
Luo et al. Genome Biology (2022) 23:29
https://doi.org/10.1186/s13059-021-02587-6

METHOD Open Access

Strainline: full-length de novo viral
haplotype reconstruction from noisy long
reads
Xiao Luo1,2†, Xiongbin Kang1,2† and Alexander Schönhuth1,2*

*Correspondence:
a.schoenhuth@cwi.nl
†Xiao Luo and Xiongbin Kang
contributed equally to this work.
1Life Science & Health, Centrum
Wiskunde & Informatica,
Amsterdam, Netherlands
2Genome Data Science, Faculty of
Technology, Bielefeld University,
Bielefeld, Germany

Abstract

Haplotype-resolved de novo assembly of highly diverse virus genomes is critical in
prevention, control and treatment of viral diseases. Current methods either can handle
only relatively accurate short read data, or collapse haplotype-specific variations into
consensus sequence. Here, we present Strainline, a novel approach to assemble viral
haplotypes from noisy long reads without a reference genome. Strainline is the first
approach to provide strain-resolved, full-length de novo assemblies of viral
quasispecies from noisy third-generation sequencing data. Benchmarking on
simulated and real datasets of varying complexity and diversity confirm this novelty
and demonstrate the superiority of Strainline.

Keywords: Genome assembly, Haplotype, Virus, SARS-CoV-2, Long reads

Background
Viruses such as HIV, ZIKV, and Ebola lack proofreading mechanisms when they repli-
cate themselves with RNA-dependent RNA polymerase (RdRp) [1, 2]. Therefore, they are
characterized by high mutation rates, and commonly populate hosts as a collection of
closely related strains which differ by only small amounts of variants, and which together
are referred to as viral quasispecies [3]. The genetic diversity of viral quasispecies plays
an important role in viral evolution. Among others, it contributes to tissue tropism, virus
transmission, disease progression, virulence and drug/vaccine resistance [1, 4–6]. In addi-
tion, biological functionalities or phenotypic appearance can differ substantially across
different strains [7]. Currently, the COVID-19 pandemic puts the necessity to monitor
the outbreak of viruses, to track their evolutionary history, and to develop effective vac-
cines and drugs in the spotlight of greater public interest. To accurately account for these
issues, accurate reconstruction of strain-resolved genomes can be very helpful, if not even
necessary.
It is the general, ultimate goal of viral quasispecies assembly to reconstruct the

individual, strain-specific haplotypes at their full length. Further, along with strain

© The Author(s). 2022 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-021-02587-6&domain=pdf
http://orcid.org/0000-0003-3529-0856
mailto: a.schoenhuth@cwi.nl
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Luo et al. Genome Biology (2022) 23:29 Page 2 of 27

identity-preserving sequence, accurate estimates of strain abundances are required for
full quantification of infections at the RNA/DNA level. Notwithstanding the short size of
virus genomes, it is still a challenge because within a viral quasispecies (i) closely related
strains share plenty of near-identical genomic fragments, (ii) single strains are affected by
repetitive regions [8], (iii) the number of strains is unknown, and (iv) the abundances of
strains vary across the strains, which is further aggravated by read coverage fluctuations
along the genomes.
So far, existing methods for viral quasispecies assembly can be classified into reference-

based approaches on the one hand and de novo (reference free) approaches on the other
hand; see [9] for a recent review of related approaches. Reference-based methods such as
ShoRAH [10], PredictHaplo [11] and CliqueSNV [12] require high quality reference for
reliable reconstruction of strains and, apart from rare exceptions [11, 12], mainly have
been specializing in processing relatively error-free short read data. Importantly, high
quality reference genomes may not be available precisely when they are needed the most:
very often, new outbreaks of known viruses are caused by virus variants that significantly
deviate from curated reference sequence [13, 14]. Last but not least, reference-guided
methods are prone to introducing biases and can be blind with respect to crucial variant-
related details in genomic regions of particular interest [15, 16].
De novo (reference free) viral quasispecies assembly tools, such as SAVAGE [16] or

viaDBG [17], both are able to employ overlap and de Bruijn graph-based techniques
to assemble NGS reads into haplotype-specific contigs (a.k.a. haplotigs), where the two
assembly paradigms, overlap vs de Bruijn graph based, come with different advantages
and disadvantages. The resulting contigs of these short read based approaches tend to be
too short to span genomes at their full length. The reason are sequence patches that are
shared by different strains (and also repetitive areas within strains), which induce ambi-
guities that cannot be overcome by short reads themselves. For computing full-length
genomes, one can try to leverage the strain-specific abundances, which allows to bridge
contigs across otherwise ambiguous stretches of sequences. To this end, methods such
as Virus-VG [18] and VG-Flow [19] have been developed, the latter approach of which
introduced flow variation graphs as a computational concept of potential greater value.
Because the runtime is polynomial in the length of the genomes, VG-Flow [19] can also
be used for bacteria sized genomes.
We recall that all these existing approaches focus on viral haplotype reconstruction

from short and accurate next-generation sequencing (NGS) reads, as generated most
prominently by Illumina platforms. Again, the fact that short reads fail to span inter-
and intra-genomic identical regions crucially hampers the process of reconstructing
full-length viral haplotypes. Leveraging strain-specific abundances, as implemented by
VG-Flow [18] for example, are not necessarily able to output full-length, strain-specific
assembled sequence for certain viruses, such as ZIKV and Polio.
Quite apparently, virus genome assembly methods have approached their limits when

operating with short read NGS data. Processing long and noisy third-generation sequenc-
ing (TGS) data, such as generated by Pacific BioSciences (PacBio), performing single-
molecule real-time (SMRT) sequencing, andOxford Nanopore Technologies (ONT), per-
forming nanopore sequencing, as the currently two most popular sequencing platforms,
offers rescue.

Luo et al. Genome Biology (2022) 23:29 Page 3 of 27

The length of TGS reads ranges from several Kbp to hundreds of Kbp, or even to
∼Mbp [20]. TGS reads enable to span intra-genomic repeats and areas shared by different
genomes, hence cover regions that are unique to single strains [8]. So, in comparison with
NGS reads, TGS reads have considerably greater potential to resolve ambiguities across
different strains. The drawback of TGS reads are the elevated error rates they are affected
with. Unlike for NGS platforms (sequencing error rate < 1%), error rates of PacBio CLR
and ONT reads range from 5 to 15%, which raises the issue of sequencing errors to a
greater order of magnitude.
There are a handful of de novo assembly methods that specialize in processing error-

prone long reads such as FALCON [21], Canu [22], Flye [23], Wtdbg2 [24], and Shasta
[25], all of which have been published fairly recently. None of these approaches makes a
decided attempt to generate haplotype-(strain-) resolved genomic sequence. Rather, these
approaches choose to output consensus sequence, as a summary across several or all hap-
lotypes/strains in the mix. In other words, all of the de novo assemblers presented in the
literature so far fall under the category “generic (or consensus) assembler”.
In addition, metaFlye, originally designed to perform assembly of metagenomes, oper-

ates at the level of species [26], so neglects to resolve individual genomes at the level of
strains.
In conclusion, haplotype-aware assembly of viral quasispecies from erroneous long reads

can still be considered an unsolved problem: no method is able to address the issue
satisfyingly.
Here, we pursue a novel strategy to resolve the issue. In that, to the best of our knowl-

edge, our approach is the first one to accurately reconstruct the haplotypes of viral
quasispecies from third-generation sequencing reads. We recall that processing long TGS
reads appears to be the only current option to reconstruct genomes at the level of strains,
for the majority of the currently predominant viruses.
In a brief description (see below for details), our novel strategy consists of local de

Bruijn graph-based assembly in a first step that addresses to wipe out errors. Subse-
quently, we turn our attention to an overlap graph-based scheme by which to iteratively
extend haplotype-specific contigs (haplotigs) into full-length haplotypes. After a filtering
step that removes artifacts and preserves true sequence, our approach outputs a set of
haplotypes—a large fraction of which appear to have reached full length—together with
the relative abundances of the haplotypes within the mix of haplotypes.
We evaluate our approach on various virus datasets that have been approved earlier in

the literature. For each dataset, we process both PacBio CLR reads and ONT reads, as
the two most predominant types of TGS reads. Benchmarking results on both simulated
and real data confirm our claims: our approach accurately reconstructs all full-length
haplotypes and delivers sufficiently accurate estimates of their relative abundances.
We also compare our approach with the current state of the art. We recall however

that none of the current approaches decidedly addresses the issue of strain-resolved viral
quasispecies assembly from long reads. As a consequence, our approach outperforms the
state of the art rather drastically. Our approach has its greatest advantages in terms of
haplotype coverage, reaching nearly 100% on the majority of datasets. Other methods
never get beyond 60–85% (if they get there at all; in particular on ONT data, alterna-
tive approaches reach their limit substantially earlier). Further marked advantages are
assembly contiguity (measured as per N50 or NGA50) and accuracy (expressed by low

Luo et al. Genome Biology (2022) 23:29 Page 4 of 27

error rates and little misassembled contigs). A currently particularly interesting applica-
tion scenario is the assembly of haplotype-resolved genomes of SARS-CoV-2, because
strain resolution will sharpen our understanding about mutation rates and evolutionary
development of the virus. Also in this scenario of particular current interest, our approach
demonstrates to outperform all existing approaches by fairly large margins.

Results
We have designed and implemented Strainline, a novel approach that implements the
strategy as sketched above. We will describe Strainline in full detail in the following.
In a short summary, Strainline reconstructs full-length, strain-resolved viral haplotypes

from noisy long read (TGS read) sequencing data. Strainline is a de novo assembler, so
does not have to rely on available reference sequence. Therefore, Strainline operates free
of biases induced by prior knowledge, which has been pointed out in earlier work as a
notorious source of issues.
In this section, we provide a high-level description of the workflow and evaluate its

performance on both simulated and real data, in comparison with existing state-of-the-
art tools. In our comparisons, we focus on both generic and metagenome assembly
approaches that are able to process long reads without having to rely on reference
sequence, which matches the conditions under which Strainline is able to operate.

Approach

See Fig. 1 for an illustration of the overall workflow of Strainline. Here, we describe
the workflow briefly. For detailed descriptions of the individual steps, we refer to the
“Methods” section.
Strainline consists of three stages. The first stage addresses to correct sequencing

errors in the raw long reads, for which it employs local de Bruijn graph assembly. The
second stage addresses to iteratively extend haplotype-specific contigs into full-length
haplotype-specific genomes, based on an overlap based strategy. The third stage, finally,
is for filtering the resulting contigs so as to remove haplotypes of too low divergence
in comparison with others (so likely reflect errors instead of strain-specific variation),
or too low abundance (so likely reflect artifacts). The eventual output is a set of full-
length haplotypes along with their corresponding relative frequencies, clear of errors and
artifacts.
In general, de Bruijn graph-based approaches tend to be inappropriate for TGS read

data, because of the elevated error rates that apply. Rather unexpectedly, we found a
(local) de Bruijn graph-based approach, originally developed for long genomes, to effec-
tively work for genomes of tens of thousands of nucleotides in length when provided with
sufficiently deep coverage [27]. Apparently, the superiority of the approach when dealing
with virus genome settings had passed unnoticed earlier.
See Fig. 2 for the following. Given a target read to be corrected, the corresponding strat-

egy considers the reads that overlap the target read, where overlaps are determined based
on evaluating canonical k-mers (“Target read& overlapping reads” in Fig. 2). The resulting
overlapping reads together with its target read form a read alignment pile that is divided
into small windows (“Read alignment pile” and “Windows” in Fig. 2). Subsequently, a
de Bruijn graph is constructed for each such small window (“DBGs for all windows” in
Fig. 2)). Based on evaluating this de Bruijn graph, an optimal consensus sequence is deter-

Luo et al. Genome Biology (2022) 23:29 Page 5 of 27

Fig. 1 The workflow of Strainline. The reads with different colors are from different haplotypes or strains. The
pink fork represents the sequencing error, i.e. mismatch, insertion or deletion. The two steps Seed-vs-all
overlaps and Read clustering are executed simultaneously (see Algorithm 1 for details). Hap1_A and Hap1_B
denote two subsequences (not full-length) of haplotype 1 (Hap1), the same for Hap2_A and Hap2_B. There
still may be very few remaining sequencing errors in corrected reads such as in the corresponding read
cluster of Hap1_A, and incorrectly clustered reads such as the ’blue read’ in the corresponding read cluster of
Hap2_B. Nevertheless, these errors will be eliminated through Consensus step

mined, which reflects the error corrected, true sequence of the target read (see “Window
consensus” and “Read consensus” in Fig. 2).
The second stage falls into two sub-steps. Firstly, Strainline determines read clusters

where each of the clusters reflects a collection of reads that overlap each other in terms of

Luo et al. Genome Biology (2022) 23:29 Page 6 of 27

Fig. 2 The schematic diagram for the sequencing error correction procedure of raw reads. In the top region,
the bold solid line denotes the target raw read i, and the overlapping reads of the target read i are drawn
dashed outside of the read alignment pile and solid inside of it. The pink fork represents the sequencing
error, i.e. mismatch, insertion or deletion. The read alignment pile is split into k small windows, representing
as Win 1, Win 2, ... Win k. DBG is short for de Bruijn Graph. Window consensus refers to the highest scoring
sequences (see main text for explanations) through the DBGs of small windows over the read alignment pile.
The region filled with gray rhombus between two window consensus denotes the overlap between them
(30bp). We perform the error correction step for each raw read

genomic position (computed by “Algorithm 1” in Fig. 1). Secondly, Strainline uses a partial
order alignment (POA) algorithm to yield a consensus sequence for each read cluster.
These consensus sequences are expected to be haplotype-specific contigs (haplotigs). The
haplotigs are then iteratively extended into full-length haplotypes.

Luo et al. Genome Biology (2022) 23:29 Page 7 of 27

The third and final stage is to filter haplotypes having very low divergence or very
low relative abundance. Most likely, such haplotypes were introduced due to redundant
or spurious sequences. See the “Methods” section for full details on each of the stages
involved in the overall workflow.

Datasets

For the following, see also Table 1 for characteristics of both simulated and experimental
data, and see Additional file 1: Table S1 in the Supplement for accession numbers of the
corresponding source genomes.

Simulated data

We simulated various datasets using both PacBio and ONT long read sequencing tech-
nologies, yielding the common (PacBio CLR and ONT), high sequencing error rates (5%
∼15%), using PBSIM V1.0.3 [28] and NanoSim V2.6.0 [29], as approved read simulators.
We used four virus mixture datasets (HIV, Poliovirus, HCV, and ZIKV), similar in terms
of composition of strains to those presented by [18]. We further generated one addi-
tional dataset reflecting a SARS-CoV-2 quasispecies, composed of 5 strains (note that the
number of SARS-CoV-2 strains that affect one individual is entirely unclear at this point,
because of the lack of analysis tools). Notably, it is very common to perform ultra-deep
sequencing supported by the short length of the viral genome (7∼30kbp in our cases)
[16, 18, 30]. Therefore, we uniformly set the overall sequencing depth (the sum of average
depth of each strain) as ∼ 20, 000× on all simulated datasets, which reflects common real
world practice.
Additionally, in order to evaluate the effect of sequencing coverage, we generated 5-

strainHIV datasets at an error rate of 10% and varying coverage, of overall depths of 500×,
1000×, 2000×, 5000×, 10, 000× and 20, 000×, respectively, while relative frequencies of
strains did not change. More details about simulated data are shown in Data simulation.

5-strain HIV mixture. This dataset consists of five known HIV-1 strains (YU2, NL43,
JRCSF, HXB2, 896), as originally presented in [30]. Strains were simulated at relative abun-
dances between 10 and 30%, i.e. a sequencing coverage of 2000× to 6000× per strain.
This virus mixture is one of the most challenging datasets, because the highly repetitive
regions in the HIV genome, which usually hamper the performance of short-read-based
assemblers [16, 18, 30].

6-strain Poliovirus mixture. This mixture contains six strains of Poliovirus (Type
2), with exponentially increasing relative abundances from 2% to 50%. The haplotype
sequences were downloaded from the NCBI database. In addition, we simulated la1 and
la2, as two more data sets reflecting 6 Poliovirus strains, where la1 contains strains of
abundance as low as 0.1% and la2 contains strains of abundance as low as 0.01%; see
Table 1 for a full description of these data sets in terms of strains and their abundances.

10-strain HCV mixture. This mixture contains ten strains of hepatitis C virus (HCV),
Subtype 1a, with relative frequencies varying from 5 to 15% per haplotype. The haplotype
sequences were also obtained from the NCBI database.

Luo et al. Genome Biology (2022) 23:29 Page 8 of 27

Ta
b
le

1
C
ha
ra
ct
er
is
tic
s
of

be
nc
hm

ar
ki
ng

da
ta
se
ts

V
ir
us

m
ix
tu
re

V
ir
us

ty
p
e

#S
tr
ai
n

G
en

om
e
si
ze

(b
p
)

C
ov

er
ag

e
D
iv
er
g
en

ce
(%

)
St
ra
in

ab
un

d
an

ce
(%

)

Si
m
ul
at
ed

5-
st
ra
in
H
IV

H
IV
-1

5
94
78
–9
71
9

20
,0
00

×
2.
7–
5.
6

10
,1
5,
20
,2
5,
30

6-
st
ra
in
Po

lio
vi
ru
s

Po
lio
vi
ru
s-
2

6
74
28
–7
46
0

20
,0
00

×
0.
2–
5.
5

2,
4,
8,
16
,2
0,
50

6-
st
ra
in
Po

lio
vi
ru
s
(la
1)

Po
lio
vi
ru
s-
2

6
74
28
–7
46
0

20
,0
00

×
0.
2–
5.
5

0.
1,
1,
2,
8,
20
,6
8.
9

6-
st
ra
in
Po

lio
vi
ru
s
(la
2)

Po
lio
vi
ru
s-
2

6
74
28
–7
46
0

20
,0
00

×
0.
2–
5.
5

0.
01
,0
.1
,1
,2
,8
,8
8.
89

10
-s
tr
ai
n
H
C
V

H
C
V-
1a

10
92
73
–9
31
1

20
,0
00

×
2.
8–
7.
4

5,
6,
7,
8,
9,
11
,1
2,
13
,1
4,
15

15
-s
tr
ai
n
ZI
KV

ZI
KV

15
10
,2
51
–1
0,
26
9

20
,0
00

×
1.
1–
15
.1

2,
4,
5,
5,
5,
6,
6,
6,
7,
7,
8,
8,
9,
10
,1
2

5-
st
ra
in
SA

RS
-C
oV

-2
SA

RS
-C
oV

-2
5

26
,5
74
–2
9,
90
3

20
,0
00

×
0.
3–
1.
1

10
,1
5,
20
,2
5,
30

5-
st
ra
in
SA

RS
-C
oV

-2
(la
)

SA
RS
-C
oV

-2
5

26
,5
74
–2
9,
90
3

20
,0
00

×
0.
3–
1.
1

0.
1,
1,
5,
10
,8
3.
9

Ex
pe
rim

en
ta
l

5-
st
ra
in
PV

Y
(M

oc
k)

PV
Y

5
96
94
–9
70
1

58
00

×
3.
6–
21
.6

9.
3,
12
.7
,2
1.
1,
24
.4
,3
2.
5

SA
RS
-C
oV

-2
(R
ea
l)

SA
RS
-C
oV

-2
-

-
12
,0
00

×
-

-

Fo
re

ac
h
be

nc
hm

ar
ki
ng

da
ta
se
t,
w
e
sp
ec
ify

th
e
na
m
e
of

vi
ru
s
m
ix
tu
re
,v
iru

s
ty
pe

,n
um

be
ro

fs
tr
ai
ns

in
th
e
m
ix
tu
re
,r
an
ge

of
ge

no
m
e
si
ze
,t
ot
al
se
qu

en
ci
ng

co
ve
ra
ge

,p
ai
rw

is
e
di
ve
rg
en

ce
,a
nd

st
ra
in
ab

un
da
nc
e
sp
ec
tr
um

.T
he

pa
irw

is
e

di
ve
rg
en

ce
is
eq

ua
lt
o
1−

A
N
I,
w
he

re
A
N
I(
A
ve
ra
ge

N
uc
le
ot
id
e
Id
en

tit
y)
is
ca
lc
ul
at
ed

by
Fa
st
A
N
I[
31
].
In
ex
pe

rim
en

ta
ld
at
a
se
ts
,5
-s
tr
ai
n
PV

Y
is
a
m
oc
k
co
m
m
un

ity
,t
ha
ti
s
th
e
se
qu

en
ci
ng

da
ta
is
re
al
,b
ut

th
e
m
ix
tu
re
is
sy
nt
he

tic
,w

he
re
as

SA
RS
-C
oV

-2
(R
ea
l)
is
a
re
al
sa
m
pl
e
so

th
er
e
is
no

gr
ou

nd
tr
ut
h
fo
rt
he

st
ra
in
s.
Th

e
da
ta
se
ts
6-
st
ra
in
Po

lio
vi
ru
s
(la
1)
an
d
6-
st
ra
in
Po

lio
vi
ru
s
(la
2)
ar
e
si
m
ila
rw

ith
6-
st
ra
in
Po

lio
vi
ru
s,
ex
ce
pt

th
e
lo
w
es
ta
bu

nd
an
ce

(la
)o

fs
tr
ai
ns

ex
te
nd

s
to

0.
1%

an
d
0.
01
%
,r
es
pe

ct
iv
el
y.
Th

e
da
ta
se
t5

-s
tr
ai
n
SA

RS
-C
oV

-2
(la
)i
s
si
m
ila
rw

ith
5-
st
ra
in
SA

RS
-C
oV

-2
ex
ce
pt

th
e
lo
w
es
ta
bu

nd
an
ce

(la
)o

fs
tr
ai
ns

ex
te
nd

s
to

0.
1%

Luo et al. Genome Biology (2022) 23:29 Page 9 of 27

15-strain ZIKVmixture. This mixture consists of fifteen strains of Zika virus (ZIKV), of
which three master strains were obtained from the NCBI database and four mutants were
generated per master strain by randomly introducing mutations. The relative frequency
of strains varies between 2 and 12%.

5-strain SARS-CoV-2 mixture. This mixture consists of five strains of SARS-CoV-2,
with the relative frequencies varying from 10% to 30%. The true haplotype sequences
(high quality without N bases) were extracted from different regions (namely, Belgium,
Egypt, Oman, USA, China) in theGISAID (https://www.gisaid.org/) database. In addition,
resembling the Poliovirus data sets, we simulated la, as a data set containing 5-strains
SARS-CoV-2 where two strains come at abundances as low as 1% and 0.1%, respectively;
see again Table 1 for a detailed description.

Experimental data

To evaluate our method on real sequencing data, we downloaded two experimental
datasets for benchmarking analysis.

5-strain PVY mixture. This dataset consists of five Potato virus Y (PVY) strains. The
true sequences of five strains were accessed from GenBank under accession numbers
MT264731–MT264741. The corresponding real ONT reads were obtained from the SRA
database under BioProject PRJNA612026, as recently presented in [32]. We downloaded
long read sequencing data for each strain and then mixed them together to generate a
pseudo virus mixture (mock community), where strains have relative frequencies varying
from 9 to 33% and the total sequencing depth is approximate 5800×.

SARS-CoV-2 real sample. This dataset is Oxford Nanopore sequencing (GridION)
data of a real SARS-CoV-2 sample, as downloaded from the SRA database: SRP250446.
The N50 of the length of the reads is 2.5 kbp, the average sequencing error rate is
approximately 10% and the average sequencing coverage is about 12,000×.

Benchmarking: alternative approaches

We recall that Strainline is unique insofar as it is the first approach to determine the
haplotype/strain-specific genomes of viruses from long reads de novo. For the sake of
a meaningful comparison, we chose long read de novo assemblers that are designed to
deal with mixed samples (in other words, designed for metagenome assembly), such
as Canu [22] and metaFlye [26], on the one hand, and generic (consensus) de novo
assemblers, such as Wtdbg2 [24] and Shasta [25] on the other hand. Of those, we subse-
quently excluded metaFlye, because it failed to perform the assemblies on our datasets1.
Shasta returned too many fragmented contigs, indicating that no real assembly was
computed. For fairness reasons—we recall that all tools were originally designed for dif-
ferent purposes, but not strain aware virus genome assembly—we excluded metaFlye and
Shasta from further consideration. For Canu, we used the parameters recommended for
metagenome assembly, and we ran Wtdbg2 with default parameters. The output contigs
were then subject to being evaluated.

1Receiving the error message “No disjointigs were assembled”; upon contact, the authors responded that metaFlye does
not support the assembly of very short sequences, such as viruses.

https://www.gisaid.org/
https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP250446

Luo et al. Genome Biology (2022) 23:29 Page 10 of 27

In addition, we also benchmarked reference-guided methods such as PredictHaplo [11]
and CliqueSNV [12], which can reconstruct haplotypes from long-read sequencing data.
However, we failed to run PredictHaplo on our long-read data sets (we have reported
the so far unresolved issue at https://github.com/cbg-ethz/PredictHaplo/issues/1). For
CliqueSNV, we reported results for PacBio data since CliqueSNV has not been validated
on ONT data by far as much as PacBio (and Illumina) data.

Performance evaluation

Assemblymetrics

In the evaluation, we considered all relevant categories, as output by QUAST V5.1.0 [33],
as a prominent assembly evaluation tool. As is common, we discarded contigs of length
less than 500 bp from the output of all tools. In particular, we ran the metaquast.py

program with the option -unique-mapping appropriately taking into account that our
data sets reflect mixed samples. In the following, we briefly define the metrics we are
considering.

Haplotype coverage (HC). Haplotype coverage is the percentage of aligned bases in the
ground truth haplotypes covered by haplotigs. Haplotype coverage is commonly used to
measure the completeness in terms of genome diversity of the assembly.

N50 and NGA50. We also consider N50 and NGA50 to measure assembly contiguity,
as per their standard definitions: N50 is the maximum value such that all contigs of at
least that length cover at least half of the assembly, and NGA50 is the maximum value
such that the contigs of at least that length cover at least half of the reference sequence
when aligned against it (after breaking contigs at misassembly events and trimming all
unaligned nucleotides); here, the reference sequence is taken to reflect the concatenation
of all strain-specific genomes from which reads were simulated, or the canonical choices
of reference sequences for real data otherwise.

Error rate (ER). The error rate is the fraction of mismatches, indels and N’s (i.e. ambigu-
ous bases) in the alignment of the contigs with the reference sequences.

Misassembled contigs proportion (MC). If a contig involves at least one misassembly
event, it is counted as misassembled contig. A misassembly event is given when contigs
align with a gap or overlap of more than 1kbp, align to different strands, or even differ-
ent haplotypes. As MC, we report the percentage of misassembled contigs relative to the
overall number of output contigs.

Precision and recall. Because it was found helpful in evaluating virus genome assem-
blies earlier, we also report precision and recall. While precision refers to the fraction of
contigs that align to the correct strain-specific sequence, recall refers to the fraction of
strains that have a correctly aligned contig. Therefore, the edit distance of the alignment
of the contig with the reference sequence must not exceed a threshold d, which can vary
(e.g., 0%, 1%, 2%, 3%, 4%, 5%, see Additional file 1: Figures S1–S3). In Results in the main
text, the most stringent threshold 1% is used).

https://github.com/cbg-ethz/PredictHaplo/issues/1

Luo et al. Genome Biology (2022) 23:29 Page 11 of 27

Haplotype abundance evaluation

Furthermore, we use two further metrics equally suggested in prior work as helpful for
evaluating virus genome assembly quality [18, 19]. Namely, we report the absolute fre-
quency error (AFE) and the relative frequency error (RFE), which measure the deviation
of the estimated abundances from the true abundances of the haplotypes. Let k be the
number of true haplotypes. For a haplotype i ∈ {1, ..., k}, let âi and ai be the estimated and
true abundance of haplotype i, respectively. To determine âi, we first collect all haplotigs
that get aligned with i, and then add up the abundances of these haplotigs. Let further
I = {i ∈[k] : âi > 0} be all haplotypes that by their abundance were estimated to exist.
One then calculates: AFE = 1

|I|
∑

i∈I |ai − âi|, RFE = 1
|I|

∑

i∈I |ai − âi|/ai.

Benchmarking results

We performed benchmarking experiments including all methods on the simulated and
experimental data as described above, for both PacBio CLR and Oxford Nanopore reads.
In a short summary of the results ex ante, Strainline manages to reconstruct all full-length
haplotypes accurately from most of the mixed viral samples. Because truly specializing
competing approaches are lacking, Strainline performs best in comparison with any
alternative approach, by quite drastic margins.

Simulated PacBio CLR data. See Table 2 and Additional file 1: Table S3. Strainline
yields near-perfect assemblies on six out of eight datasets (HIV, Poliovirus, Poliovirus
(la1), HCV, ZIKV, and SARS-CoV-2). That is, all ground truth haplotypes in the mixed
samples are reconstructed to their full extent (HC≈100%, recall=100%), at very low error
rates (0.002% ∼0.3%) and without misassemblies. It also obtains the exact number of true
haplotypes on four datasets (precision is 100%), and overestimates the number of haplo-
types in the 6-strain Poliovirus (la1) mixture (precision=75%, recall= 100%) and 5-strain
SARS-CoV-2 mixture (precision=71.4%, recall= 100%). Strainline fails to reconstruct all
haplotypes on two datasets, namely, 6-strain Poliovirus (la2) (HC= 65.3%) and 5-strain
SARS-CoV-2 (la) (HC= 60.8%). We recall that these two datasets are particularly chal-
lenging because they contain strains of very low abundance (0.01% , 0.1%) and divergence
(0.2%, 0.3%); see Table 1 for details. Of note, while Strainline still accurately reconstructs
Poliovirus strains of 0.1% (amounting to 20× coverage), Strainline struggles to do that
for SARS-CoV-2 strains. The explanation for this effect is the fact that the SARS-CoV-2
genome is 4 times longer than the Poliovirus genome (∼ 30, 000 bp versus ∼ 7500 bp).
The expected amount of coverage breaks for a 20× covered strain in a 30,000 bp genome
is too large to still allow for accurate full-length reconstruction, while still being feasible
for genomes of 7500 bp in length. In addition, the low divergence increases the probabil-
ity of ambiguous stretches in longer genomes. In comparison, both de novo assemblers
(Canu and Wtdbg2) and reference-guided methods (CliqueSNV) struggle to reconstruct
the haplotypes on all eight datasets, with Canu achieving only 49% to 85.9% haplotype
coverage on these datasets. Canu further achieves 100% recall on SARS-CoV-2, but only
50% to 80% recall on the other seven datasets (see Additional file 1: Figure S1). Notably,
Strainline outperforms other tools in terms of precision on five datasets except that Canu
achieves better precision on the 5-strain SARS-CoV-2 dataset and Wtdbg2 achieves bet-
ter precision on 6-strain Poliovirus (la1), 5-strain SARS-CoV-2 and SARS-CoV-2 (la)
datasets. The reason for Canu’s successes on the 5-strain SARS-CoV-2 dataset in terms of

Luo et al. Genome Biology (2022) 23:29 Page 12 of 27

Table 2 Benchmarking results for simulated PacBio CLR reads. HC haplotype coverage, ER error rate
(mismatches + indels + N’s),MC misassembled contigs proportion. NGA50 is labeled with “-” if the
uniquely aligned blocks cover less than half of the reference length. The total sequencing coverage
in this table is 20,000×. Note that CliqueSNV is a reference-based method, whereas the others are de
novo assemblers. For running CliqueSNV, we have tried various strategies (see Additional file 1: Table
S2) but only the results of the best strategy are reported here. * If contigs are full-length, this number
represents the estimated number of haplotypes or strains in the virus mixture. † Wtdbg2 consensus
as reference, using reads corrected by Strainline error correction. ‡ High quality reference (the
highest abundant strain) using reads corrected by Strainline error correction

#Contigs* HC (%) N50 (bp) NGA50 (bp) ER (%) MC(%)

5-strain HIVmixture
Strainline 5 99.9 9697 9697 0.002 0.0
Canu 5 84.5 8227 8170 0.409 20.0
Wtdbg2 1 15.5 7419 - 1.820 0.0
CliqueSNV†(reference based) 8 77.2 7419 7419 1.106 0.0

6-strain Poliovirus mixture
Strainline 6 99.9 7449 7444 0.074 0.0
Canu 6 62.7 7040 6399 0.538 0.0
Wtdbg2 1 14.7 6575 - 0.244 0.0
CliqueSNV‡(reference based) 4 49.9 7452 7438 0.433 0.0

10-strain HCVmixture
Strainline 10 99.9 9294 9292 0.056 0.0
Canu 11 76.9 7703 7174 0.351 0.0
Wtdbg2 2 13.6 7698 - 5.077 0.0
CliqueSNV‡(reference based) 1 10.0 9310 - 1.963 0.0

15-strain ZIKVmixture
Strainline 15 99.6 10,238 10,238 0.021 0.0
Canu 13 55.7 10,233 7129 0.189 0.0
Wtdbg2 2 10.7 8773 - 1.693 0.0
CliqueSNV‡(reference based) 1 6.7 10,268 - 1.627 0.0

5-strain SARS-CoV-2mixture
Strainline 7 98.6 29,017 29,009 0.047 0.0
Canu 16 85.9 12,419 25,137 0.078 0.0
Wtdbg2 1 20.6 29,158 - 0.360 0.0
CliqueSNV‡(reference based) 1 21.1 29,903 - 0.007 0.0

precision and recall is the fact that its assembly is heavily fragmented (Canu generates 16
fragmented contigs, at an N50 of 12419). This puts Canu’s achievements into a different
context (and indicates that precision and recall have to be taken with a certain amount
of care in the evaluation of assembly performance). Wtdbg2 basically generates a single
consensus genome sequence rather than keeping haplotype information. Consequently, it
merely obtains 10.7% to 20.6% haplotype coverage at high error rates, for example, 1.8%,
5.1%, and 1.7% on HIV, HCV, and ZIKV datasets, respectively. This also puts the fact that
Wtdbg2 achieves great precision into context: while great precision is supported by com-
puting only a single haplotype, recall suffers decisively. CliqueSNV also only reconstructs
a fraction of the haplotypes making part of the virus mixtures (HC: 10 ∼ 77%), regardless
of the choice of reference genome used: neither the most abundant strain nor any rea-
sonable bootstrap consensus genome, as generated by Wtdbg2 or Strainline, for example,
enhance CliqueSNV’s performance significantly. The explanation for CliqueSNV’s perfor-
mance rates are the large amount of haplotype-specific SNP’s, which induces bottlenecks
during the computation of cliques, as inherent to the algorithm of CliqueSNV (we thank
the authors for the personal communication).

Luo et al. Genome Biology (2022) 23:29 Page 13 of 27

Considering results for the 3 mixtures containing strains of extremely low abundance,
la1 and la2 for Polio and la for SARS-CoV-2, see Additional file 1: Table S3, we find that
Strainline still reconstructs all strains in la1 (HC: 98%, Recall=100%, ER=0.3%), which
points out that Strainline is able to reconstruct strains of 20× coverage (abundance 0.1%
times 20,000× coverage overall), albeit at the expense of overestimating the number of
haplotypes (precision = 75%). Strainline eventually struggles to reconstruct all strains in
data sets la2 (Polio; HC=65.3%) and la (SARS-CoV-2; HC=60.8%). This translates into
Strainline failing to reconstruct strains of coverage 2× (0.01% times 20,000×). Of course,
2× reflects a coverage rate that induces various coverage breaks along the genome, which
prevents to assemble the corresponding sequence already in theory. The low divergence
of strains (0.2%, 0.3%) in these data sets adds to the difficulties induced by the very low
coverage.
All other methods struggle already on la1, on which Strainline still exhibited good

performance rates. Canu, as the second best performing tool, for example, achieved
haplotype coverage of 59% and 49% on la1 and la2, respectively.

Simulated ONT data. Table 3 displays the benchmarking results for Oxford Nanopore
reads assembly. Again, Strainline yields near-perfect results on all five datasets. All true
haplotypes are reconstructed (HC≈100%, recall=100%) with extremely low error rate
(0.023∼0.081%), and without misassemblies. Moreover, it achieves the exact number of
true strains on three datasets (HIV, Poliovirus and HCV, precision=100%), and over-
estimates the number of haplotypes by one on the 15-strain ZIKV and the 5-strain
SARS-CoV-2 mixtures (precision is 100% and 83.3%, respectively).
In comparison, Canu obtains 16.6%, 10.0%, and 6.6% haplotype coverage on Poliovirus,

HCV, ZIKV datasets, respectively, which indicates that Canu does not operate in a strain-

Table 3 Benchmarking results for simulated Oxford Nanopore reads. HC haplotype coverage, ER
error rate (mismatches + indels + N’s),MC misassembled contigs proportion. NGA50 is labeled with
’-’ if the uniquely aligned blocks cover less than half of the reference length. The total sequencing
coverage in this table is 20,000×

#Contigs HC (%) N50 (bp) NGA50 (bp) ER (%) MC(%)

5-strain HIVmixture
Strainline 5 99.9 9702 9702 0.081 0.0
Canu 2 35.8 18,151 7634 1.730 50.0
Wtdbg2 1 18.9 9046 - 1.327 0.0

6-strain Poliovirus mixture
Strainline 6 100.0 7454 7453 0.051 0.0
Canu 1 16.6 7446 - 0.646 0.0
Wtdbg2 - - - - - -

10-strain HCVmixture
Strainline 10 99.9 9294 9294 0.023 0.0
Canu 1 10.0 9279 - 2.619 0.0
Wtdbg2 2 18.4 8567 - 1.336 0.0

15-strain ZIKVmixture
Strainline 16 98.3 10,244 10244 0.026 0.0
Canu 1 6.6 10,251 - 0.459 0.0
Wtdbg2 3 17.1 9490 - 0.564 0.0

5-strain SARS-CoV-2mixture
Strainline 6 99.9 29,299 29071 0.041 0.0
Canu 10 66.3 18,003 9492 0.062 0.0
Wtdbg2 1 19.0 26,767 - 0.586 0.0

Luo et al. Genome Biology (2022) 23:29 Page 14 of 27

specific manner. On HIV and SARS-CoV-2, Canu achieves better haplotype coverage,
while still missing a considerable proportion of strains (HC = 35.8% and 66.3%, respec-
tively). While Canu has 100% recall on SARS-CoV-2, only 0% to 20% recall are achieved
on the other four datasets (see Additional file 1: Figure S2). Canu also shows relatively
high error rates in the HIV and HCV assemblies (1.7% and 2.6%; 21 and 114 times higher
than Strainline, respectively). For Poliovirus and ZIKV datasets, Canu displays about 15
times higher error rates in comparison with Strainline.
Wtdbg2 only yields 17% to 19% haplotype coverage on four datasets (except Poliovirus)

at relatively high error rates (e.g., 1.3% on HIV and HCV). Wtdbg2 failed to run on the
Poliovirus dataset, so no results are shown.

Experimental data. See Table 4 for results on the 5-strain PVY mixture. Also here,
Strainline reconstructs the great majority of strain-specific sequences (HC=97.9%,
recall=60%). Importantly, recall is 100% if edit distance is set to 3%. Similarly, Strainline
overestimates the number of haplotypes by two, but achieves perfect precision (100%)
when operating at edit distance 3%.
Canu only reconstructs the most abundant two strains at full haplotype coverage and

high accuracy (error rate for these two strains is 0.07% and 0.09%). However, Canu misses
to cover any of the other three strains (reflected by HC=40% and recall=40%). Strainline,
on the other hand, reconstructs the most abundant two strains at their full length and the
exact same low error rate as Canu. In addition, unlike Canu, Strainline assembles also the
other less abundant three strains at full coverage and sufficiently low error rate (0.18% to
2.7%). Wtdbg2 only generates one single near full-length haplotype and another one short
contig (HC=26%) at an error rate of 4.9%.
As for the SARS-CoV-2 real sample (SRP250446), we use the genome sequence of

Wuhan-Hu-1 (NC 045512) as the reference for comparison since the ground truth is
unknown. Strainline yields one single full-length haplotype (HC=99.9%) at an error rate
clearly below the sequencing error rate (0.8%). Wtdbg2 only obtains one fragmented
contig (HC=65.8%, N50=19,405) with about two times higher error rate (1.5%). Canu
was unable to finish after running for more than ten days on a 48-core computing

Table 4 Benchmarking results for real Oxford Nanopore reads. HC haplotype coverage, ER error rate
(mismatches + indels + N’s),MC misassembled contigs proportion. NGA50 is labeled with ’-’ if the
uniquely aligned blocks cover less than half of the reference length. Note that the metrics for the
SARS-CoV-2 real sample in this table are not necessarily correct but for reference only, because the
ground truth is unknown and we only used the sequence of Wuhan-Hu-1 (NC_045512) as the truth
for comparison. † Strainline consensus as reference, using reads corrected by Strainline error
correction. * Sometimes NGA50 still reports a value (5456 bp) even if HC< 50% because contigs
have overlaps (See https://github.com/ablab/quast/discussions/174 for the detailed explanation)

#Contigs HC (%) N50 (bp) NGA50 (bp) ER (%) MC(%)

5-strain PVYmixture
Strainline 7 97.9 9538 9548 0.956 0.0
Canu 3 39.9 9665 5456* 0.105 0.0
Wtdbg2 2 26.0 7632 - 4.931 0.0

SARS-CoV-2 (SRP250446)
Strainline 1 99.9 29,565 29,565 0.832 0.0
Canu - - - - - -
Wtdbg2 1 65.8 19,405 19,396 1.542 0.0
CliqueSNV† 1 99.9 29,565 29,565 0.859 0.0

https://github.com/ablab/quast/discussions/174

Luo et al. Genome Biology (2022) 23:29 Page 15 of 27

machine, clearly exceeding acceptable computational resources, so we stopped the job.
This explains why no results are shown.

Haplotype abundance estimation

We also evaluated the accuracy of estimated haplotype abundances on both simulated
and real data, see Table 5. Note that Canu and Wtdbg2 do not provide abundance esti-
mation (because of their general setup as consensus assemblers), and CliqueSNV only
reconstructs a minority of haplotypes, so no reasonable comparison with other methods
can be provided.
Strainline estimates the frequencies for the reconstructed haplotypes at operable accu-

racy, with absolute frequency error (AFE) of 0.04%/0.27% (PacBio/ONT) on the simulated
HIV data, 0.06%/0.28% on the HCV data and 0.18%/0.28% on the ZIKV data, respec-
tively. One observes that the relative frequency errors (RFE) follow a similar pattern. On
simulated Poliovirus, SARS-CoV-2 and experimental PVY datasets, Strainline estimates
the abundances at moderate accuracy (AFE is between 2.17 and 4.48%). A likely expla-
nation for increased error rates on Poliovirus data is the fact that strain abundances vary
exponentially (exponentially increasing from 1.6 to 50.8%). The less accurate estimates
on Poliovirus refer mainly to low frequent strains, which naturally causes high relative
frequency errors (48%, 51% on PacBio and ONT data). A possible reason for increasing
errors of abundance estimates on the simulated SARS-CoV-2 and the experimental PVY
datasets is the overestimation of the number of haplotypes in the mixed samples. These
findings suggest that accurate haplotype reconstruction goes hand in hand with accurate
haplotype abundance estimation. The results are also likely to reflect the current limits in
that respect, because coverage fluctuations and partial amounts of reads of shorter length
impose certain constraints on estimating haplotype abundance.

Error correction evaluation

In addition to benchmarking analysis for assemblies, we benchmarked several error cor-
rection tools, Daccord [27] (integrated in Strainline) and other widely used tools, such
as Racon [34], LoRMA [35], CONSENT [36], and, last but not least, the error correction

Table 5 Absolute and relative errors of estimated haplotype abundances by Strainline on different
virus mixtures. For each dataset, we present the average error over all assembled strains. Note that
for the SARS-CoV-2 (SRP250446) real sample, the abundance estimation error is not shown because
the ground truth is unknown. AFE absolute frequency error, RFE relative frequency error

Datasets AFE (%) RFE (%)

Simulated PacBio CLR
5-strain HIV 0.04 0.18
6-strain Poliovirus 2.17 48.35
10-strain HCV 0.06 0.80
15-strain ZIKV 0.18 4.93
5-strain SARS-CoV-2 3.40 17.49

Simulated ONT
5-strain HIV 0.27 1.48
6-strain Poliovirus 2.30 51.18
10-strain HCV 0.28 3.05
15-strain ZIKV 0.28 6.10
5-strain SARS-CoV-2 4.14 20.60

Experimental ONT
5-strain PVY 4.48 23.07

Luo et al. Genome Biology (2022) 23:29 Page 16 of 27

module of Canu [22]. While Canu and Racon are based on multiple sequence alignments
(MSAs), LoRMA and CONSENT are based on combining de Bruijn graphs with MSAs.
We experienced that Racon and CONSENT failed to handle the virus data sets. The
likely reason is the ultra-high sequencing coverage (∼ 20, 000×), which induces massive
amounts of read overlaps, which in turn easily exceeds computational resources in the
downstream analysis (programs crashed on 48 cores and 500GB RAM). Benchmarking
results for error correction are shown in Additional file 1: Table S4 (PacBio CLR) and
Table S5 (ONT). The results show that Daccord achieves 3 ∼ 65 times lower error rate
on PacBio CLR data, and 2 ∼ 5 times lower error rate on ONT data, in comparison with
Canu and LoRMA. All three tools keep nearly 100% haplotype coverage (without losing
genome information) and show comparable read length (N50). Of note, Daccord’s error
correction performance is about an order of magnitude better for PacBio than for ONT
data, while still Daccord outperforms other tools also on ONT data. In summary, this jus-
tifies to make preferred use of Daccord for correcting errors in long reads used in strain
aware virus genome assembly.
Further, we tested the performance of Daccord by varying the size of the local win-

dows, as the boundaries of the de Bruijn graphs to be constructed, from 20 to 200 bp on
both PacBio CLR and ONT data, see Additional file 1: Figure S5 for the corresponding
results. The experiments show that optimal window sizes range from 30 to 50 bp, where
larger window sizes are computationally more demanding. Following these experiments,
we determined 40 bp as the most reasonable local window size, kept as the default in
Strainline.

Effects of divergence versus ratio of abundances

To investigate the effects of divergence and differences in abundance for strains in a virus
mixture, we simulated several mixtures consisting of two strains, across all possible com-
binations of divergence of 0.1%, 0.5%, 1.0%, 3.0%, 5.0%, and 10.0% (where 0.1% is the most
and 10.0% is the least challenging) and ratio of abundances of 1:1, 1:5, 1:10, 1:50, 1:100,
and 1:1000 (where 1:1 is the least and 1:1000 is the most challenging). In the experiments,
we focused on PacBio CLR reads.We then evaluated Strainline in terms of haplotype cov-
erage (HC), error rate (ER), and N50 for each of the possible combinations of divergence
and abundance ratio. Results are shown in Fig. 3. As per inspecting N50, one realizes that
Strainline reconstructs full-length strains in all cases (apart from divergence 5% and ratio

Fig. 3 Performance of Strainline with varying strain abundance (= relative frequency) and divergence in
two-strain mixtures using simulated PacBio CLR reads. The x, y axis refers to the abundance ratio and the
pairwise divergence of two strains in the mixture, respectively. Panels A, B, and C refer to haplotype
coverage, error rate (mismatch + indel) and N50 of the resulting assemblies, respectively. The darker colors
indicate the better assembly performance

Luo et al. Genome Biology (2022) 23:29 Page 17 of 27

1:1000, which appears to be an outlier). As for HC, Strainline performs optimally for all
combinations of at least 0.5% divergence and abundance ratio 1:100, while requiring a
ratio of 1:1 for divergence of 0.1% and divergence at least 5.0% for ratio 1:1000 to recon-
struct (the majority) of the two strains. Error rates appear to be suffer for combinations
for the extreme cases where still two strains are reconstructed, for example divergence of
only 0.5% and strain ratio of 1:100; note that for lower divergence and strain ratio, only
one strains gets reconstructed, which however appears to be free of errors. Note as well
that also as per ER, the combination of 5.0% divergence and strain ratio of 1:1000 appears
to be an artifact.

Robustness evaluation

To evaluate the robustness of assemblers with respect to random effects induced by the
simulation procedure, we repeatedly simulated five 6-strain Poliovirus mixtures, as a rep-
resentative data set, for both PacBio CLR andONT reads. Results are shown in Additional
file 1: Figure S4. In summary, Strainline outperforms Canu and Wtdbg2 in terms of
robustness with respect to the usual, most relevant assembly metrics, such as haplotype
coverage, error rate and N50.
Note that in Fig. S4 (B) for ONT reads Canu achieves lower error rate than Strainline.

This is because Strainline generates almost all strains (including the less frequent strains),
thus raising the average error rate, whereas Canu can only reconstruct the most abun-
dant strains. In fact, Strainline still achieves lower error rates than Canu when directly
comparing it on the most abundant strains.

Effect of sequencing coverage

To investigate the effect of sequencing coverage on viral quasispecies assembly, we chose
a 5-strain HIV mixture, as one of the most challenging datasets suggested in [16, 18].
We simulated PacBio CLR reads with different overall sequencing coverage. Assembly
results are shown in Table 6. We observe that Strainline successfully reconstructs all
true haplotypes at nearly perfect coverage (HC > 99%) and great accuracy at sequenc-
ing coverage of at least 2000×. In that respect, Strainline outperforms all other methods
quite substantially. When decreasing sequencing depth below 2000× (i.e. 1000 to 500×),
Strainline still achieves haplotype coverage (HC) of approximately 80%, thereby still estab-
lishing clear improvements over the alternative approaches. In terms of error rates, Canu
catches up with Strainline starting from coverage rates of 2000× in decreasing order.
In terms of all other metrics (such as N50, NGA50 MC), Strainline appears to deliver
optimal performance across all coverage rates, which does not apply for the alternative
approaches.

Effect of sequencing error rate

To investigate the effect of sequencing error rate on viral quasispecies assembly, we used
5-strain HIV mixtures, as we did for evaluating effects of varying sequencing coverage.
We simulated both PacBio CLR and ONT reads with different sequencing error rate (5 ∼
30%). Assembly results are shown in Additional file 1: Tables S9 (CLR) and S10 (ONT).
We observe that Strainline successfully reconstructs all true haplotypes at nearly perfect
coverage (HC ≈ 100%) and correctly estimates the number of haplotypes in all PacBio
CLR data sets across varying sequencing error rates (5 ∼ 30%). On the ONT data sets,

Luo et al. Genome Biology (2022) 23:29 Page 18 of 27

Table 6 Benchmarking results for 5-strain HIV mixture (PacBio CLR reads) with varying sequencing
coverage. HC haplotype coverage, ER error rate (mismatches + indels + N’s),MC misassembled
contigs proportion

#Contigs HC (%) N50 (bp) NGA50 (bp) ER (%) MC(%)

500×
Strainline 7 78.4 9517 9545 1.603 0.0
Canu 4 32.9 6766 5281 1.447 0.0
Wtdbg2 1 18.0 8687 - 2.295 0.0

1000×
Strainline 5 79.2 9557 9554 1.069 0.0
Canu 5 63.6 7207 7139 1.087 0.0
Wtdbg2 1 13.5 6516 - 1.520 0.0

2000×
Strainline 6 99.3 9644 9614 0.675 0.0
Canu 5 67.4 8193 7544 0.416 20.0
Wtdbg2 1 16.0 7741 - 1.103 0.0

5000×
Strainline 5 99.7 9690 9686 0.311 0.0
Canu 4 69.3 8264 8001 0.537 25.0
Wtdbg2 1 16.5 7950 - 2.115 0.0

10000×
Strainline 5 99.8 9696 9691 0.184 0.0
Canu 4 71.7 8844 8524 0.446 25.0
Wtdbg2 1 15.6 7528 - 2.777 0.0

20000×
Strainline 5 99.9 9697 9697 0.002 0.0
Canu 5 84.5 8227 8170 0.409 20.0
Wtdbg2 1 15.5 7419 - 1.820 0.0

Strainline shows similar performance rates for ONT error rates ranging from 5 ∼ 25%;
note that for both PacBio CLR and ONT data, the error rates of Strainline increase on
increasing error rates for the reads themselves, albeit only by fairly small amounts, in
particular in comparison with the alternative approaches. Only for the ONT dataset of
30% sequencing errors, Strainline experiences losses in terms of performance, the reason
of which is likely the somewhat poorer performance of Daccord (as the error correction
method used in Strainline) on ONT in comparison with PacBio CLR. Note however that
this drawback rather remains a theoretical issue, because ONT is steadily improving in
terms of error rates, so 30% rather reflects an artificial scenario in current times.

Runtime andmemory usage evaluation

We performed all benchmarking analyses on a x86_64 GNU/Linux machine with 48
CPUs. The runtime and peak memory usage evaluations for different methods are
reported in Additional file 1: Tables S6 and S7. Undoubtedly, Wtdbg2 is the fastest tool,
taking only a few seconds and 0.1∼0.4 GB memory on all datasets. The reasons are the
efficiency of fuzzy de Bruijn graphs used inWtdbg2 on the one hand, but also the fact that
Wtdbg2 generates consensus sequence in all cases, which corresponds to procedures that
are much faster than procedures that address strain aware assembly. The second fastest
tool is CliqueSNV, which, however, is reference based, which puts direct comparisons into
context. For simulated PacBio CLR reads assembly, Strainline is 1.4∼16 times faster and
requires less or similar peak memory in comparison to Canu (Additional file 1: Table S6).
For simulated ONT reads assembly, Strainline is 15 ∼ 76 times faster and requires less

Luo et al. Genome Biology (2022) 23:29 Page 19 of 27

or similar peak memory in comparison to Canu (Additional file 1: Table S7). By design,
the most expensive steps of Strainline are threaded, and there are two steps that con-
sume time, namely ‘Correction’ and ‘Consensus’, see Fig. 1. Overall, Strainline requires
12 to 177 CPU hours and 15 to 45 GB main memory on the datasets of 20,000× cover-
age. This indicates that our method is very well applicable in all real world scenarios of
interest.

Discussion
We have presented Strainline, a de novo assembly approach that reconstructs haplotype-
specific genomes from mixed viral samples using noisy long-read sequencing data. To
the best of our knowledge, Strainline is the first such approach that is presented in the
literature.
Although the length of long reads is a major advantage in the assembly of genomes,

the greatly elevated error rates pose substantial challenges when seeking to distinguish
between little diverse genomes. The large number of sequencing errors that affects the
reads easily exceeds the amount of genetic variants that are characteristic of the different
genomes. Because co-occurring true mutations can mean a decisive handle in the dif-
ferential analysis, it is usually advantageous to make use of the reads at their full length.
However, addressing this particular challenge by computing all-vs-all overlaps of reads
may demand excessive runtimes.
To address these major challenges, we proceed by drawing from both de Bruijn graph

based and overlap graph-based techniques so as to combine the virtues of the two
paradigms. We first employ a local de Bruijn graph-based strategy by way of an ini-
tial error correction step. Remarkably, this strategy was originally been designed and
presented for correcting long reads sampled from prokaryotic and eukaryotic genomes,
without that the local de Bruijn graph-based strategy established the state of the art on
such longer genomes. Here, we realized that local de Bruijn graphs perform perfectly
fine when processing short genomes: sequencing errors are suppressed succesfully which
enables us to carry out the second step.
The second step clusters the pre-corrected long reads into groups of reads that are

supposed to collect reads from identical haplotypes. To avoid excessive overlap compu-
tations, we iteratively select seed reads, as longest reads that do not overlap any of the
previously selected seed reads. If reads sufficiently overlap a seed read, we put them into
the cluster of the respective seed read. This way, we determine clusters based on seed-
vs-all overlap computations. Because the number of seed reads is smaller by orders of
magnitude in comparison with the number of reads overall, we reduce the runtime by
orders of magnitude in comparison with performing all-vs-all overlap computations.
Following cluster generation, we compute a haplotype-specific consensus (haplotig)

for each cluster of reads. This eliminates errors further and preserves haplotype-specific
variation. Upon having computed this consensus, we iteratively extend the haplotigs by
evaluating their overlaps—note that the number of haplotigs is much smaller than the
number of reads, such that all-vs-all haplotig overlap computations are computationally
feasible. In a last step, we discard haplotigs (haplotypes) of too low divergence or abun-
dance. The final output is a set of haplotypes together with their abundances. Many of
the haplotypes have reached full length and are reliable in terms of the sequence content.

Luo et al. Genome Biology (2022) 23:29 Page 20 of 27

In this, the goal of de novo viral quasispecies assembly from noisy long reads has been
achieved.
Benchmarking experiments on both simulated and experimental data, reflecting

various mixed viral samples referring to various relevant settings, such as different
viruses, different numbers of strains, haplotype abundances and sequencing platforms
(PacBio/ONT), have shown that our approach accurately reconstructs the haplotype-
specific sequences. Thereby, the output contigs tend to cover the majority of haplotypes
at their full length on most data sets.
As a result, Strainline proves superior in comparison with all long read genome assem-

bly methods currently available, and in theory applicable for virus genomes; note again
that no alternative method explicitly addresses virus genomes. The superiority of Strain-
line becomes documented in terms of various well-known and -approved assembly
evaluation metrics: Strainline’s contigs cover substantially more haplotypes, are longer
(N50, NGA50) and are more accurate in terms of error and misassembly rates.
Clearly, Strainline’s superiority did not come as a particular surprise, as representing

the first approach to explicitly consider de novo virus genome assembly from long reads.
In some detail, Canu and CliqueSNV at least are able to recover a certain fraction of hap-
lotypes, whereas Wtdbg2, however, always outputs one consensus sequence. With Canu,
CliqueSNV andWtdbg2 as the only approaches available at all, Strainline arguably estab-
lishes a substantial step up in the haplotype-specific assembly of viral genomes from noisy
third-generation sequencing reads.
There were some further clear hints that our approach made sense. First, we demon-

strated that Strainline was able to exploit increasing sequencing coverage to its advantage;
note that deeply sequenced datasets are common when analyzing virus genomes. At the
same time, Strainline required the least amount of reads for establishing sufficiently accu-
rate haplotypes in comparison with other methods. This indicates that Strainline caters
to a greater range of experimental settings of practical interest.
In addition, Strainline is the only long-read de novo assembly approach available that

does not only assemble the viral genomes, but also estimates the abundances of the haplo-
types that make part of themix of viral strains. Results have demonstrated that Strainline’s
abundance estimates are sufficiently accurate if the abundances do not refer to strains of
very low relative frequencies. Note however that low-frequency strains pose particular
challenges not only in this respect, because the relative lack of coverage for such strains
raises the level of uncertainty one has to deal with.
Note finally that in comparison with short-read viral quasispecies assemblers (such as

most prominently [18, 19]) that accurately operate in a haplotype-specific way, Strainline
is the only approach that reconstructs the haplotypes for most datasets at their full length.
This does not only point out that long reads indeed do mean a major advantage over
short reads, but also means that Strainline is able to leverage the advantages of long reads
successfully.
Nonetheless, improvements are conceivable. Strainline struggles to reconstruct very

low abundant haplotypes such as 0.01% or 0.1% (at least if divergence of strains is
low) when the overall sequencing coverage is 20, 000×, so there is currently no method
available to successfully reconstruct such haplotypes.

Luo et al. Genome Biology (2022) 23:29 Page 21 of 27

Also, Strainline sometimes tends to overestimate the number of haplotypes, which,
as a consequence, hampers the estimation of the abundances of the strains. One pos-
sible reason for haplotype overestimation is that haplotype identity in read overlaps
is based on overlap length and sequence identity alone, which may be too simplistic.
Likely, more sophisticated criteria will be able to successfully address this issue, which
we consider valuable future work. Last but not least, the computational efficiency of
the approach likely leaves further room for improvements: for example, computation of
consensus sequence for read clusters can possibly be implemented in a more efficient
way.

Conclusions
This paper presents Strainline, an approach to full-length viral haplotype reconstruction
from noisy long-read sequencing data. Strainline operates de novo, that is, Strainline does
not make use of reference sequence any time. We make use of local de Bruijn graph
assembly to sufficiently correct sequencing errors in raw reads, such that it is possi-
ble to extend contigs iteratively at a haplotype-specific level, in order to eventually yield
full-length strain-specific haplotypes. These properties render Strainline unique in the
spectrum of currently available assemblers: it is the only approach that can reconstruct
the strain-specific haplotypes in mixed viral samples using long reads, and estimate their
abundances sufficiently accurately.
We remain with saying that databases (e.g., GISAID) are currently filling up with (in

particular SARS-CoV-2) TGS sequencing read samples, drawn from infected people. So
far, one has been blind with respect to counting the number of strains that commonly
affect their hosts without incurring reference induced biases. The biased view on the
amount of strains that have infected people, either initially or having formed during the
course of the infection, is a decisive hindrance when assessing the evolutionary develop-
ment of viruses, where SARS-CoV-2 is an example of particular current interest. Seeing
the full spectrum of strains, without having to make use of existing, potentially already
obsolete reference genomes, has the potential to yield major insight into the course of
epidemics.
Now, we can finally have a closer look.
Our approach is implemented in an easy-to-use open-source tool https://github.com/

HaploKit/Strainline.

Methods
Correcting sequencing errors

For initial correction of errors in long reads, we adopt a local de Bruijn graph assembly
based strategy.While de Bruijn graph-based data structures tend to have difficulties when
dealing with TGS data because of the high error rates, it is shown in [27] that it can work
effectively when applied to small segments of the long reads.
Here, we realized that the corresponding strategy is particularly powerful when applied

to virus TGS data. In our experiments, we observed that the local de Bruijn graph-based
strategy has substantial advantages on virus data in comparison to the results presented
in the seminal work [27], which exclusively focused on TGS data from prokaryotic and
eukaryotic genomes of length at least a few Mbp. We integrate Daccord, as originally

https://github.com/HaploKit/Strainline
https://github.com/HaploKit/Strainline

Luo et al. Genome Biology (2022) 23:29 Page 22 of 27

suggested [27], by straightforwardly adjusting parameters so as to account for particu-
larities of datasets under consideration here, but without any methodical or theoretical
adjustments, into our workflow.
The main steps of the workflow that address error correction are shown in Fig. 2. In a

first step (see “Target read & overlapping reads”), read overlaps of raw reads are computed
using Daligner V2.0 [37], which uses canonical k-mers to identify local alignments of
high confidence between reads. Upon having selected a target read (i.e. the read to be
corrected), we subsequently (see “Read alignment pile”) form a read alignment pile, con-
sisting of the target read and all reads that share significant overlap with it. Then (see
“Windows”), we divide the pile into small windows, which serves the application of the
local de Bruijn graph-based strategy; note that the windows have to be sufficiently small
(here: 40 bp) such that the strategy works satisfyingly.
Accordingly, we construct de Bruijn graphs for all windows of size 40 bp (see “DBGs for

all windows” in Fig. 2). Importantly, windows share an overlapping interval of 30 bp (that
is, the step size of a window is 10bp, which is controlled by the parameter -a: advance

size in Daccord), as one can see in “Window consensus”: windows and their overlapping
intervals can be interpreted as nodes and edges of another graph. The respective graph of
windows and overlapping intervals can then be traversed, where scores can be assigned
to paths through that graph. To be specific, a path v1, v2, ..., vn through a local de Bruijn
graph is assigned the score

∑n
i=1 kscore(vi, i − 1), where vi is the node (i.e. a k-mer) in the

graph, and kscore(vi, i − 1) is the function for scoring a pair consisting of a k-mer vi and
a position i − 1 the k-mer may occur (see [27] for more details).
The paths of windows through that graph that are optimal in terms of the scores are

determined, and are further evaluated with respect to differences with the target read;
the concatenation of sequences of the graph that has highest score and least differences
in comparison with the target read is taken as the consensus sequence (corresponds to
“Window consensus” in Fig. 2), and reflects the true sequence that underlies the target
read. One can then correct the errors in the target read accordingly.

Read cluster generation

Subsequently, we compute clusters of (error corrected) overlapping reads. This addresses
to wipe out further errors, and, as the major point, to form groups of reads all of which
stem from the same (local) haplotype. For pseudo code supporting the generation of read
clusters, see Algorithm 1.
For this, first, we sort the error corrected reads by length in decreasing order, consider-

ing that longer reads tend to have more overlaps. Processing reads in the corresponding
order therefore results in larger read clusters. This increases the length of the result-
ing haplotigs and hence improves the assembly overall. In each iteration, we choose the
longest read having remained not assigned to a cluster as the seed read and compute
seed-vs-all overlaps on corrected reads using Minimap2 [38], whose seed-chain-align
procedure is known to perform pairwise alignments extremely fast.
Bad overlaps are filtered out according to reasonable, additional criteria, such as mini-

mum read overlap length (-minOvlpLen), minimum level of sequence identity for read
overlaps (-minIdentity), and in case of self-overlaps, duplicates or internal matches
(maximum overhang length of overlaps, -maxOH). Overlaps that do not satisfy these
criteria are removed.

Luo et al. Genome Biology (2022) 23:29 Page 23 of 27

To define these criteria concretely, we follow Algorithm 5 in [39]. Enforced by choos-
ing relatively strict thresholds for these criteria (see [40] for the details), the remaining
overlapping reads are expected to stem from the haplotype of the seed read. The corre-
sponding cluster is determined as the set of reads that overlap the seed read (according to
the criteria listed above).
Subsequently, all of the reads of the cluster are discarded from the sorted list of reads,

and the next iteration (referring to line 5 in Algorithm 1) is executed. The procedure
stops when the number of iterations (hence clusters) reaches the upper limit k where k is
user defined (default 100), or all reads have been processed (corresponding to R = ∅ in
Algorithm 1).
Notably, we only compute seed-vs-all overlaps, and not all-vs-all overlaps (as per, for

example, a straightforward, naive approach), and limit the number of clusters, which deci-
sively speeds up the procedure. In this, the fact that reads are already error corrected
ensures that one does not miss any overlap, which overall prevents to compute all-vs-all
overlaps.

Algorithm 1 Compute read clusters
Input: The set of raw reads R, maximum number of clusters k;
Output: The set of read cluster S
1: Sort R by length in descending order;
2: Initialize a set of used reads: U ← ∅;
3: S ← ∅
4: i ← 0
5: for each read r ∈ R do
6: if i > k then
7: break;
8: else
9: if r �∈ U then

10: Compute seed-vs-all overlaps using Minimap2;
11: Rovlp ← overlapping reads of seed read r ;
12: Ci ← {r, Rovlp} ;
13: U ← U ∪ Ci ;
14: S ← S ∪ {Ci} ;
15: i ← i + 1 ;
16: else
17: next;
18: end if
19: end if
20: end for
21: return S

Generating a consensus sequence for each read cluster

Although reads were initially corrected, they may still contain errors. The major possible
reasons are near-identical genomic regions that are shared across haplotypes.

Luo et al. Genome Biology (2022) 23:29 Page 24 of 27

For final polishing of reads, and removal of also more stubbornly resisting errors,
we first compute a partial order alignment (POA) algorithm [41] for each cluster. Sub-
sequently, we generate the consensus sequence for the POA of each cluster (which is
a straightforward, generic procedure). Adapting reads to this consensus completes the
process of error correction.
For computing POA’s of clusters, wemake use of the fast SIMD version, as implemented

in Spoa [34], and built into our approach. Note that this step can generate a longer and
more accurate haplotype-specific sequence for each cluster (which reflects the cluster-
specific haplotig).

Iterative extension of haplotigs

Haplotigs generated from the previous step do not necessarily reflect full-length haplo-
types. This explains why it makes sense to try to extend them further.
For extending haplotigs, one considers haplotigs as reads, and re-runs “Read cluster

generation” and “Generating a consensus sequence for each read cluster” another time,
inserting the haplotigs of the first iteration as reads. The procedure is iteratively repeated
until haplotigs cannot be elongated further. In that, our experiments demonstrate that
two iterations usually suffice for virus sequencing data sets.

Haplotype filtration

Ideally, iteratively extending haplotigs eventually results in correct, full-length haplotypes.
However, in practice, it is possible that some haplotypes have very low pairwise diver-
gence or very low relative abundance, each of which indicates that the corresponding
haplotypes are likely to reflect artifacts. It is therefore reasonable to filter out such arti-
ficial haplotypes, because they either reflect redundant or spurious sequences. For the
identification of low divergence and low relative abundance haplotypes, we make use
of two procedures for computing haplotype divergence on the one hand, and haplotype
relative abundance on the other hand.

Haplotype divergence calculation. We propose two metrics for haplotype divergence
measurement, namely local divergence (LD) and global divergence (GD). Given two hap-
lotypes Hi,Hj, let l be the length of their overlap, and m be the number of identically
matching positions in the overlap (som ≤ l by definition of l,m). Let further ni, nj be the
lengths of the non-overlapping parts of Hi,Hj relative to their overlap.
LD is defined by the formula LD(Hi,Hj) = 1 − m/l and GD is defined by GD(Hi,Hj) =

1−m/(l+ ni + nj). In other words, LD agrees with BLAST-like alignment identity, when
only considering the overlapping regions. GD, on the other hand, considers the entire
sequence context that neighbors and includes the overlap of Hi and Hj.
Note that two haplotypes having low local divergence but large global divergence

(because of a long overhang) are more likely to stem from two different strains than
haplotypes having small LD and GD.
Let further maxLD and maxCO represent the user-defined maximum local divergence

and the maximum contig overhang length (5bp in our cases), respectively. Note that Hi
being contained in Hj implies the length of Hi being smaller than the length of Hj, as
well as LD(Hi,Hj < maxLD and contig overhang length being at most maxCO. In this

Luo et al. Genome Biology (2022) 23:29 Page 25 of 27

case,Hi is discarded from the downstream analysis. For determining the overlap informa-
tion of two haplotypes, Minimap2 is used. The ultimate output is a set of non-redundant
haplotypes.

Calculating relative abundance of haplotypes. Calculating haplotype relative abun-
dance is straightforward when the length of the haplotypes approaches the size of the
(strain-specific) genomes, and when original reads are nearly free of errors.
For the calculation, one aligns the reads with the haplotypes, which in the given situa-

tion can usually be done in a non-ambiguous way. The result of the alignments is stored
in a BAM file. We then adopt the jgi_summarize_ bam_contig_depths program
from MetaBAT 2 [42] to calculate the depth of haplotypes based on the BAM file. The
relative abundance of Hi is equal to the average depth of Hi divided by the overall aver-
age depth of all haplotypes. Haplotypes with very low relative abundance are filtered out,
and one recomputes the abundance for the remaining haplotypes upon removal of the
spurious, low abundance haplotypes.
The final output consists of a set of full-length haplotypes along with their correspond-

ing relative frequencies, as desired.

Data simulation

To evaluate performance of Strainline, we generated several simulated datasets for both
PacBio CLR and ONT reads. For simulating reads, we made use of PBSIM V1.0.3 [28]
model-based simulation, which reflects a sound way to generate PacBio CLR reads of N50
length 2.4kbp and average sequencing error rate 10%. In addition, we also downloaded
real Oxford Nanopore reads (GridION) of a SARS-CoV-2 sample from the SRA database
(SRP250446) and then used NanoSim V2.6.0 [29] as a popular, approved simulator to
train an ONT read profile based on this real ONT dataset. Accordingly, we generated
simulated ONT reads, at an N50 of 2.5kbp in terms of length and average sequencing
error rate of 10%. The genomes used for each dataset are listed in the “Availability of data
and materials” section.

Parameter settings

Three main parameters need to be set when running Strainline. The first parameter is
k, the maximum number of clusters in Algorithm 1. To investigate the consequences of
varying k, we ran Strainline with k ranging from 40 to 200 on the 6-strain Poliovirus
mixture (PacBio CLR reads). Results is shown in Additional file 1: Table S8; they show
that optimal, robust assembly performance is reached for k ranging between 60 and 200.
While using even larger kmay improve the assembly performance slightly further, choices
beyond 200 require computational resources that are too demanding.
Based on these analyses, we recommend users to choose k between 50 and 200, where

a typical choice is k = 100, as used in the majority of our experiments. The other
two parameters are maximum global divergence (maxGD) and maximum local diver-
gence (maxLD) as described in the “Haplotype filtration” section. Usually, the amount of
haplotypes reconstructed increases on lowering maxGD or maxLD, so increases recall.
However, this advantage is offset by an overestimation of haplotypes, which lowers pre-
cision. Here, we chose maxGD = 0.02, maxLD = 0.01 for most of our data sets. Detailed
settings of parameters used in our experiments can be seen at Code Ocean [40].

https://trace.ncbi.nlm.nih.gov/Traces/sra/?study=SRP250446

Luo et al. Genome Biology (2022) 23:29 Page 26 of 27

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s13059-021-02587-6.

Additional file 1: Supplement: This contains all supplementary materials referenced in the main text.

Additional file 2: Review history.

Acknowledgements
We would like to thank Jasmijn Baaijens for insightful discussions, and Viachaslau Tsyvina and Alex Zelikovsky for helpful
advice when running CliqueSNV.

Review history
The review history is available as Additional file 2.

Peer review information
Kevin Pang was the primary editor of this article and managed its editorial process and peer review in collaboration with
the rest of the editorial team.

Authors’ contributions
XL and AS developed the method. XL implemented the software and conducted the data analysis. XL, XK, and AS wrote
the manuscript. All authors read and approved the final version of the manuscript.

Funding
XL and XK were supported by the Chinese Scholarship Council. AS was supported by the Dutch Scientific Organization,
through Vidi grant 639.072.309 during the early stages of the project, and from the European Union’s Horizon 2020
research and innovation programme under Marie Skłodowska-Curie grant agreements No 956229 (ALPACA) and No
872539 (PANGAIA). Open Access funding enabled and organized by Projekt DEAL.

Availability of data andmaterials
All data (including raw sequencing reads, reference genomes and assemblies) and code for reproducing the results in
the paper are deposited on Code Ocean [40]. The source code of Strainline is GPL-3.0 licensed, and publicly available on
GitHub [43].

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Received: 25 June 2021 Accepted: 17 December 2021

References
1. Holland JJD, De La Torre J, Steinhauer D. Rna virus populations as quasispecies. Genet Divers RNA Viruses. 1992;176:

1–20.
2. Domingo E, Escarmís C, Sevilla N, Moya A, Elena SF, Quer J, Novella IS, Holland JJ. Basic concepts in rna virus

evolution. FASEB J. 1996;10(8):859–64.
3. Domingo E, Sheldon J, Perales C. Viral quasispecies evolution. Microbiol Mol Biol Rev. 2012;76(2):159–216.
4. Beerenwinkel N, Sing T, Lengauer T, Rahnenführer J, Roomp K, Savenkov I, Fischer R, Hoffmann D, Selbig J, Korn

K, et al. Computational methods for the design of effective therapies against drug resistant hiv strains.
Bioinformatics. 2005;21(21):3943–50.

5. Douek DC, Kwong PD, Nabel GJ. The rational design of an aids vaccine. Cell. 2006;124(4):677–81.
6. Knyazev S, Hughes L, Skums P, Zelikovsky A. Epidemiological data analysis of viral quasispecies in the

next-generation sequencing era. Brief Bioinforma. 2021;22(1):96–108.
7. Loman NJ, Constantinidou C, Christner M, Rohde H, Chan JZ-M, Quick J, Weir JC, Quince C, Smith GP, Betley JR,

et al. A culture-independent sequence-based metagenomics approach to the investigation of an outbreak of
shiga-toxigenic escherichia coli o104: H4. Jama. 2013;309(14):1502–10.

8. Somerville V, Lutz S, Schmid M, Frei D, Moser A, Irmler S, Frey JE, Ahrens CH. Long-read based de novo assembly
of low-complexity metagenome samples results in finished genomes and reveals insights into strain diversity and
an active phage system. BMC Microbiol. 2019;19(1):1–18.

9. Garg S. Computational methods for chromosome-scale haplotype reconstruction. Genome Biol. 2021;22(1):1–24.
10. Zagordi O, Bhattacharya A, Eriksson N, Beerenwinkel N. Shorah: estimating the genetic diversity of a mixed sample

from next-generation sequencing data. BMC Bioinformatics. 2011;12(1):1–5.
11. Prabhakaran S, Rey M, Zagordi O, Beerenwinkel N, Roth V. Hiv haplotype inference using a propagating dirichlet

process mixture model. IEEE/ACM Trans Comput Biol Bioinforma. 2013;11(1):182–91.

https://doi.org/10.1186/s13059-021-02587-6

Luo et al. Genome Biology (2022) 23:29 Page 27 of 27

12. Knyazev S, Tsyvina V, Shankar A, Melnyk A, Artyomenko A, Malygina T, Porozov YB, Campbell EM, Mangul S,
Switzer WM, et al. Accurate assembly of minority viral haplotypes from next-generation sequencing through
efficient noise reduction. Nucleic Acids Res. 2021;49(17):102–102.

13. Boehm E, Kronig I, Neher RA, Eckerle I, Vetter P, Kaiser L, et al. Novel sars-cov-2 variants: the pandemics within the
pandemic. Clin Microbiol Infect. 2021;27(8):1109–1117.

14. Lopman B, Vennema H, Kohli E, Pothier P, Sanchez A, Negredo A, Buesa J, Schreier E, Gray J, Gallimore C, et al.
Increase in viral gastroenteritis outbreaks in europe and epidemic spread of new norovirus variant. Lancet.
2004;363(9410):682–8.

15. Töpfer A, Marschall T, Bull RA, Luciani F, Schönhuth A, Beerenwinkel N. Viral quasispecies assembly via maximal
clique enumeration. PLoS Comput Biol. 2014;10(3):1003515.

16. Baaijens JA, El Aabidine AZ, Rivals E, Schönhuth A. De novo assembly of viral quasispecies using overlap graphs.
Genome Res. 2017;27(5):835–48.

17. Freire B, Ladra S, Paramá JR, Salmela L. Inference of viral quasispecies with a paired de bruijn graph. Bioinformatics.
2021;37(4):473–81.

18. Baaijens JA, Van der Roest B, Köster J, Stougie L, Schönhuth A. Full-length de novo viral quasispecies assembly
through variation graph construction. Bioinformatics. 2019;35(24):5086–94.

19. Baaijens JA, Stougie L, Schönhuth A. Strain-Aware Assembly of Genomes from Mixed Samples Using Flow Variation
Graphs. In: Schwartz R, editor. Research in Computational Molecular Biology. RECOMB 2020. Lecture Notes in
Computer Science, vol 12074. Cham: Springer. https://doi.org/10.1007/978-3-030-45257-5_14.

20. Logsdon GA, Vollger MR, Eichler EE. Long-read human genome sequencing and its applications. Nat Rev Genet.
2020;21(10):597–614.

21. Chin C-S, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Clum A, Dunn C, O’Malley R, Figueroa-Balderas R,
Morales-Cruz A, et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat Methods.
2016;13(12):1050–4.

22. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly
via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27(5):722–36.

23. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nature
Biotechnol. 2019;37(5):540–6.

24. Ruan J, Li H. Fast and accurate long-read assembly with wtdbg2. Nat Methods. 2020;17(2):155–8.
25. Shafin K, Pesout T, Lorig-Roach R, Haukness M, Olsen HE, Bosworth C, Armstrong J, Tigyi K, Maurer N, Koren S, et

al. Nanopore sequencing and the shasta toolkit enable efficient de novo assembly of eleven human genomes. Nat
Biotechnol. 2020;38(9):1044–1053.

26. Kolmogorov M, Bickhart DM, Behsaz B, Gurevich A, Rayko M, Shin SB, Kuhn K, Yuan J, Polevikov E, Smith TP, et al.
metaflye: scalable long-read metagenome assembly using repeat graphs. Nat Methods. 2020;17(11):1103–1110.

27. Tischler G, Myers EW. Non hybrid long read consensus using local de bruijn graph assembly. bioRxiv. 2017;106252.
https://doi.org/10.1101/106252.

28. Ono Y, Asai K, Hamada M. Pbsim: Pacbio reads simulator–toward accurate genome assembly. Bioinformatics.
2013;29(1):119–21.

29. Yang C, Chu J, Warren RL, Birol I. Nanosim: nanopore sequence read simulator based on statistical characterization.
GigaScience. 2017;6(4):010.

30. Giallonardo FD, Töpfer A, Rey M, Prabhakaran S, Duport Y, Leemann C, Schmutz S, Campbell NK, Joos B, Lecca
MR, et al. Full-length haplotype reconstruction to infer the structure of heterogeneous virus populations. Nucleic
Acids Res. 2014;42(14):115.

31. Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ani analysis of 90k prokaryotic
genomes reveals clear species boundaries. Nat Commun. 2018;9(1):1–8.

32. Della Bartola M, Byrne S, Mullins E. Characterization of potato virus y isolates and assessment of nanopore
sequencing to detect and genotype potato viruses. Viruses. 2020;12(4):478.

33. Mikheenko A, Prjibelski A, Saveliev V, Antipov D, Gurevich A. Versatile genome assembly evaluation with quast-lg.
Bioinformatics. 2018;34(13):142–50.

34. Vaser R, Sović I, Nagarajan N, Šikić M. Fast and accurate de novo genome assembly from long uncorrected reads.
Genome Res. 2017;27(5):737–46.

35. Salmela L, Walve R, Rivals E, Ukkonen E. Accurate self-correction of errors in long reads using de bruijn graphs.
Bioinformatics. 2017;33(6):799–806.

36. Morisse P, Marchet C, Limasset A, Lecroq T, Lefebvre A. Scalable long read self-correction and assembly polishing
with multiple sequence alignment. Sci Rep. 2021;11(1):1–13.

37. Myers G. Efficient Local Alignment Discovery amongst Noisy Long Reads. In: Brown D, Morgenstern B, editors.
Algorithms in Bioinformatics. WABI 2014. Lecture Notes in Computer Science, vol 8701. Berlin, Heidelberg: Springer.
https://doi.org/10.1007/978-3-662-44753-6_5.

38. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094–100.
39. Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics.

2016;32(14):2103–10.
40. Luo X, Kang X, Schönhuth A. Raw data, assemblies and code for reproducing results. Code Ocean. 2021. https://doi.

org/10.24433/CO.3155281.v1.
41. Lee C, Grasso C, Sharlow MF. Multiple sequence alignment using partial order graphs. Bioinformatics. 2002;18(3):

452–64.
42. Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, Wang Z. Metabat 2: an adaptive binning algorithm for robust and

efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:7359.
43. Luo X, Kang X, Schönhuth A. Strainline. Github. 2021. https://github.com/HaploKit/Strainline. Accessed 4 Jan 2020.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/978-3-030-45257-5_14
https://doi.org/10.1101/106252
https://doi.org/10.1007/978-3-662-44753-6_5
https://doi.org/10.24433/CO.3155281.v1
https://doi.org/10.24433/CO.3155281.v1
https://github.com/HaploKit/Strainline

	Abstract
	Keywords

	Background
	Results
	Approach
	Datasets
	Simulated data
	5-strain HIV mixture.
	6-strain Poliovirus mixture.
	10-strain HCV mixture.
	15-strain ZIKV mixture.
	5-strain SARS-CoV-2 mixture.

	Experimental data
	5-strain PVY mixture.
	SARS-CoV-2 real sample.

	Benchmarking: alternative approaches
	Performance evaluation
	Assembly metrics
	Haplotype coverage (HC).
	N50 and NGA50.
	Error rate (ER).
	Misassembled contigs proportion (MC).
	Precision and recall.

	Haplotype abundance evaluation

	Benchmarking results
	Simulated PacBio CLR data.
	Simulated ONT data.
	Experimental data.

	Haplotype abundance estimation
	Error correction evaluation
	Effects of divergence versus ratio of abundances
	Robustness evaluation
	Effect of sequencing coverage
	Effect of sequencing error rate
	Runtime and memory usage evaluation

	Discussion
	Conclusions
	Methods
	Correcting sequencing errors
	Read cluster generation
	Generating a consensus sequence for each read cluster
	Iterative extension of haplotigs
	Haplotype filtration
	Haplotype divergence calculation.
	Calculating relative abundance of haplotypes.

	Data simulation
	Parameter settings

	Supplementary InformationThe online version contains supplementary material available at https://doi.org/10.1186/s13059-021-02587-6.
	Additional file 1
	Additional file 2

	Acknowledgements
	Review history
	Peer review information
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	References
	Publisher's Note

