existing predictors with a relatively 
large margin, leading by 3.28–14.75%, 1.88–3.59%, and 1.48–4.23% in ACC, respectively. 
Similar results are observed in terms of MCC. To this end, the results demonstrate that 
our iDNA-ABF is superior to the state-of-the-art approaches for the generic prediction 
of DNA methylations. More importantly, it shows robust performance across species 
under the three methylation types.

To validate the robustness of our model, we further illustrated the ROC and PR curves 
of the predictors on four datasets (4mC_C.equisetifolia, 5hmC_M.musculus, 6mA_C.
equisetifolia, and 6mA_F.vesca) as presented in Fig. 1C–F, respectively. We can see that 
our iDNA-ABF has the highest AUC and AP in all four datasets. Specifically, the average 
AUC and AP values of our model on the four datasets increase by about 1.39–2.81% and 
0.1–13.8% as compared to the other predictors, respectively. The results further dem-
onstrate the robust performance of our model in DNA methylation prediction tasks. 
The ROC and PR curves on the other datasets can be found in Additional file (Addi-
tional file  1: Fig. S1 and Fig. S2). To intuitively discuss why our iDNA-ABF performs 
better than the other approaches, we further visualized the distribution of feature rep-
resentation space of our iDNA-ABF and the second-best predictor iDNA-ABT on the 
above four datasets (4mC_C.equisetifolia, 5hmC_M.musculus, 6mA_C.equisetifolia, and 
6mA_F.vesca) using Uniform Manifold Approximation and Projection (UMAP) [25], 
a widely used visualization tool that reveals the essential data characteristics through 
dimensionality reduction. Note that the UMAP visualization results on the other data-
sets can be found in Additional file (Additional file 1: Fig. S3). Figure 1G and H illustrate 
the feature space distribution of our iDNA-ABF and iDNA-ABT, respectively, in which 
each point represents each sample; methylation sites (positive samples) are annotated 
with red color while non-methylation sites (negative samples) with blue color. As seen 
from Fig. 1G, our model separates the positive and negative samples clearly and every 
class clusters together rather than disperse, while in Fig. 1H, the positive and negative 
samples in the feature space of the iDNA-ABT are distributed almost connected, which 
is not easy to circle the boundary for each class. By comparing Fig. 1G and H, we found 
that the two classes are distributed more clearly in the feature space of our iDNA-ABF 
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Fig. 1  Performance comparison between iDNA-ABF and other existing methods. A and B represent the 
ACC and MCC values of our proposed iDNA-ABF and other existing methods including iDNA-ABT, iDNA-MS, 
BERT6mA, and Deep6mA on 17 benchmark independent datasets, respectively. C The ROC and PR curves 
of our proposed iDNA-ABF and other existing methods in 5hmC_M.musculus. D The ROC and PR curves of 
our proposed method and other existing methods in 4mC_C.equisetifolia. E The ROC and PR curves of our 
proposed iDNA-ABF and other existing methods in 6mA_C.equisetifolia. F The ROC and PR curves of our 
iDNA-ABF and other existing methods in 6mA_F.vesca. G and H represent the feature space distribution 
(with UMAP visualization) of iDNA-ABF and iDNA-ABT in 5hmC_M.musculus, 4mC_C.equisetifolia, 6mA_C.
equisetifolia, and 6mA_F.vesca, respectively. Negative (in red color) and positive (in blue color) represent 
non-methylation and true methylation samples, respectively. I The MCCs and ACCs of the models with and 
without adversarial training on 17 benchmark independent datasets, respectively; each point in the figure 
represents each dataset. J Learning curves of the model with and without the use of adversarial training on 
5hmC_M.musculus, and 6mA_F.vesca 
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as compared to the state-of-the-art iDNA-ABT. This demonstrates that our model learns 
better feature representations from different class samples, possibly due to the well pre-
trained model in our model construction, helping us capture more high-latent contex-
tual semantics information from millions of background genomic sequences.

Adversarial training enhances the predictive performance and the robustness of iDNA‑ABF

Adversarial training is an important component of our iDNA-ABF. To investigate the 
effectiveness of the adversarial training, we compared our original iDNA-ABF with the 
model without the use of adversarial training. The results of the 17 independent datasets 
are illustrated in Fig. 1I where each dot represents each dataset. As seen, our original 
iDNA-ABF (with adversarial training) generally achieves better performance than that 
without adversarial training. To be specific, by introducing adversarial training, the per-
formance improvement in ACC and MCC can be observed on 14 out of 17 datasets, and 
15 out of 17 datasets, respectively. This indicates that adversarial training can enhance 
prediction performance. The results on other metrics (SN, SP, and AUC) can be found in 
Additional file (Additional file 1: Fig. S4). What is more, to intuitively show the impor-
tance of adversarial training in model optimization, we further analyzed the learning 
curves during the training process. Figure 1J shows the curves of the models with and 
without adversarial training on two datasets (5hmC_M.musculus and 6mA_F.vesca), ran-
domly selected from the datasets. From Fig. 1J, we can see that the models with adver-
sarial training achieve lower test loss than that without adversarial training although the 
loss reduction rate decreases more slowly than the models without adversarial training. 
Furthermore, using adversarial training the models maintain lower test loss in the later 
period of the training process while the models without adversarial training gradually 
begin to overfit, demonstrating that adversarial training enhances the robustness of our 
model in the DNA methylation prediction.

Our iDNA‑ABF reveals the methylation conservation across species at sequential level

To investigate whether the methylated sequential patterns across different species are 
conserved or not, we firstly constructed the evolutionary tree for different species in the 
same methylation type using Lifemap [26]. As for 4mC methylation, Fig. 2A illustrates 
the evolutionary relationship of four species. It can be clearly seen that Fragaria vesca 
and Casuarina equisetifolia are evolutionary taxonomies, belonging to the common 
Fabids, while the other two species belong to Saccharomyces. An interesting observa-
tion is that our model exhibited similar performance in the species with evolutionary 
taxonomies. In F. vesca and C. equisetifolia, the ACCs of our model are 0.852 and 0.858, 
respectively; while in the other, their ACCs are 0.743 and 0.723. Next, we further ana-
lyzed the methylation sequential patterns of the four species using the probability-based 
motif visualization tool—kpLogo [27]. Figure  2B illustrates the sequential patterns in 
two evolutionarily close species (F. vesca and C. equisetifolia) while Fig. 2C shows that 
in the other two species. From Fig. 2B, we can see that the methylated sequential regions 
in the species are very similar, particularly enriched with CG content. From Fig. 2C, the 
similar results in the other two species can be observed. As for the 6mA methylation, 
we also found the similar conclusion with 4mC methylation (Additional file 1: Fig. S5). 
Overall, the results demonstrate that the methylated sequential patterns in species with 
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evolutionary taxonomies might be conserved, thus contributing to the similar predictive 
performance; on the other hand, the methylation patterns in the species with far evolu-
tionary relationship would be quite different.

Next, we further investigated the cross-species performance of our model to study 
their interrelationships between species; that is, we trained our model in one species and 
tested on the other. To avoid the problem of insufficient learning, we only trained our 
models on large datasets and tested on small datasets. The cross-species performances 
are illustrated in Fig. 2D, from which we can see that the performances within evolution-
ary taxonomies are significantly better than that without evolutionary taxonomies. The 
results further demonstrate that the methylation conservation at sequential level is posi-
tively correlated with evolutionary taxonomies.

Multi‑scale sequential design choice is more appropriate to elucidate methylation 

mechanisms

In our model, we proposed a multi-scale information processing strategy via using differ-
ent k-mers to represent different “biological words” for feature representation learning. 
Therefore, we firstly validated how single-scale k-mers impact the predictive perfor-
mance of our model. We compared different k-mers, ranging from 3-mer to 6-mer. The 
comparative results are illustrated in Fig. 3A, in which we can see that different k-mers 
indeed have their advantages on different datasets, respectively. There is no consistent 
result observed. It might be that the methylated sequential regions vary across species 
and methylation types in length. Therefore, using single-scale sequential patterns for fea-
ture representations cannot adaptively and sufficiently capture the inherent characteris-
tics of methylations. To address this problem, we integrated different scales of k-mers as 
our model input, such as 3-mer + 6-mer, 4-mer + 6-mer, and 5-mer + 6-mer, and com-
pared their performance as illustrated in Fig. 3B. It can be observed that the multi-scale 

Fig. 2  The relationship between methylation conservation and model accuracy across species. A Taxonomy 
tree and accuracy for four species in 4mC dataset. Two species (i.e., F. vesca and C. equisetifolia) with higher 
accuracy are grouped in red, while the other two species (i.e., S. cerevisiae and Tolypocladium) with lower 
accuracy are grouped in blue. B The motif logo analysis on F. vesca and C. equisetifolia. C The motif logo 
analysis on S. cerevisiae and Tolypocladium. D The accuracy heatmap of cross-species validation on 4mC 
dataset
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k-mer integration (i.e., 3-mer + 6-mer) improves the model performance as compared 
to the single-scale k-mers (i.e., 3-mer, and 6-mer). To be specific, the model using the 
integration of 3-mer and 6-mer achieved the highest performance with the average ACC 
of 85.95% on all the datasets, which is 2.53 and 1.01% higher than that using 3-mer and 

Fig. 3  Interpretable analysis of multi-scale information processing. A The comparison of single scales 
including 3-mer, 4-mer, 5-mer, and 6-mer, respectively. B The comparison of multi-scale combinations. C The 
attention map to illustrate the information captured at 3-mer scale on one randomly selected sequence. 
Two sub-figures visualize the change of information captured before and after training, respectively. D The 
attention map to illustrate the information captured at 6-mer scale. E–G Interpretable illustrations of the 
motifs learnt by our model in three species covering three methylation types, including 4mC_Tolypocladium, 
5hmC_H.sapiens, and 6mA_C.equisetifolia, respectively. The left part figure clearly shows which region the 
model is more focused on by using heatmap from 0 to 1. The closer the score is to 1, the darker the color 
and the more important the region considered by the model. The p-value was calculated using TOMTOM 
by comparing our iDNA-ABF learnt motifs with STREME motifs. The p-value in STREME was calculated by a 
one-sided binomial test. The motifs within the gray dashed anchor boxes were extracted for pair comparisons
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6-mer, respectively. This demonstrates that the information from different scales is com-
plementary to each other for learning better feature representations.

Next, we further investigated why using multi-scale k-mer integration is more appro-
priate for discriminative information capturing. For this, we utilized attention mecha-
nism to intuitively interpret the information our model learnt from two sequential 
scales—3-mer and 6-mer. We visualized the attention heatmap of the two scales in 
Fig. 3C and D, respectively. Note that the element in the heatmap represents the correla-
tion degree of two positions along the sequences. Figure 3C shows the information our 
model learnt before and after training at 3-mer scale. As we can see, as compared to the 
initial model, the attention mechanism is more focused on the diagonal of the heatmap 
after training. This indicates that our model learns more local discriminative informa-
tion as compared to that before training. Similarly, Fig.  3D illustrates the information 
our model learnt before and after training on the other sequential scale—6-mer. In con-
trast, this scale is more focused on global information after training. To this end, we can 
conclude that different scales of sequential patterns learn both local and global informa-
tion, which might be complementary for the performance improvement.

In order to clearly demonstrate which sequential region is the most important for 
methylation prediction, we randomly selected three sequences from three species with 
different DNA methylation types, and applied the attention mechanism to identify key 
regions from these sequences. As can be seen in Fig. 3E–G (in left), for each sequence, 
our model identified different regions under different sequential scales. This further con-
firms that different scales capture different important information. For those identified 
regions, we further extracted and visualized the corresponding motifs using attention 
scores. Figure 3E–G (in right) shows the motifs learnt by our iDNA-ABF and that dis-
covered by the conventional tool—STREME [28], respectively. As seen, our learnt motifs 
(highlighted with a gray-color window) almost match the STREME’s motifs in each 
species. To quantitatively compare the motif similarity, we adopted TOMTOM [29] to 
calculate the similarity degree of two motifs, which is measured by p-value. The lower 
p-value indicates a higher degree of motif consistency. As can be seen in Fig. 3E–G, our 
motifs are highly similar to the STREME’s motifs, suggesting that our model can learn 
conserved sequential characteristics.

Our iDNA‑ABF sufficiently explores genomic information in 5mC prediction across human 

cell lines

In this section, we analyzed how well our iDNA-ABF performs the methylation predic-
tion across human cell lines. Since 5mC is one of the most well-studied methylation 
types in human genome, we selected the 5mC methylation to perform our method. We 
therefore constructed three new 5mC datasets corresponding to three human cell lines, 
including GM12878, K562, and HepG2, respectively. The details of the datasets can be 
seen in section “Datasets”.

First, we discussed the impact of the length of methylated sequential regions for the 
5mC methylation prediction. Therefore, for each cell line, we constructed four 5mC 
datasets, in each of which the 5mC sequences are 11, 41, 71, and 101 bp (base pairs) 
long, respectively. The details of the datasets are summarized in Additional file (Addi-
tional file 1: Table S2, Table S3, and Table S4). Figure 4A shows the model performance 
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varied with different sequence lengths in the three cell lines. In the beginning, the model 
performance significantly improves as the sequence length increases, demonstrating that 
a longer sequence brings the model extra genomic contextual information. The peak is 
reached when the length is 71 bp. After that, the model performance gradually declines. 
Notably, the model trained with the sequences 11 bp long exhibits extremely poor per-
formance, with the ACC of around 55%. The reason is that methylation-centered regions 
with the range of 11 bases are very similar between negative and positive samples. This 
further demonstrates that the methylations are strongly correlated with the upstream 
and downstream from the methylated regions.

As well known, 5mC methylation is one of the well-studied methylation types, back-
ing supported by many NGS data, such as ChIP-seq data, and ATAC-seq data, etc. [30]. 
An interesting question is whether integrating the NGS data with sequence data can 
contribute to more accurate prediction. For this, we chose two histone modifications 
(HM) data, H3k4me3 and H3k36me3, which are reported to be closely associated with 

Fig. 4  The 5mC prediction performance of our model on three human cell lines. A The ACC and AUC results 
of different human cell line datasets with different sequence lengths. B–D Performance of sequence data, 
ChIP-seq data, and integration of sequence and ChIP-seq data under different sequence lengths in three 
human cell lines, respectively. E The 5mC distributions predicted by our model and annotated by WGBS in 
a randomly selected genomic region (Chr1: 187000 - 192000, GRCh38). Note that the 5mC distribution is 
derived from HepG2 cell line
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5mC [31]. We trained and tested the models using (1) Sequence data only, (2) ChIP-
seq data only, and (3) Sequence + ChIP-seq data on the three cell lines, respectively. 
The comparative results are shown in Fig. 4B–D. As we can see, the model trained with 
sequence data achieved remarkably better performance as compared to that trained with 
ChIP-seq data, leading by 10.4, 10.9, and 21.1% in the average ACC, AUC, and MCC in 
three cell lines under different sequence lengths. When combining ChIP-seq data with 
sequence data for model training, all the performance metrics are further improved, 
achieving the highest scores, with the improvement of 3.8, 5.2, and 8.1% on the average 
ACC, AUC, and MCC over the model trained with sequence data, demonstrating that 
the ChIP-seq data and sequence data are complementary to each other for the improved 
5mC prediction.

Application of iDNA‑ABF for the 5mC methylation detection at genome scale

Considering real application scenario, it is important to measure the performance of our 
iDNA-ABF in detecting the 5mC distribution from the whole-genome scale. Thus, we 
predicted the methylation probability on a 5k-bp-long genomic region (Chr1: 187,000–
192,000) from human genome (GRCh38) based on our iDNA-ABF model trained on 
HepG2. The prediction procedure is as follows. Firstly, we used a 71-bp-long window to 
screen the region. Secondly, the sequences that meet the following two requirements: (1) 
centered with base C and (2) centered with CPG patterns were picked out. Ultimately, 
the resulting sequences were submitted to our iDNA-ABF for prediction. Our model 
gives the predicted confidence of each site candidate.

Figure 4E illustrates two HM data distributions, the 5mC distribution predicted by our 
model, and the true 5mC distribution annotated by WGBS, respectively. As we can see 
from Fig. 4E, our predicted 5mC distribution is generally overlapped with the true 5mC 
site distribution. Moreover, the predicted 5mCs basically match with the two HM data, 
demonstrating that our predictions have the functional significance. Notably, we found 
that our model identified some regions (with blue frame, Fig. 4E) that are not identified 
by WGBS, but they matched well with the signal of H3K4me3 data. This implies that 
our model might discover potentially novel functional regions. Although our model also 
produces some false positives, from the perspective of sequential bins (here, we consid-
ered 100-bp region as a bin), the predicted 5mC region distribution is almost the same 
with the true 5mC region distribution. The results at least demonstrate that our model 
can perform well in locating 5mC regions. This could also be helpful for methylation 
research.

Our iDNA‑ABF has robust performance in 5mC prediction on unseen human cell lines

To analyze the predictive performance of iDNA-ABF in unseen cell lines, we conducted 
the cross-cell line validation. To be specific, we trained our model on one cell line and 
evaluated it on the other. Figure  5A shows the heatmap results in terms of four met-
rics, including ACC, MCC, SN, and SP, respectively. The vertical axis denotes training 
cell lines, while horizontal axis shows testing cell lines. As shown in Fig. 5A, our model 
achieved relatively stable ACC and MCC under the cross-cell line validation. Moreover, 
we can also see that when evaluated on the K562, our model trained on the GM12878 
achieved the highest SN, yielding a relative improvement of 16% compared to the model 



Page 12 of 23Jin et al. Genome Biology          (2022) 23:219 

trained on the HepG2. For better explanation, we introduced the probability distribu-
tion analysis in methylated central regions of three human cell lines. Figure 5B and C 
show the probability distribution in the positive and negative samples in three cell lines, 
respectively. On the one hand, it can be seen from Fig. 5B that the positive motif logos 
of K562 are more similar to the GM12878 than HepG2 in position from −1 to 1. On the 
other hand, we observed from Fig. 5C that the negative motif logos of K562 are the same 
as the positive motif logos of GM12878 in position from −1 to 1, which can explain the 
lowest SP of our model trained on GM12878 while tested on K562. Furthermore, we 
found in Fig. 5A that our model in the heatmap of cross-cell line validation performs not 
that well in terms of SP. This might be that the negative motif logos among all three cell 
lines are quite different. To this end, via the cross-cell line validation results, we can con-
clude that our model has robust performance even for the unseen cell lines. This further 
explores the application value of our model.

Our iDNA‑ABF has good transfer learning ability to capture the specificity of methylated 

sequential patterns

The 5mC methylations mainly occur within the sequences with CpG patterns in human 
genome; actually in a few cases, the methylations are also detected within the CHH and 
CHG patterns (where H = A, C, or T). In order to find out whether different methyl-
ated sequential patterns are correlated with each other, we constructed extra CHG and 
CHH datasets for the three cell lines, respectively. It is worth noting that the number of 
sequences in CpG dataset is far more than that in CHG or CHH datasets. The details of 
the datasets are presented in Additional file (Additional file 1: Table S5).

Fig. 5  Performance in 5mC prediction on unseen cell lines. A The heatmap of cross-cell line validation in 
terms of different metrics, including ACC, MCC, SN, and SP, respectively. B Motif logos in central sequential 
regions of the positive datasets in three human cell lines, respectively. C Motif logos in central sequential 
regions of the negative datasets in three human cell lines, respectively
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To see whether our model has good transfer learning ability in detection of different 
methylation patterns, we firstly pretrained a model on the CpG dataset and fine-tuned 
it on the CHG or CHH datasets, yielding another model denoted as “transfer learn-
ing model”. Moreover, we also trained a model directly with the CHG or CHH datasets 
for comparison, denoted as “baseline model”. Both models were then evaluated with 
the same testing datasets of the CHG or CHH datasets. The performance on the two 
datasets is shown in Fig. 6A and B, respectively. As we can see, the performance of the 
“transfer learning model” is always superior to the baseline model, with the average AUC 
and AP increasing by 3.1 and 3.3% in three cell lines. The results demonstrate that our 
model has a good transfer learning ability; the pre-training mechanism can bring extra 
discriminative information from one specific pattern to benefit the prediction of the tar-
get patterns, thus improving the predictive performance.

Fig. 6  Transfer learning results and analysis of our model. A The ROC and PR curves of the baseline model 
and the transfer learning model on CHG dataset in HepG2 cell line. Note that the baseline model is trained 
with the CHG dataset while the transfer learning model is pretrained with CpG dataset and fine-tuned on the 
CHG dataset. B The ROC and PR curves of the baseline model and the transfer learning model in CHH dataset 
in HepG2 cell line. Note that the baseline model is trained with the CHH dataset while the transfer learning 
model is pretrained with the CpG dataset and fine-tuned on the CHH dataset. C The motifs learnt from 
three models, including baseline model, pretrained model, and transfer learning model, respectively. D The 
searching results using our learnt motifs against the topEnriched.MM database
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To in-depth explain the possible reason regarding the performance improvement 
using transfer learning, we further analyzed and compared the motifs that were learned 
from the three models, including baseline model, transfer learning model, and pre-
trained model which is trained on CpG dataset only, respectively. The motif comparison 
results in HepG2 cell line are illustrated in Fig. 6C. Taking the 1st, 5th, and 9th motif 
figures as an example, we observed that the transfer learning model not only keeps some 
CpG patterns inherited from the pretrained model but also captures the specificity of 
the CHG patterns learned by baseline model. In addition, the transfer learning model 
can also discover some new patterns such as the 7th motif figure, which does not share 
similar patterns from the baseline model in the 3th motif figure.

The motifs learnt from our models are biologically meaningful

Next, we further explored whether the motifs (or sequential patterns) learnt from our 
above three models (baseline model, pretrained model, and transfer learning model) are 
biologically meaningful. Accordingly, we searched the learnt motifs against topEnriched.
MM, a public methylation database [32]. Interestingly, from Fig. 6D, we found that the 
motifs learnt by our models can significantly match with some functional motifs in the 
database, which were previously reported to be closely associated with methylation 
mechanisms. The results demonstrate that our model can accurately mine functional 
sequential characteristics; on the other hand, the newly discovered sequential motifs are 
also biologically meaningful, indicating the strong ability of our model in learning func-
tional semantics between different sequential patterns.

Discussions
We presented iDNA-ABF, a novel method for identifying DNA methylation by biological 
language learning solely based on genomic sequences. Our iDNA-ABF not only enables 
relatively accurate methylation prediction across species and across cell lines, but also 
builds the mapping from the sequential level to the functional level using explainable 
attention mechanism to study the in-depth DNA methylation mechanisms.

First, we investigated the predictive performance of our model to see how well and 
how stable it performs. Experimental results in 17 benchmark datasets covering three 
methylation types (4mC, 5hmC, and 6mA) in multiple species show that our model 
exhibits the consistently superior and robust performance as compared with the state-
of-the-art sequence-based approaches. The ablation analyses reveal the importance of 
the adversarial training in the model performance. Particularly, the adversarial training 
in our training process alleviates the impact of large-scale parameters particularly on 
some small datasets and improves the generalization ability of our model across differ-
ent species and methylation types. In addition, we also studied the impact of sequence 
length on the methylation prediction. The results show that the model performance 
generally improves with the increase of the input sequence length, demonstrating the 
upstream and downstream surrounding the methylated sequential regions are crucial 
to identifying DNA methylation sites. They might contain some degree of specificity 
information from the sequential perspective to help our model distinguish the meth-
ylation sites from non-methylation sites; on the other hand, we adopted DNABERT [33] 
for model construction, a powerful natural language learning model that was pretrained 
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with million-scale genomic sequence data. It enables our model to capture more sequen-
tial semantics from background genomes. The feature space visualization analysis results 
prove that our model learns more distinguishable feature representations as compared 
with existing predictors. Interestingly, by integrating ChIP-seq data such as histone 
modification data (e.g., H3K4me3 and H3K36me3) into our model, we observed that the 
performances are further improved, indicating that biological signals and sequence data 
are complementary for the improved prediction. The result could show the great poten-
tial of sequence data for DNA methylation prediction and other genomic functional 
analysis. We can imagine that, as for new cell line data, the NGS data is limited so that 
we cannot train an effective model. At least, the analyses provide a new way to build a 
more accurate and robust model by integrating the sequence data.

Secondly, the main feature of our iDNA-ABF is that we provide the interpretable 
analysis for DNA methylation prediction. The major problem of existing deep learning-
based approaches is that they cannot well explain why their models are effective for 
the methylation prediction, since deep learning works as “black box”. To address this 
problem, we did two major improvements for model construction. One is proposing 
the multi-scale sequence processing strategy for model training, and the other is intro-
ducing the attention mechanism for model analysis. Inspired by word segmentation in 
natural language learning, we utilized the multi-scale sequence processing strategy by 
segmenting DNA sequences with different scales (3mer and 6mer) of sequential pat-
terns to represent “biological words”. Furthermore, we adopted the attention mechanism 
to interpret what information our model learned from different scales of “biological 
words”. Analyses demonstrate that the multi-scale strategy is capable of bringing more 
discriminative semantics information from both local and global levels, effectively over-
coming the information lack at one single-scale and the information over-redundancy 
at all scales. Importantly, different sequential scales lead our model to learn different 
motifs. The results show that our learnt motifs from different scales are highly consist-
ent with that by the conventional motif finding tool—STREME, demonstrating that our 
model is capable of discovering conserved sequential patterns. Next, the natural ques-
tion is whether the sequential patterns learnt by our model are biologically meaningful 
or correlated with the methylations. To answer this question, we applied our model to 
the prediction of 5mC methylation across human cell lines. The reason to choose human 
5mC methylation is that it has conserved methylated sequential patterns, such as CpG, 
CHH, and CHG; on the other hand, it is back supported by many NGS data, facilitat-
ing further functional validation analysis. We investigated the transfer learning ability 
of our model and the experimental results show that learning the knowledge from CpG 
methylation patterns can help the improved prediction of the other two methylation 
patterns (i.e., CHH, and CHG). This demonstrates that our model has a strong ability 
in learning the specificity of different methylation patterns. The results also imply the 
potential of our model in the discovery of other rarely occurred methylation patterns. 
Importantly, we found that by using transfer learning, our model can learn some new 
motifs and meanwhile keep the motifs in original methylation patterns. By searching our 
learnt motifs against a well-known methylation database—topEnriched.MM, we found 
that our motifs are significantly similar to some known methylation-related functional 
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motifs (see Fig. 6D). This also demonstrates that our model can learn different biological 
semantic information under different methylation patterns.

Ultimately, to verify the performance of our model in real application scenarios, we 
further applied our model to the detection of 5mC methylation within human genome. 
The experimental results in a randomly selected genomic region show that our model is 
capable of accurately detecting true DNA methylation regions (annotated by WGBS). 
Importantly, our model discovered some potential methylation regions, which are not 
detected by WGBS but are highly overlapped with the methylation-related histone mod-
ification data (e.g., H3K4me3). This demonstrates the strong ability of our model in the 
discovery of biologically meaningful sequential regions. It might be that the deep pre-
trained model helps us learn functional semantics from millions of background genome 
sequences.

Conclusion
Altogether, our proposed deep biological language learning model achieves satisfactory 
performances in DNA methylation prediction. Importantly, we show the power of deep 
language learning in capturing both sequential and functional semantics information 
from background genomes. Moreover, by integrating the interpretable analysis mecha-
nism, we have well explained what we learned, helping us build the mapping from the 
discovery of important sequential determinants to the in-depth analysis of their biologi-
cal functions. However, there is still much room to improve. For example, in the con-
struction of methylation prediction models, we only considered local sequential regions 
surrounding the methylation sites, in which the discriminative information might be 
limited to some extent. Studies [34] have demonstrated that there is a long-range inter-
active impact of gene regulations in genome, such as enhancer-promoter interaction. 
Therefore, exploring how the long-range sequence integrative information affects DNA 
methylation levels could be an important direction in future work.

Methods
Datasets

Different species datasets

A stringent dataset is fundamentally crucial for training effective and promising predic-
tors. To further evaluate our proposed method with state-of-the-art methods, we choose 
the same benchmark datasets originally proposed by iDNA-MS [21]. The datasets con-
sist of three main DNA methylation types, including seventeen datasets totally. Among 
seventeen datasets, C. equisetifolia (4mC_C.equisetifolia), F. vesca (4mC_F.vesca), S. cer-
evisiae (4mC_S.cerevisiae), and Ts. SUP5-1 (4mC_Ts.SUP5-1) belong to 4mC. The 6mA 
contains Arabidopsis thaliana (6mA_A.thaliana), Caenorhabditis elegans (6mA_C.ele-
gans), Casuarina equisetifolia (6mA_C.equisetifolia), Drosophila melanogaster (6mA_D.
melanogaster), Fragaria vesca (6mA_F.vesca), Homo sapiens (6mA_H.sapiens), Rosa 
chinensis (6mA_R.chinensis), Saccharomyces cerevisiae (6mA_S.cerevisiae), Tolypocla-
dium sp SUP5-1 (6mA_Tolypocladium), Tetrahymena thermophile (6mA_T.thermo-
phile), and Xanthomonas oryzae PV. Oryzicola (Xoc) BLS256 (6mA_Xoc.BLS256). What 
is more, there are two 5hmC datasets from two species, including H. sapiens (5hmC_H.
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sapiens) and M. musculus (5hmC_M.musculus). It should be noted that both positives 
and negatives are 41-base pair (bp) long and the sequence identity of the datasets is less 
than 80% using the CD-HIT [35] program, which is shown in Fig. 7A. The details of the 
training dataset and the validation dataset from seventeen species are given in Addi-
tional file (Additional file 1: Table S6).

Human cell lines datasets

The 5mC methylation data of three human cell lines (K562, GM12878, hepG2) 
were collected from ENCODE portal (ENCSR765JPC, ENCSR890UQO, and ENC-
SR786DCL) [36], which provides the location information of three methylation pat-
terns (CpG, CHG, and CHH) experimented by whole-genome bisulfite sequencing 
(WGBS). To construct a high-quality dataset, methylation sites with 100% methylated 
and 10–200× sequencing coverage were kept for positive samples, whereas methyla-
tion sites with 0% methylated and 0 sequencing coverage were selected as negative 
samples. The processed methylation sites located in promoter and gene body region 
were further mapped using annotation from GENECODE GRCh38. A promoter 
region is defined as the 1000-bp region upstream from the transcription start site 

Fig. 7  Overview of the proposed iDNA-ABF. A shows the DNA methylation dataset collection where different 
datasets belonging to three main DNA methylation types are reorganized into their training datasets and 
independent datasets. The overall architecture of our iDNA-ABF is presented in B–E. B Multi-scale information 
processing module, exploiting two scales (3-mer and 6-mer) of tokenizers separately to process the input 
sequence and adaptively obtain corresponding embeddings. C BERT encode module, using BERT encoders 
to extract high-latent feature representations. D Multi-scale extraction module, generating final output 
feature representations based on multi-scale embeddings. E Classification module, integrating binary 
classification probability values to make prediction. F The workflow of the interpretable analysis. In brief, our 
model uses attention mechanisms to extract and learn sequential motifs from query sequences
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(TSS) of a gene. The number of each cell line processed dataset is shown in Addi-
tional file (Additional file 1: Table S7, Table S8, and Table S9). To evaluate the impact 
of sequence length on the prediction of methylations, the DNA sequences that 11, 
41, 71, and 101-bp-long flanking the methylation sites were extracted from GRCh38, 
respectively. Similar to the different species datasets, the sequence identity of the 
human cell line datasets is also less than 80% with using the CD-HIT program.

Description of the proposed iDNA‑ABF

Figure 7 illustrates the overall architecture of our iDNA-ABF. Figure 7A shows the data 
set collection procedure, which is described in “Datasets” section. The workflow of 
iDNA-ABF is clearly seen in Fig. 7B–E, mainly consisting of four modules: (B) Multi-
scale data processing module, (C) BERT encoder module, (D) Feature fusion module, 
and (E) Classification module. The prediction procedure is described as follows. In mod-
ule B (see Fig. 7B), we exploit two scales of tokenizers (3-mer and 6-mer) separately to 
process the input sequence and adaptively learn corresponding embeddings. Due to the 
input sequences containing multifaceted features of various scales, we design a multi-
scale architecture rather than using a single simple tokenizer, which may result in infor-
mation loss. Afterwards, in module C (see Fig. 7C), the iDNA-ABF uses BERT encoders 
individually to extract different embeddings processed by tokenization. The iDNA-ABF 
then combines multi-scale embeddings based on BERT output in module D to generate 
the final evolutionary output feature. After that, in module E (see Fig.  7E), the model 
uses fully connected layers to predict whether the input sequence is methylated or not. 
Notably, we adopt adversarial training to enhance the robustness of the model and pre-
vent early overfitting, which can be separated into two components: (1) adversarial per-
turbation, using cross-entropy loss from this propagation as the adversarial perturbation 
back to the network, and (2) adversarial optimization, obtaining the adversarial loss 
which is used to make backpropagation and optimize our model. Note that we describe 
the details of the four modules as follows.

Multi‑scale information processing module

In our model, we tokenize a DNA sequence with k-mer representations. In this way, 
each token is represented by k bases, thus integrating richer contextual information for 
each nucleotide. For example, a given DNA sequence “ATG​GCT​G” can be tokenized to a 
sequence of two 6-mers: ATG​GCT​ and TGG​CTG​. Different k results in different token 
representations. In our work, we set k as 3 or 6, and thus obtain two scales of token 
representations. The whole token table has 4k+5 tokens, consisting of all the permuta-
tions of k-mer as well as 5 special tokens: [CLS], [PAD], [UNK], [SEP], and [MASK], 
which stand for classification token, padding token, unknown token, separation token, 
and masked token, respectively.

BERT‑based encoder module

Pre‑training of the BERT model

BERT is the first bidirectional language representation model based on the transformer 
proposed by [24]. Due to its powerful performance in language understanding against 
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many kinds of large corpus, BERT has been widely used in lots of NLP tasks. To bet-
ter play the role of BERT, it generally will first be trained on a large background-related 
corpus with two pre-training tasks namely the masked language model and the next 
sentence prediction. Here we use a pretrained BERT model namely DNABERT [33], 
using the same architecture as the BERT base, which consists of 12 Transformer lay-
ers with 768 hidden units and 12 attention heads in each layer. Notably, since there is 
no direct semantic logic between DNA sequences, this domain pre-training adjusts the 
sequence length and enables the model to predict contiguous k tokens adapting to a 
DNA sequence. Also, it uses the masked language model technique similar to the origi-
nal BERT.

Encoding process of the BERT

BERT is a transformer-based contextualized language representation model, which has 
been applied to many aspects of biology and has achieved many outstanding perfor-
mances. The basic component of BERT consists of a multi-head attention mechanism, 
a feed-forward network, and the residual connection technique. To capture contextual 
information, BERT performs the multi-head attention mechanism based on the self-
attention mechanism, which is described as follows:

where X ∈ RL×dm is the output of the sequence embedding module. What is more, 
according to respectively linear layers WQ,WK ,WV ∈ Rdm×dk , X is transformed to the 
query matrix Q ∈ RL×dk , key matrix K ∈ RL×dk , and value matrix V ∈ RL×dk , in which L 
is the length of the input protein sequence, dm is the initial embedding dimension, and 
dk is the dimension of matrix Q, K, and V.

From the above base unit, the multi-head attention mechanism can be expressed as 
follows:

where WQ
i ,WK

i ,WV
i ∈ Rdm×dk are the query, key, and value linear transformation layers 

of the ith head while h is the number of heads. Then multi-head concatenates results of h 
independent head with different sets of W

Q
i ,WK

i ,WV
i  and use a linear conversion 

layer WO to map the output dimension of the multi-head attention to the initial embed-
ding dimension of the embedding module. The entire procedure is performed L times, 
where L represents the number of layers.

(1)







Q = XWQ

K = XWK

V = XWV

(2)Self − Attention(Q,K ,V ) = softmax

(

QKT

√

dk

)

V

(3)

{

Headi = Self − Attention
(

XW
Q
i ,XWK

i ,XWV
i

)

, i = 1, . . . , h

MultiHead − Attention(Q,K ,V ) = [head1, head2, · · · , headh] WO



Page 20 of 23Jin et al. Genome Biology          (2022) 23:219 

Feature fusion module

In order to obtain the final output hM of two BERT parts, we combine the output hkmer1 
from the first scale input format layer and hkmer2 from the second scale input format 
layer through a dimensional-wise fusion gate F. F is accomplished by the sigmoid activa-
tion function to encode two parts of representation:

where W1 and W2 are trainable parameters of the fusion gate. Then the final vector rep-
resentation output of a specific molecule hM is generated through F:

Classification module

Adversarial training [37] is a novel regularization method for classifiers to improve 
robustness to small, approximately worst-case perturbations. Here, because of the large 
parameters that BERT has, we use this strategy to prevent models from overfitting. 
Among lots of adversarial training methods, we use a variant of Fast Gradient Method 
(FGM) specific for text classification [38]. The cross-entropy loss function LCE is used to 
train the output module to improve the prediction performance as our base loss func-
tion. We define p as the prediction probability, y as the true label, x as the input, θ as the 
parameters of the model, and ε as one additional parameter. When applying this method, 
adversarial training adds the following term to the cost function:

where r is a perturbation on the input and θ̂ is a constant set to the current parameters 
of the model. Backpropagation algorithm should not be used to propagate gradients 
through the adversarial example construction process which means θ̂ is not consistent 
with θ in the Eq. (6). Then, in the training process, we minimize Eq. (6) for θ to obtain 
the worst-case perturbations radv against the current model.

In the FGM method, we apply the adversarial perturbation to the extracted sequence 
embedding, rather than directly to the input. To define adversarial perturbation on the 
word embeddings, we denote relevant embedding of k-mer as s. Then we define the 
adversarial perturbation radv on s as

To train a robust model, we define a new adversarial loss based on the adversarial per-
turbation defined in Eq. (6), which is formulated as follows:

(4)F = sigmoid( W1 · hkmer1 +W2 · hkmer2)

(5)hM = F · hkmer1 + (1− F) · hkmer2

(6)

{

LCE
(

p, y|x, θ
)

= −y log p−
(

1− y
)

log (1− p)

LCE
(

p, y|x + radv , θ
)

where radv = arg min
r,||r||�ε

LCE

(

p, y|x, θ̂
)

(7)radv = −ε
g

∣

∣

∣

∣g
∣

∣

∣

∣

2

where g = ∇s LCE
(

p, y|s, θ
)

(8)Ladv(θ) = − 1

N

N
∑

n=1

LCE
(

pn, y|sn + radv,n, θ
)
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where N is the number of batch size. In our work, adversarial training is to minimize the 
Ladv based on cross-entropy loss with stochastic gradient descent.

Performance metrics

In this study, we evaluate the performance of our iDNA-ABF and other existing methods 
with the following four commonly used metrics: Accuracy (ACC), Matthews’ correlation 
coefficient (MCC), Sensitivity (SN), and Specificity (SP). The formulas of these metrics 
are described as follows:

where TP, FN, TN, and FP represent the number of true positive, false negative, true 
negative, and false positive samples, respectively. ACC and MCC are both used to meas-
ure the overall performance of the model. SN refers to the proportion of true methylated 
samples correctly predicted by a predictive model, and SP measures the proportion of 
non-methylated samples correctly predicted by the model. Moreover, the ROC (receiver 
operating characteristic) curve and PR (precision-recall) curve [39] are used to intui-
tively evaluate the overall predictive performance of the model. AUC and AP denote the 
area under ROC curve and that under the PR curve, respectively [39]. They are further 
used to quantitatively measure the overall performance of the model. Altogether, the 
higher these metrics are, the better the model is.
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