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Abstract

Adaptive sampling is a method of software-controlled enrichment unique to
nanopore sequencing platforms. To test its potential for enrichment of rarer species
within metagenomic samples, we create a synthetic mock community and construct
sequencing libraries with a range of mean read lengths. Enrichment is up to 13.87-
fold for the least abundant species in the longest read length library; factoring in
reduced yields from rejecting molecules the calculated efficiency raises this to 4.93-
fold. Finally, we introduce a mathematical model of enrichment based on molecule
length and relative abundance, whose predictions correlate strongly with mock and
complex real-world microbial communities.
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Background
Whole genome shotgun sequencing of metagenomic samples has become a popular

tool for understanding communities of mixed species. In particular, the ability to as-

semble individual species, or gene clusters such as antibiotic resistance genes, has the

potential to shed new light on function, or to enable generation of reference sequences

for unculturable organisms. With the increasing use of long read technologies, either

on their own or combined in hybrid approaches with short-read technologies, meta-

genome assembled genome (MAG) contiguity and accuracy metrics have improved still

further [1]. Such approaches have been applied widely including in the assembly of

pathogen genomes from clinical samples [2], bacterial genomes and gene clusters from

the human gut [3], the rumen microbiome of cattle [4], and a project which assembled

tens of thousands of MAGs by re-analysing over 10,000 previously collected metagen-

omes [5]. Nevertheless, despite these successes, some doubts remain about the reliabil-

ity of MAG approaches when faced with complex populations [6].

Metagenomic samples are composed of a range of different species at varying levels

of abundance. In nature, abundance often follows a power law [7], and this can mean
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that sequencing of metagenomic samples produces data that results in deep coverage of

some species with low or partial coverage of others. For rarer species, this is likely to

result in much poorer assemblies and a reduction in the ability to distinguish between

strains or related species. Effective enrichment strategies to maximise the sequence out-

puts of the rare species would address this weakness and biodiversity blindspot.

Reducing host DNA is an important consideration in diagnostic applications, espe-

cially in clinical settings. A number of approaches are available as commercial kits or

detailed in published work including differential lysis, saponin-based depletion [8], os-

motic lysis [9], or by enriching microbial DNA [10]. However, these approaches are not

universally applicable and require sample-specific adaptation often with many

additional steps.

Hybridisation has been used effectively to both deplete and enrich samples prior

to sequencing with approaches to remove rRNA from total RNA or to enrich for

molecules of specific sequence up to a few thousand base pairs long, such as

RenSeq [11, 12] proving popular. A common feature of these methods is an ex-

tended and often complicated library construction protocol which involves multiple

PCR amplification steps that limits the length of DNA that can be interrogated.

This can result in amplification biases in the output data (including against longer

molecules), and they require highly stringent hybridisation conditions coupled with

accurate probe design to be effective.

More recent developments have come with Clone Adapted Template Capture Hy-

bridisation (CATCH-Seq) which was developed to resolve target regions of interest and

circumnavigate the need to design specific probes. Using a bacterial artificial chromo-

some (BAC) known to contain regions of interest, generic probes are generated from

the BAC and then used to pull down fragments spanning 60 kbp (single BAC) up to

several hundred kbp (multiple BACs) to target difficult to sequence regions and help

identify structural variation. Later protocols such as HLS-CATCH [13] and nCATs [14]

use Cas-9 nuclease with guide RNAs to target DNA molecules up to several million

base pairs in length.

An alternative to lab-based depletion or enrichment approaches is promised by Ox-

ford Nanopore Technologies’ (ONT) adaptive sampling concept (sometimes called se-

lective sequencing) which represents a form of software controlled enrichment. A

programming interface known as “ReadUntil” enables control over individual pores and

provides a mechanism for software to request ejection of the molecule currently being

sequenced in a given pore. Thus, the first few hundred bases of a molecule can be ex-

amined and a decision made if the molecule is ‘on target’. ‘Off target’ molecules are

ejected by reversing the current across the pore, freeing the pore to capture a new mol-

ecule. In order for this to be effective, this must happen within a short time, so that the

molecule can be ejected from the pore before most of it is sequenced. The longer the

time taken for decision making and rejection, the lower the potential levels of enrich-

ment possible.

Initially, ONT provided the ReadUntil programming interface and left it to third

party developers to work out how to interrogate the raw pore signal to determine if a

molecule was on-target. The first published implementation utilised a signal compari-

son algorithm known as dynamic time warping (DTW) to compare the signal from the

pore with pre-computed signals for sequences of interest [15] (DTW is also used in
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DySS [16]). However, this approach was computationally expensive, particularly for

anything but relatively short reference sequences. Practical use was therefore limited

due to the time required to make a decision when using larger reference databases. An

alternative signal-based approach was provided by UNCALLED, which converted

stretches of raw signal into k-mers and used higher probability k-mers as a query for a

Ferragina-Manzini (FM) index search against a target database [17]. Whilst more effi-

cient than the DTW approach, it still required significant computational resources. RU-

BRIC [18] abandoned signal-based comparison in favour of basecalling short (~150bp)

portions of the start of reads and aligning to reference sequences using LAST [19].

However, this demonstrated limited enrichment and still required significant computa-

tional resources. More recently, ONT’s provision of real-time GPU-based basecalling

on GridION devices enabled the development of Readfish [20], which basecalls the first

~180 bases of sequence and aligns to references with minimap2 [21] in order to make a

decision on accepting or rejecting a molecule. These solutions still required third party

software in addition to ONT’s own control software. From the November 2020 release

of the GridION control software, adaptive sampling was built in as a user-selectable op-

tion, which has opened it up to much wider adoption. The software requires a user to

upload a file of reference sequences and the system can be set to either deplete or en-

rich for these on a specified set of channels. In order to achieve this, the software base-

calls the first few hundred bases of each read and compares it with the target reference

sequences. Matching or unmatching sequences are rejected, depending on whether the

software is set to enrich or deplete. A detailed algorithmic description of the GridION

adaptive sampling implementation has not been released by ONT, but a Nanopore

Community forum post by an ONT employee (https://community.nanoporetech.com/

posts/beta-release-of-adaptive-s-7369) indicates minimap2 is used for read mapping.

The implementation is achieved through ONT’s ReadUntil interface, which is publicly

available at https://github.com/nanoporetech/read_until_api, and is the same interface

used by Readfish and other third party tools.

Adaptive sampling offers a potential solution to enrich for species of interest in meta-

genomic samples. It requires a simple library construction method and samples can be

processed within an hour without the need for amplification. However, a challenge for

microbiome research is the difficulty of extracting high molecular weight DNA from

metagenomic samples. Their unknown nature and the likely presence of both Gram

positive, Gram negative, and fungal species have led to the development of protocols

such as the three peak extraction protocol where samples undergo three different

methods involving either enzymatic, chemical, or physical disruption to try and pre-

serve DNA molecule length and ensure that the DNA faithfully represents all the spe-

cies present in the sample [22]. This has shown that DNA molecules > 20 kbp can be

achieved, but for many scientists analysing microbiomes, bead beating is a necessity for

DNA extraction due in part to the limitation of samples, the inability to effectively cul-

ture everything present, and, in some cases, the need for rapid diagnostic results. This

approach can be completed inside 20 min but typically produces DNA molecules < 10

Kbp in length.

We wanted to investigate the effect of DNA molecule length on the efficiency and ef-

ficacy of adaptive sampling to determine its usefulness for both MAG and diagnostic

applications. Here, we present a mathematical model which can predict the enrichment
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levels possible in a metagenomic community given a known relative abundance and

read length distribution. Using a synthetic mock community, we demonstrate that the

predictions of the model correlate well with observed behaviour and quantify the nega-

tive effect on flow cell yields caused by employing adaptive sampling.

Results
A mathematical model of enrichment potential for metagenomic samples

A number of factors will affect the potential enrichment achievable through adaptive

sampling. Here, we derive a model to predict the theoretical enrichment of a set of taxa

within a metagenomic community, based on the community composition and average

read length. In the sections that follow, we show how this compares with real results

achieved using the GridION. We begin with the assumptions (sequencing speed is 420

bases/s, the time taken to capture strands is 0.5 s and the response time once a strand

is captured is 1.0 s) given in the worked example in the nanopore adaptive sampling in-

formation sheet [23].

We can consider two alternative measures of enrichment: enrichment by yield and

enrichment by composition. We define enrichment by yield as the ratio of the yields

(per unit time) of target sequence (species) with and without adaptive sampling. This

measure is likely to be the main consideration for researchers wishing to target particu-

lar sequences—if the overall target yield is less during targeted sequencing, then a bet-

ter strategy would be to perform deeper untargeted sequencing and bioinformatically

filter for the sequences of interest. One key factor that affects a nanopore sequencing

run’s yield is the number of active pores. As the quality of pores before sequencing var-

ies by flowcell, it is difficult to predict the yield of an experiment and compare adaptive

sampling experiments between flowcells. Furthermore, the use of protein pores is

known to degrade them over time, possibly from the electric potential [24], or from

pore blockage [17]; thus, repeated potential flipping from adaptive sampling could fur-

ther decrease active pores and yield.

Enrichment by composition is the ratio of the relative abundance of target se-

quence (species) with and without adaptive sampling. This shows us how much the

abundance of a given species in a metagenomic sample can be changed simply by

employing adaptive sampling. This measure is not affected by yield, so we are able

to use it to compare different experiments using different flowcells. By estimating

the composition of target sequences in the community, it is then possible to esti-

mate the target yield for a particular experiment design (assuming all flow cells be-

ing equally productive). Below, we develop a model to predict enrichment by

composition.

Let X be the set of taxa present in a sample, and for a taxon x ∈ X define xab to

be the abundance of x in terms of bases sequenced. This can be calculated by se-

quencing the sample without adaptive sampling and calculating the sequence

length of all reads that belong to the taxon x. Then, the abundance of x can be

given as this length divided by the total sequence length of all reads in the sample.

For an experiment in which we enrich for x, let xob be the abundance of x ob-

served in this experiment, calculated as before. Then, we say that the enrichment

factor for x (or simply, the enrichment of x) denoted ex, is given by
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ex ¼ xob
xab

From this, it is clear that the enrichment must be less than x−1ab , since xob ≤ 1 (for ex-

ample, a taxon at 50% abundance cannot have an enrichment factor greater than 2).

However, this fails to take into account the fact that in order to determine whether a

read should be accepted or rejected, it has to be sequenced to some extent, and so we

propose that the maximum achievable enrichment is in fact lower than this.

For more generality, we will partition X into the taxa to enrich (also called the target

taxa), denoted Xe, and those not to enrich (which by definition, will be depleted), de-

noted Xd = X\Xe. Following the ONT info sheet [23], we estimate enrichment by the

proportion of the total sequencing time that is spent sequencing the target taxa. We as-

sume a constant sequencing rate throughout, denoted by S and in the units of number

of bases sequenced per second. Let T be the proportion of sequencing time spent se-

quencing reads belonging to Xe without adaptive sampling and Te the proportion of

time spent sequencing reads belonging to Xe with adaptive sampling. Then, since the

sequencing rate is assumed constant, we can estimate the enrichment of Xe as

eXe ¼
Te

T

To determine the values Te and T, we will fix the following quantities. Let D be the

time taken between a molecule entering a pore and a decision being made on whether

it should be accepted or rejected. Let R be the average read size, and let C be the time

taken for a pore to capture a new molecule after sequencing a molecule. First, we give

an estimate for T. Denote by y the sum of abundances in Xe, that is

y ¼
X

x∈Xe

xab

Each molecule takes, on average, R/S seconds to pass through the pore, and then a

further C seconds until a new molecule is captured. The proportion of molecules that

we want to enrich (i.e. to not eject from the pore) is y, so we have

T ¼ y R=Sð Þ
R=S þ C

¼ yR
Rþ CS

ð1Þ

For Te, we make the following observation. For molecules belonging to Xe we still

spend R/S seconds sequencing each molecule. For molecules belonging to Xd, however,

we spend D seconds sequencing each molecule. Thus, the total sequencing time is

given by y(R/S) + (1 − y)D +C, and so

T e ¼ y R=Sð Þ
y R=Sð Þ þ 1−yð ÞDþ C

¼ yR
yRþ 1−yð ÞDS þ CS

ð2Þ

Taking the quotient of (1) and (2) gives us the formula for enrichment

eXe ¼
R=S þ C

y R=Sð Þ þ 1−yð ÞDþ C
¼ Rþ CS

yRþ 1−yð ÞDS þ CS
ð3Þ

This formula gives us the enrichment of the whole set Xe, but what if we want to de-

termine the enrichment for a single taxon in Xe? It is an interesting feature of this

model that it predicts enrichment to be the same for each taxon in Xe. To see this, note
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that if we were to determine the enrichment of a single taxon x ∈ Xe; then, in eq. (1)

and (2), we would replace y in the numerator with xab, whilst the denominators remain

the same. But then, in taking the quotient in eq. (3), these terms cancel.

If we wish to enrich for a taxon x ∈ X (so that Xe = {x}), then we have that y = xab and

eq. (3) becomes

ex ¼ Rþ CS
xabRþ 1−xabð ÞDS þ CS

We can rewrite the denominator as xab(R +CS) + (1 − xab)(DS +CS). Since 0 < xab < 1

and C, D, S > 0 we have that xab(R + CS) + (1 − xab)(DS +CS) > xab(R +CS), and so

ex ¼ Rþ CS
xab Rþ CSð Þ þ 1−xabð Þ DS þ CSð Þ <

Rþ CS
xab Rþ CSð Þ ¼

1
xab

Thus, our model predicts that enrichment of a single species will be lower than x−1ab ,

as discussed at the beginning of this section.

We created a Shiny web application which allows researchers to explore the potential

enrichment that may be possible for their experiments. The app can be found at

https://sr-martin.shinyapps.io/model_app/ and allows the user to adjust parameters

such as the average read length to explore the effect on enrichment potential for spe-

cies of varying abundance.

Starting relative abundance and molecule length determine the level of enrichment

We created a bacterial mock community consisting of seven species ranging in abun-

dance from just over 1% to around 47% (Table 1) as determined during control sequen-

cing runs. In order to observe the effect of molecule length on enrichment, we

performed a series of experiments with different library preparations, each producing a

different read length from the same input material (Table 2). For simplicity, we refer to

the library by the mean read length generated during control runs; however, this value

alone is insufficient to capture the sometimes complex read length distribution of the

Table 1 Relative abundance of the 7 bacteria used in the mock community, as determined from
control runs. All were selected from the National Collection of Type Cultures and strain IDs are
given. Percentages represent the percentage of sequenced bp aligned to reference genomes.
Read counts give similar percentages and can be found in the spreadsheet Additional file 1

Species NCTC
ID

1.7kbp
(%)

4.7kbp
(%)

12.8kbp
(%)

10.6kbp high to
low (%)

10.6kbp low to
high (%)

Achromobacter
xylosoxidans

10807 36.98 36.72 42.67 30.13 28.99

Morganella morganii 235 37.29 34.68 32.05 38.30 37.68

Leminorella richardii 12151 12.07 11.89 11.25 7.50 7.19

Moellerella
wisconsensis

12132 4.36 5.82 4.39 11.49 11.04

Pseudomonas
aeruginosa

10332 5.23 5.32 5.91 4.39 4.79

Proteus vulgaris 13145 2.69 4.03 2.51 5.92 6.22

Streptococcus
dysgalactiae

5370 1.34 1.55 1.19 2.20 2.58

Unmapped 0.03 0.01 0.04 0.07 1.50
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library (Figs. 1a, b). For each library, we performed a control run in which we se-

quenced for approximately 1 h (enough for at least 17,086 reads, and averaging 70,420).

We then enabled Adaptive Sampling and enriched for each bacterial genome, one by

one, starting with the most abundant species and ending with the least abundant. For

the library with a mean of 10.6kbp, we performed an additional “Low to High” run, in

which the bacteria were enriched in reverse order, lowest abundance first. For both of

these runs, we maintained half the pores as control pores throughout; for all other runs,

we did not maintain control pores after the initial control run.

We calculated the enrichment by composition by dividing the relative abundance of a

species with enrichment by the relative abundance without enrichment. As predicted

by the model, the enrichment factor was higher for less abundant species, and for lon-

ger read lengths (Fig. 1c). Highest levels of enrichment were produced for S. dysgalac-

tiae, with relative abundance changed from 1.19 to 16.52%. The effect on community

composition can be seen in Fig. 1d.

Table 2 Read statistics for control runs for each library

Library Control run reads Median Mean N50

1.7kbp 213,035 1300 1696.5 2441

4.7kbp 47,772 4718 4686.7 6011

12.8kbp 17,086 6739 12,767.7 26,160

10.6kbp (High to Low) 32,345 2495 10,581.3 41,464

10.6kbp (Low to High) 41,864 2651 9845.5 35,428

Fig. 1 a Read length distributions from control runs. Reads were binned by length into bins of size 1000
bp. Distribution for 10.6 kbp library taken from control run in high-to-low experiment. b Violin plots (log
scale) of read length distributions from control runs. Distribution for 10.6 kbp library taken from control run
in high-to-low experiment. Extrema and means shown in black. c Enrichment factor against relative
abundance. Each point represents a species, with the position on the x-axis indicating the original relative
abundance of the species and the position on the y-axis indicating the enrichment factor obtained.
d Community composition for each enrichment target during the runs
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Enrichment by composition approaches the maximum predicted by the model

We compared the model predictions with the results of the mock community runs.

For the 1.7kbp, 4.7kbp, and 12.8kbp runs, we calculated enrichment by compos-

ition as the quotient of the abundance during enrichment and the abundance dur-

ing the control run. For the 10.6kbp runs, enrichment by composition was

calculated as the quotient of the abundance on enrichment channels (1–256) and

abundance on control channels (257–512) for each species in the mock commu-

nity. Following the ONT info sheet [23], we used the fixed values S = 400bps

(bases per second), C = 0.5s, and D = 1.0s. Figure 2a overlays results from the ex-

perimental runs with predictions from the model.

We calculated the root-mean-square deviation of each data set from the values pre-

dicted by the corresponding model (Table 3). Our model predictions also correlated

strongly with our observations (Pearson’s r = 0.9825) as can be seen in Fig. 2b.

Enrichment by yield is significantly less than enrichment by composition

For each run, we also calculated enrichment by yield. For the 1.7kbp, 4.7kbp, and

12.8kbp runs, we calculated enrichment by yield as the quotient of the yield per hour

per active channel during enrichment and the yield per hour per active channel during

the control run. For the 10.6 kbp runs, enrichment by yield was calculated as the quo-

tient of the yield per hour per active channel on enrichment channels (1–256) and yield

per hour per active channel on control channels (257–512), for each species in the

mock community. For the 1.7kbp run, yield of target sequences was slightly lower dur-

ing adaptive sampling than during the control run (Fig. 3a). Normalising the yield by

the number of active channels during the first 30 min of each experiment confirms this

(Fig. 3c). For the 1.7kbp and 4.7kbp runs, we performed another control experiment

after the adaptive sampling. Figure 3a–c indicate significantly reduced yield after adap-

tive sampling than the yield before adaptive sampling, particularly for the 1.7 kbp run.

Figure 3d summarises the levels of enrichment found for all bacteria in all runs. Highest

enrichment of 4.93x was found for P. aeruginosa in the 10.6 kbp low to high run.

Fig. 2 a Scatterplots of enrichment vs abundance. Curves show enrichment values predicted by the model
for average read lengths. b Correlation between observed enrichment values and predicted enrichment
(Pearson’s r of 0.9825)
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Reducing false negative identifications and associated pore ejections would significantly

increase enrichment by yield

It is apparent from Fig. 2a that the observed enrichment for low abundance species

during the 12.8kbp run was less than the model predicted. Figure 4a shows the distri-

bution of read lengths for the control portion of this run.

During adaptive sampling, we expect to see distributions similar to these for species

that are being enriched, and a sharp peak around 500 bp for all other species, which

are depleted. However, we find that, when a species is being enriched, it also displays a

peak around 500 bp, suggesting that target molecules are being rejected (Fig. 4a).

By parsing the logs provided by the GridION, we found that during adaptive sam-

pling, approximately 36% (lowest 24.6%, highest 48.5%) of target molecules were being

ejected from the pore. These are molecules that are misclassified as non-targets by the

first fast mapping but subsequently classified as targets by post-enrichment alignment

(Fig. 4b). We performed further analysis to determine why this was. We split the read

sets first by their species classification, and then by the signal sent to the pore when

they were sequenced. Thus, each species had a set of sequenced reads (true positives)

and ejected reads (false negatives). First, we calculated the average quality score of each

read (Fig. 4c). This shows that the average quality of TPs was higher than the average

quality of FNs for each run. Next, we took the first 200 bp from each read and used

BLAST [26] to map them against the reference genomes. By doing this, we are attempt-

ing to use just the sequence data that is available to MinKNOW when it makes a deci-

sion during sequencing on whether to sequence the molecule, or eject it from the pore.

For each read, we took the mapping of its first 200 bp which had the highest identity

and mapped to the correct genome and used these to calculate the average identity

(Fig. 4d). We found that the TPs had a higher average identity than the FNs, although

in this case the TPs for the 1.7kbp run had a lower identity than the FPs from the

12.8kbp run. To determine whether regions of low genome complexity can affect the

FN rate, we mapped all FN reads to their true target genome. A heatmap showing the

coverage of each genome by the FN reads is displayed in Fig. 4e and shows no obvious

clustering.

Use of adaptive sampling has an effect on active pores but increases target yield and

MAG assembly potential

Our experiments demonstrated continued enrichment over 8–9-h sequencing periods,

but we wanted to see how the repeated rejection of molecules affected the lifespan of

the pores and if enrichment was still worthwhile over longer periods of time. We ran

two new flowcells in which we enriched for a low abundant species (S. dysgalactiae,

Table 3 Root-mean-square deviation of experiments from model

Run name Mean read length Root-mean-square deviation

1.7kbp 1696 0.350

4.7kbp 4957 0.518

12.8kbp 12,763 1.821

10.6kbp high to low 10,581 0.392

10.6kbp low to high 9845 0.333
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~2.6%) and a high abundant species (M. morganii, ~37.5%). We also ran two flowcells

in which we depleted M. morganii (~ 37.5% of total) and depleted M. morganii, A. xylo-

soxidans, and L. richardii (together ~74.2% of total). With all four flowcells, half the

channels were used as control channels in which no adaptive sampling took place. As

previously, all four flowcells demonstrated increased yield of the target species but a de-

creased total yield (Fig. 5). The number of active channels was slightly higher for con-

trol channels than for enriched channels, but the difference was not large (Fig. 6b).

Hourly yield for target species was consistently higher for the first 24 h with adaptive

sampling (Fig. 6c). However, yield of target species declined at a greater proportionate

rate on the adaptive sampling channels (down 36% from hour 1 to hour 6) than the

control channels (down 25% between hour 1 and hour 6). By 50 h, hourly yield for

adaptive sampling was similar to the control channels, but overall flow cell life was

much declined by this point, in line with expectations for current nanopore flow cells.

Time between target reads was reduced considerably in adaptive sampling channels

over the control channels (Fig. 6d).

Reasoning that one mechanism of pore loss is clogging by DNA that cannot be

ejected [17], we tested a nuclease flush during a sequencing run for a possible recovera-

tive effect on pores used for adaptive sampling. We ran a new flowcell enriching for a

single low abundant species (S. dysgalactiae, ~2.6%) for 6 h, carried out a nuclease

flush, and then ran the flow cell for a further 6 hours. The flush appeared to result in

an increased number of active channels for both the control and enriched portions of

the flowcell (Fig. 7a). The effect on hourly yield was less clear (Fig. 7b).

In order to evaluate the effect of adaptive sampling on the potential for MAG assem-

bly of a low abundance species, we took the reads available at 1-h intervals from the

control channels and the enriched channels. Reads mapping to the S. dysgalactiae

Fig. 3 a Yield of target sequences in Mb per hour during adaptive sampling (blue), control before/during
(red), and control after (purple). b Yields per hour for all runs, normalised by channels used. c Yield of target
sequences in Mb per hour per active channel during adaptive sampling. d Enrichment by yield values. Each
experiment, except for the 1.7 kbp run, gave us increased yield when performing adaptive sampling
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reference were used as the input to the Flye assembler [27]. For the enriched channels,

a single contig, high accuracy assembly was produced with the data available at 2 h

(Table 4, Fig. 6a). Subsequently, we also performed an assembly of the enriched channel

with reads available at 1.5 h, and this also produced a single contig assembly. For the

control channels, after 6 h, the S. dysgalactiae yield (32 Mbp) had not yet reached that

produced by the enriched channels in 1.5 h (42 Mbp), which was also reflected in much

lower contiguity (6 contigs vs 1 contig).

Enrichment using complex and real world communities

The experiments described have shown the effective enrichment of a single species in a

mock microbial community. However, real metagenomic samples are often more com-

plex, containing a larger number of species and possibly closely related strains of a sin-

gle species. We hypothesised that using nanopore adaptive sequencing to enrich a

single strain will also result in the enrichment of closely related strains. This could be

Fig. 4 a Distribution of read lengths during control portion and enrichment portions of 12.8 kbp run. Reads
are split by species. b Proportion of target reads rejected during adaptive sampling. c Quality values of
reads, split by species and TP/FN. d Average identity of mappings of first 200 bp of reads against reference
genomes. The mapping to the correct genome with the highest identity was used to calculate the
averages. e Coverage of target genomes by false negative reads (i.e. reads that were incorrectly ejected
from the pore during adaptive sampling) during 12.8 kbp run. Image produced using the alignment
visualisation software Alvis [25]
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undesirable if the experimenter wishes to enrich only a single strain. However, it could

be a useful attribute if there does not exist a good quality reference for the strain of

interest or if multiple strains are of interest.

To determine the effectiveness of enriching a single strain, we sequenced the Zymo-

BIOMICS Gut Microbiome Standard, a more complex mock microbial community that

includes 5 strains of E. coli (Table 5). We selected several species present in the mock

at varying abundances, including all of the E. coli strains, and enriched each in turn as

before. Each experiment lasted for approximately 1 h. Channels 1–256 were used for

adaptive sequencing, whilst channels 257–512 were left without enrichment to provide

control data. We also performed a 1-h control run at the beginning of the experiment.

Our control run gave us 106,955 reads with a total yield of 460.67 Mbp. The mean

read length was 4.31 kbp, and the read N50 was 13.56 kbp. This mean read length is

relatively low for adaptive sampling, so it was not expected to produce the highest

levels of enrichment. However, individual taxa had varying mean read lengths (Table

5). The taxa chosen for enrichment were A. muciniphila, P. corporis, S. enterica, and

each strain of E. coli. All were selected without knowledge of the taxa mean read

lengths.

Figure 8 shows the observed enrichment for the selected taxa. Enrichment by com-

position was less than predicted for the five strains of E. coli; however, as Fig. 8c

Fig. 5 Cumulative yields split by experiment channels and control channels
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Fig. 6 a S. dysgalactiae assembly statistics for enriched and control channels. b Plots showing how the
number of active channels varies with time. c Hourly yields from enriched/depleted channels vs control
channels. d Times between consecutive target molecules on individual channels, split by enrich/deplete
(channels 1–256, red) and control (channels 257–512, blue)

Fig. 7 Effect of nuclease flush on active channels and yield
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indicates, each time we targeted a specific strain for enrichment, we observed enrich-

ment for all five strains. In each case, except B766, the targeted strain had the highest

enrichment. Enrichment for a single strain resulted in high % genome coverage (ran-

ging between 97 and 99%+) for all strains, with the smaller genomes displaying higher

coverage (Table 6).

We next sequenced a sample of garden compost. In order to determine a species to

attempt enrichment on, the sample was first sequenced without enrichment. Classifying

reads with MetaMaps [28] showed an extremely diverse community with 1502 defined

genomes represented in 631 genera from the first 100,000 reads. The most abundant

species (1.6%) was determined to be Hydrogenophaga sp. PBC, a Gram-negative bacter-

ium previously isolated from wastewater [29]. We carried out a metagenomic assembly

of all reads using metaFlye and classified these also. From the assembled contigs, 17

mapped to Hydrogenophaga sp. PBC and combined had a total length of 3.98 Mb,

shorter than the reference sequence at 5.2 Mb (Table 7). We then carried out four runs

of approximately 1 h—first a control run, then enrichment for the published reference

genome, enrichment for the assembled contigs, and enrichment for both the reference

and the assembled contigs. As before, in the enrichment runs, half the channels were

used for control and half for enrichment. The control run produced 74,988 reads with

a mean length of 6747 bp. Reads were classified with MetaMaps and enrichment calcu-

lated (Table 8). Using the published reference produced enrichment by yield of 2.09x.

However, by using the assembled contigs, this was increased to 3.72x. This indicates

the importance of using an enrichment reference that is extremely close to the genome

of the organism being targeted, and an approach for doing so. Our model predicts en-

richment by composition of 9.49, given the mean read length and control abundance,

Table 4 S. dysgalactiae assembly statistics for enriched and control channels

Enrich S. dysgalactiae (channels 1–256)

Time (hours) 1 1.5 2 3 4 5 6

Reads 2066 3669 3810 5648 7385 8984 10,467

Total read length 22,620,532 41,656,686 41,901,525 60,708,472 78,890,074 94,518,641 108,992,425

Contigs 2 1 1 1 1 1 1

Total contig length 2,117,919 2,079,393 2,079,362 2,079,466 2,079,521 2,079,533 2,079,512

Contig N50 2,111,978 2,079,393 2,079,362 2,079,466 2,079,521 2,079,533 2,079,512

Longest contig 2,111,978 2,079,393 2,079,362 2,079,466 2,079,521 2,079,533 2,079,512

Aligned bases in ref 99.98% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%

Assembly time 00:05:31 00:09:00 00:08:47 00:11:39 00:14:43 00:17:19 00:19:20

Control (channels 257–512)

Time (hours) 1 Not performed 2 3 4 5 6

Reads 466 902 1406 1797 2216 2609

Total read length 6,021,205 11,113,179 17,840,666 22,769,997 28,302,443 32,833,051

Contigs 3 8 7 5 5 6

Total contig length 600,309 1,705,413 2,242,365 2,610,844 2,703,245 2,772,594

Contig N50 442,714 315,659 1,691,837 2,100,413 2,077,669 2,079,314

Longest contig 442,714 616,463 1,691,837 2,100,413 2,077,669 2,079,314

Aligned bases in ref 32.05% 80.47% 98.06% 99.73% 99.88% 100.00%

Assembly time 00:02:13 00:03:23 00:04:34 00:05:47 00:06:32 00:07:07
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which is slightly higher than the 8.58 obtained experimentally. This difference may be

explained by the shorter than expected assembled reference (3.98 vs 5.2 Mb) which

may mean target sequence is missing.

Discussion
Previous studies have demonstrated the use of bespoke third party adaptive sampling

software to enrich for sequences within an organism, e.g. exons or loci of key variants.

Here, we test ONT’s own recent implementation of adaptive sampling in the GridION

control software as a tool for enriching or depleting species in metagenomic samples.

We describe a mathematical model that can predict enrichment potential for a species

of given relative abundance and mean read length and show that enrichment by

Table 5 Observed composition of gut mock based on MinKNOW mappings. Species chosen for
enrichment are highlighted in bold. Due to the large number of contigs (> 13,000) for C. albicans
and S. cerevisiae, these references were not presented to the onboard alignment process, so data is
not shown

Species Manufacturer’s theoretical
abundance (%)

Observed composition by
mapped bases (%)

Mean read
length

Faecalibacterium
prausnitzii

14 19.31 3428

Veillonella rogosae 14 15.04 14,353

Roseburia hominis 14 10.70 4412

Bacteroides fragilis 14 13.26 10,334

Prevotella corporis 6 6.50 9851

Bifidobacterium
adolescentis

6 0.2 6699

Fusobacterium
nucleatum

6 5.77 4928

Lactobacillus
fermentum

6 7.38 866

Clostridioides difficile 1.5 1.72 8835

Akkermansia
muciniphila

1.5 2.12 8765

Methanobrevibacter
smithii

0.1 0.03 15,651

Salmonella enterica 0.01 0.03 8198

Enterococcus faecalis 0.0001 0.00 no reads

Clostridium
perfringens

0.00001 0.00 no reads

Escherichia coli
(JM109)

2.8 2.90 8782

Escherichia coli
(B-3008)

2.8 3.44 7034

Escherichia coli
(B-2207)

2.8 2.80 5895

Escherichia coli
(B-766)

2.8 2.84 9007

Escherichia coli
(B-1109)

2.8 3.10 8784

Candida albicans 1.5 n/a n/a

Saccharomyces
cerevisiae

1.4 n/a n/a
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composition in real experiments closely follows that predicted by the model (Pearson’s

r of 0.9825). Enrichment by yield, the value that is of most practical benefit to re-

searchers, lags behind enrichment by composition, but we show that with longer read

lengths, we were able to enrich relatively low abundance (~2%) organisms by almost

5x. High quality single contig MAG assemblies of the same species were possible within

1.5 h using adaptive sequencing and around 6 h without. Allowing for the fact that only

half a flow cell was used for each assembly, we may reason these times could be cut in

half. Adaptive sequencing could be fed with MAG sequences (from existing short read

assemblies), verifying true assemblies, splitting chimeric MAGs [30] (using long nano-

pore reads as an orthogonal data type), or improving assemblies using long read

scaffolding.

In a real, previously unsequenced, complex compost sample, we were able to demon-

strate enrichment levels of almost 4x, despite a relatively suboptimal mean read length

of 6747 bp. In terms of composition, we observed enrichment of 8.58, slightly lower

than our model's prediction of 9.49. Our results demonstrated the importance of using

a reference sequence that closely matches the target for enrichment, as better results

were obtained by using our meta-assembled contigs instead of the closest published ref-

erence. The assembled contigs totalled 77% of the length of the published reference, so

it is reasonable to assume that a more complete assembly would have produced greater

enrichment still and could explain the difference between the observed enrichment by

composition and the predicted enrichment by composition. The importance of the en-

richment reference was also illustrated in the sequencing of the gut microbial standard

containing 5 strains of E. coli. Targeting a specific strain also enriched the 4 other

strains and, depending on the application, this could be a beneficial or detrimental

Fig. 8 Enrichment of selected taxa in complex microbial community. Strains of E. coli highlighted
separately. a Enrichment by composition, includes enrichment curve as predicted by model. b Enrichment
by yield. c Enrichment values for each strain of E. coli by targeted strain

Table 6 Genome coverage (%) of each of the 5 E. coli strains. Each strain was enriched for in turn
and the coverage of the enriched strain and the non-enriched strains was calculated

Strain enriched for B1109 B2207 B3008 B766 JM109

Genome Length 4,765,434 5,111,512 4,739,263 5,062,632 4,497,410

B1109 genome coverage (%) 99.4735 98.5886 99.9077 97.6491 99.7461

B2207 genome coverage (%) 98.8860 99.5057 99.9448 98.5786 99.8991

B3008 genome coverage (%) 99.6358 99.1074 99.8742 98.5398 99.5258

B766 genome coverage (%) 99.2041 97.7140 99.8987 98.6976 99.4008

JM109 genome coverage (%) 99.7266 99.5035 99.9852 98.3076 99.8201
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attribute. If sequence accuracy continues to increase, strain discrimination by adaptive

sampling should too.

Two key factors affect the enrichment potential. Firstly, the initial abundance of the

target species determines the theoretical maximum levels of enrichment. Secondly, the

length of DNA molecules presented to the sequencing pores limits the efficiency of the

process. For shorter molecules, the time taken to basecall, align, reject a molecule, and

capture an alternative becomes significant compared to the time taken to sequence a

typical read without adaptive sampling. It is for this reason that adaptive sampling of

our 1.7 kbp mean library was not beneficial and possibly slightly detrimental to overall

yield. Yet for longer reads, there are clear benefits to the adaptive sampling approach.

Our data also indicate that there is still much potential to improve on current adaptive

sampling implementations and to increase the enrichment by yield significantly. Our

analysis showed that around 40% of on-target reads were falsely rejected. Where this

value was highest, in the mean 10.6kbp run, we observed slightly lower enrichment by

composition values than those predicted by our model and believe these incorrect re-

jections to be an explanation for the difference. Reducing incorrect ejections could in-

crease target yield significantly and thus result in much higher enrichment factors.

ONT provide two implementations of their GPU basecalling algorithm—a faster, less

accurate one and a slower, more accurate approach. The adaptive sampling basecalling

is performed with the higher speed, lower accuracy algorithm. When hardware progres-

sion or algorithmic improvements enable the use of the more accurate basecalling

Table 7 The top 5 defined genomes determined by MetaMaps classification of the first 100,000
compost reads. Of the first 100,000 reads, 72,638 were long enough (> 1kb) for MetaMaps
classification. Also shown are the number of contigs and total size of contigs mapping to the
genome

Species Reads per
first 100k
(72,638 >
1kb)

Abundance % (based on mapped
reads > 1kb)

Number of
contigs

Total length of
contigs

Hydrogenophaga sp.
PBC

1183 1.63 17 3,982,409

Pseudoxanthomonas
suwonensis

600 0.83 34 3,552,404

Thauera humireducens 403 0.55 19 2,280,334

Sphingopyxis granuli 330 0.45 19 3,534,465

Devosia sp. A16 307 0.43 9 804,967

Table 8 Yields of Hydrogenophaga from the enrichment runs. Normalised enrichment is obtained
by dividing by the number of active channels during the 1 h run

Enriched for
sequence

Control
reads >
1kb

Enriched
reads >
1kb

Control
bp

Enriched
bp

Enrichment
by yield

Normalised
enrichment
by yield

Enrichment
by
composition

Hydrogenophaga
reference

522 905 3,423,956 7,173,103 2.09 2.12 4.86

Hydrogenophaga
contigs

499 1477 3,514,806 13,059,225 3.72 3.67 8.58

Hydrogenophaga
both

537 1490 3,649,735 12,707,539 3.48 3.43 8.13
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algorithm, this will likely bring a reduction in false negative ejections. Additionally, im-

provements to the alignment and decision making approaches employed, as well as to

the underlying ReadUntil API, will also bring improvements.

In evaluating the use of adaptive sampling in a particular metagenomic application, a

prime consideration will be the ability to prepare DNA that is long enough to derive

meaningful enrichment. ONT and a number of users have demonstrated megabase

read lengths from genomic samples [31, 32], but it is not possible to imagine such read

lengths in complex metagenomic samples due to the need to lyse different cell types,

including some that are particularly troublesome to break open. A move away from

mechanical lysis approaches such as bead beating towards newer enzymatic techniques

will be key. The desire to target particular species with known cell wall characteris-

tics—e.g. for assembly—may mean that harsher lysis approaches are unnecessary for

that species. Even with bead beating, we have previously demonstrated DNA extrac-

tions from faeces (not the simplest of samples) can produce nanopore data with mean

read lengths as high as 8.1kbp [2], and in other experiments, we have generated mean

read lengths of up to 15 kbp from soil metagenome samples (Heavens D, unpublished

data). Our data indicates that significant enrichment is achievable at these lengths. If

input material is not limited, then physical (bead or gel based) size selection can be

used to increase the mean read length further. Even the 4.7 kbp run presented here

produced enrichment of 2x, which could mean experiments cost half as much money

or take half as long to complete. This reduction in time could be particularly important

in clinical applications or for environmental pathogen detection.

Previous studies have shown a faster decline in active sequencing channels for flow-

cells undergoing adaptive sequencing, which may be due to the act of rejecting mole-

cules or that the likelihood of clogging is statistically related to the number of

molecules captured by a pore [17, 20]. Our own data shows a slight decline in active

channels (Fig. 6b), but not as much as seen previously. Nevertheless, like others we find

that overall yield including non-target yield is reduced compared to control channels

(Fig. 5), particularly when enriching for lower abundance organisms. We find that a nu-

clease flush appears to have a restorative effect on active channel count, but the effect

on yield was less clear. It is possible that 6 hours was too soon to derive much benefit

and others have suggested flushing every 24 h [20].

Overall, our results show that adaptive sampling can increase target yield significantly

in real terms, provided that molecules of a modest length are used. Given the strong ef-

fect of read (library molecule) length, it is likely that ONT ligation based libraries would

outperform rapid based ones from the same material, as the transposase would de-

crease library molecule size. The use of adaptive sampling provides us with the benefits

of library-based enrichment, without complex protocols or the bias that these may

introduce. This is a significant advantage to researchers who may not have access to

specialised laboratory equipment. Furthermore, it maintains the advantages of nano-

pore sequencing, e.g. speed, longer read lengths, detecting methylation and other epi-

genetic modifications using the raw nanopore signal, and the possibility of conducting

experiments in-field.

We envisage several applications of adaptive sampling in the near future. One possi-

bility is the targeting of molecules to close gaps in reference genomes. This could be

achieved by enriching for molecules that align to sequences flanking gaps in the
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genome, and depleting everything else. Whilst we demonstrated over 4-fold enrichment

in terms of yield, the potential read lengths for metagenomic applications are limited

by the variety of DNA extraction methods required for the many cell types that may be

present in the sample. Significantly higher average read lengths are possible for non-

metagenomic samples, and so the potential for enrichment is greater.

Another possible application of adaptive sampling is the improvement of MAGs. In

the “Use of adaptive sampling has an effect on active pores but increases target yield

and MAG assembly potential” section, we demonstrated the improved time-to-

assembly of a known bacteria using adaptive sampling, and in the “Enrichment using

complex and real world communities” section, we demonstrated the enrichment of a

species using contigs assembled from the same sample. In the future, we plan to de-

velop a pipeline to assemble metagenomic reads de novo in real time during the experi-

ment. Using adaptive sequencing, we could deplete molecules that cover regions that

are already well assembled, or even enrich for reads with sequence at the ends of con-

tigs and pointing into the unknown region, maximising the useful data to improve the

assembly. Even rejected reads (~500bp) need not go to waste as these can be used for

digital abundance measurements and for polishing assemblies. Existing software such

as Readfish [20] already enables the updating of target regions during a run, thereby

allowing continual adjustment of targets to refine the assembly as the sequencing pro-

gresses. We believe this would lead to improved MAG quality, particularly for low

abundance species.

Conclusions
Through ONT’s adaptive sampling software, we demonstrated enrichment in terms of

both yield and composition, in a synthetic mock metagenomic community and in a

complex real sample. We found that enrichment was higher for lower abundant spe-

cies, and for libraries with a higher average molecule length, showing that extraction

methods that can preserve molecule length are key to obtaining the highest enrich-

ment. We developed a mathematical model to estimate the enrichment by composition

that can be expected based on experimental factors and showed that the model’s pre-

dictions correlated strongly with the observed data. We also observed that the occur-

rence of false negatives affects the achieved enrichment, but expect that improvements

in hardware and software will minimise this in the future. By performing targeted en-

richment on a low abundance species, we were able to significantly reduce the time

taken to achieve a high-accuracy, single contig assembly, compared to non-targeted se-

quencing. Notably, we found that the repeated ejection of molecules from the pores

had less effect on pore stability than has been previously reported. We conclude that

adaptive sampling will prove to be a useful tool for many nanopore-based metagenomic

studies.

Methods
Bacterial cell culture and DNA extraction

Seven bacterial strains were identified from the NCTC that had a fully assembled single

chromosome genome, varying GC content and sizes with no plasmids. Full strain de-

tails and assemblies available at https://www.sanger.ac.uk/resources/downloads/
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bacteria/nctc/. Bacteria were grown overnight in 3ml of 2xYT in a 5ml tube in an

Eppendorf Thermomixer C at 37°C shaking at 400 rpm. Following the incubation, the

tubes were spun at max speed in an Eppendorf 5427R centrifuge for 5 min to pellet the

cells and the supernatant discarded.

For the Gram-positive bacteria, cell pellets were resuspended in 160 μl of Qiagen P1

buffer, transferred to a 1.5ml tube and then 20 μl of 100mg/ml lysozyme added, mixed

and incubated for 30 min at 37°C shaking at 900 rpm in an Eppendorf Thermomixer

C. To this, 20 μl of proteinase K was added and incubated for 30 min at 56°C shaking

at 900 rpm. The tube was then cooled on ice, and 2 μl of RNase added and incubated

at room temperature for 2 min.

To precipitate the DNA onto beads, 150 μl of ATL was added followed by 15 μl of

MagAttract Suspension G and 280 μl of MB buffer. This was incubated for 3 min at

room temperature shaking at 1400rpm. The beads were then pelleted on a magnetic

particle concentrator (MPC), the supernatant discarded, and the beads washed twice

with 700 μl MW1 buffer and twice with PE buffer resuspending the beads on each

occasion.

Two 700 μl water washes were then performed whilst the beads remained on the

MPC incubating for 1 min at a time. DNA was then eluted from the beads by mixing

the beads for 3 min at room temperature shaking at 1400 rpm in 100 μl AE buffer.

For the Gram-negative bacteria, cell pellets were resuspended in 180 μl of ATL buf-

fer, transferred to a 1.5ml tube, and 20 μl of proteinase K was added and incubated for

30 min at 56°C shaking at 900 rpm. The tube was then cooled on ice, and 2 μl of RNase

added and incubated at room temperature for 2 min.

To precipitate the DNA onto beads, 150 μl of ATL was added followed by 15 μl of

MagAttract Suspension G and 280 μl of MB buffer. This was incubated for 3 min at

room temperature shaking at 1400rpm. The beads were then pelleted on a MPC, the

supernatant discarded, and the beads washed twice with 700 μl MW1 buffer and twice

with PE buffer resuspending the beads on each occasion.

Two 700 μl water washes were then performed whilst the beads remained on the

MPC incubating for 1 min at a time. DNA was then eluted from the beads by mixing

the beads for 3 min at room temperature shaking at 1400rpm in 100 μl AE buffer.

DNA extraction from Zymo Gut Mock cells and compost

DNA from the ZymoBIOMICS Gut Microbiome Standard cells (Zymo Research, Irvine,

CA, USA) and the compost sample were extracted using the Quick-DNA HMW Mag-

Bead kit (Zymo Research). For the Zymo gut mock cells, a 200 μl aliquot was spun at

5000 rcf in an Eppendorf 5427 centrifuge for 1 min to pellet the cells. The supernatant

was removed and retained for later. For the compost, 100 mg of material was resus-

pended in 200 μl DNA/RNA shield (Zymo Research) and then spun at 5000 rcf in an

Eppendorf 5427 centrifuge for 1 min to pellet. The supernatant was removed and

retained for later.

The cellular material was then resuspended in 200 μl PBS and 10 μl metapolyzyme

(Sigma-Aldrich, St. Louis, MO, USA) (1mg/100 μl PBS) added and the cell mixture in-

cubated for 2 h at 35°C. Post this initial incubation, the supernatant saved from earlier

was added back along with, 20 μl 10% SDS and 20 μl Proteinase K (20mg/ ml), and this
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mixture then incubated for a further 30 min at 55°C. The lysed cells were then spun at

5000 rcf in an Eppendorf 5427 centrifuge for 10 min and 400 μl of the supernatant

transferred to a new tube. To this, 800 μl of MagBead buffer and 50 μl of MagBeads

added and the tube rotated for 10 min at room temperature on a lab rotator. The tube

was then briefly spun and then placed on a magnetic particle concentrator to pellet the

beads and the supernatant removed and discarded.

The beads were then resuspended in 100 μl elution buffer, 500 μl of MagBead buffer

added and mixed gently, and the tube rotated for 10 min at room temperature on a lab

rotator. The tube was then briefly spun and then placed on a magnetic particle concen-

trator to pellet the beads and the supernatant removed and discarded. The beads were

then washed with 900 μl Prewash buffer and twice with wash buffer resuspending the

beads on each occasion.

A 900 μl elution buffer wash was then performed whilst the beads remained on the

MPC incubating for 1 min between adding and removing the buffer taking care not to

disturb the bead pellets. DNA was then eluted from the beads by mixing the beads for

10 min at room temperature shaking at 350 rpm in 75 μl elution buffer.

DNA QC

DNA concentration was determined using the Life Technologies Qubit broad range

and high sensitivity assay kits. A 1 μl aliquot of DNA was combined with 198 μl of the

appropriate buffer and 1 μl of dye in a 0.5ml qubit tube, vortexed and left at room

temperature for 2 min. DNA concentration was then measured on a Qubit 3

fluorometer. If DNA concentration between the high sense and broad range assays dif-

fered by more than 10%, then the extractions were repeated. DNA was then calculated

by averaging the measurement from each assay.

To confirm molecule length extracted DNA was run on either the Agilent Tapesta-

tion or Agilent Femto Pulse. For the initial extractions, DNA was diluted, if required,

to < 50ng/ μl and a 1 μl aliquot run on an Agilent Genomic Tape on a Tapestation in-

strument according to the manufacturer’s instructions. For the second set of extrac-

tions, DNA was diluted to 0.25ng/ μl and a 1 μl aliquot run on an Agilent Femto Pulse

instrument according to the manufacturer’s instructions. Electropherograms for each

bacterial species can be seen in Additional file 2: Figs. S1-S17.

Construction of the synthetic mocks

Two synthetic mocks consisting of all 7 species at 7 different proportions were con-

structed. For both mocks, we targeted 50% A. xylosoxidans, 25% M. morganii, 12% L.

richardii, 6% P. aeruginosa, 4% M. wisconsensis, 2% P. vulgaris, and 1% S. dysgalactiae

based on average Qubit measurements. The first was used for the 1.7kbp, 4.7kbp, and

12.8kbp runs and the second for the 10.6kbp runs.

To remove smaller molecules and improve average read lengths, a size exclusion step

using the Sage Scientific BluePippin was performed. Four 5 μg aliquots of the unfrag-

mented mock were run on a High Pass cassette on a BluePippin to remove molecules <

15 kbp according to the manufacturer’s instructions, collecting the size selected mater-

ial in 40 μl of running buffer.
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To target read N50s around 6 kbp, a 5 μl aliquot of the unfragmented mock in 100

μl was placed in a G- tube and spun for 2x 1 min at 10000 rpm in an Eppendorf 5415

centrifuge. To confirm the size of the fragmented DNA, a 1 μl aliquot was run on a

Agilent Tapestation genomic tape according to the manufacturer’s instructions.

Library construction and sequencing

Libraries for the 4.5 kbp, 12.8kbp size exclusion, 10.6 kbp and 16.4 kbp runs were con-

structed using the Oxford Nanopore Technologies (ONT) SQK-LSK109 kit according

to the manufacturer’s instructions except that Kapa beads (Roche, UK) were used to

perform the clean up steps rather than Ampure XP beads. To target average sequence

reads of 1.7 kbp, 100ng of G-tube fragmented mock was used in a 10 μl reaction using

the ONT RAD004 kit according to the manufacturer’s instructions.

In all cases, final libraries were sequenced on individual R9.4.1 Rev D 106 flowcells

on an ONT GridION.

When targeting successive enrichment of each individual species within the mock,

runs were set up with no enrichment for the first hour to ascertain their baseline com-

position. At the end of the hour, the run was stopped and restarted enriching for the

next target genome. This process was repeated and sequence data collected for 1 h

until all seven targets had been selected. For the 1.7kbp, 4.7kbp, and 12.4kbp size exclu-

sion runs, all 512 pores were chosen to enrich. For the 10.6kbp and 16.4kbp runs, pores

1 to 256 were chosen to enrich and pores 257 to 512 were chosen for controls.

Additional runs involved sequencing a 10.6 kbp library for 6 h enriching for S. dysga-

lactiae only followed by a nuclease flush and re loading the library and running for a

further 6 h enriching for S. dysgalactiae only, running a 10.6 kbp library and enriching

for M. morganii and collecting for 72 h, running a 10.6 kbp library and enriching for S.

dysgalactiae and collecting for 72 h, running a 10.6kbp library and depleting for M.

morganii and collecting for 72 h and running a 10.6 kbp library and depleting for M.

morganii, A xylosoxidans, and L. richardii and collecting for 72 h. In each case, pores 1

to 256 were chosen to enrich and pores 257 to 512 were chosen for controls.

All sequencing data are available in the European Nucleotide Archive (http://www.

ebi.ac.uk/ena) repository under accession number PRJEB44844. ONT run reports, along

with a table providing direct links to the ENA runs can be found at https://github.com/

richardmleggett/adaptive_sampling.

GridION adaptive sampling

For each adaptive sampling run, we supply MinKNOW with a reference file containing

only the genome of the species we wish to target. This is the reference file that is used

to perform the classification of the first ~450bps, upon which the molecule is either se-

quenced entirely or ejected from the pore. We also use MinKNOW’s “align” function

to align all reads to a reference file containing the genomes of all species in the sample.

This mapping does not affect the decisions on sequencing or ejecting molecules and is

the mapping we use for our classification. Because the initial classification used to in-

form the decision on whether to sequence or not must be done very quickly (before

the molecule has passed through the pore), it does not necessarily coincide with the
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more thorough mapping done later. Misclassifications from the initial mapping have a

moderate effect on the enrichment we observe.

Adaptive sampling model web app

A web application was created in R using the “Shiny” library, to allow researchers to

see the effect experiment parameters will have on the predicted enrichment, as detailed

in the “A mathematical model of enrichment potential for metagenomic samples” sec-

tion. The app is available at https://sr-martin.shinyapps.io/model_app/, and the source

code can be found in the github repository https://github.com/SR-Martin/Adaptive-

Sequencing-Analysis-Scripts (GPL v3 license).

Bioinformatic analysis of mock communities

All bespoke scripts used in the analysis were written in Python and are freely available

in the github repository https://github.com/SR-Martin/Adaptive-Sequencing-Analysis-

Scripts (GPL v3 license).

Sequences were basecalled during the experiment on the GridION using the Min-

KNOW software. Mappings of each read to the reference genomes of the seven species

in the mock community were also created by MinKNOW. The script analyse_RU.py

was used to cross reference the mappings with the reads, and report read and bp statis-

tics for each species, split by channels used for adaptive sampling and all others (when

appropriate).

For the analysis of false negatives, the script RU_decision_stats.py was used to parse

the adaptive sampling logs created by MinKNOW for each experiment. This script de-

termines the signal sent to the pore for each read and uses these to split the read set

into reads that have been ejected from the pore (“unblocked”) and those that were se-

quenced. These read sets were then cross referenced with the file of mappings, and

reads were manually binned by species and signal type. The script get_read_stats.py

was used to obtain statistics for each read set.

The read length distributions in Fig. 1a and the control distributions in Fig. 4a were

obtained by binning reads by length into bins of size 1000. For the enrichment distribu-

tions in Fig. 4a, reads were binned by length into bins of size 100.

In Fig. 3.c, yields were normalised by the number of active channels, where active

channels were those that sequenced a molecule in the first 30 min of the experiment.

For the plots of active channels over time (Fig. 6b and Fig. 7), a channel was defined as

active from the beginning of the experiment, up until the time it sequenced its final

molecule (as long as it sequenced at least one molecule). Active channels were counted

using the script GetActiveChannels.py, with counts each hour for the 72-h experiments,

and every 15 min for the 6-h nuclease flush experiment.

For Fig. 6d, the time between two successive target molecules was recorded for each

channel using the script GetWaitingTimes.py. For Fig. 6c, the script GetTimeHist.py

was used to get the target yield for channels 1–256 and 257–512 each hour. For the

yield plot in Fig. 7, a different approach was taken to reduce the effect of the mux

scans; the script GetTimeHistFlush.py was used to get the total yield for channels 1–

256 and 257–512 in sliding windows every 15 min. For the first six 15-min intervals,

the sliding window was the duration of the experiment up to that point. For the
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remaining intervals, the window was the 90 min before. The yield in each window was

normalised by its duration. For Fig. 5, the script GetYieldByTarget.py was used to de-

termine the yield each hour, split by channels 1–256 and 257–512, and split by

reference.

All plots were created in Python using pandas and matplotlib in Jupyter Lab.

For Table 6, results were obtained using the Python script GetCoverageBySAM.py to

parse the SAM file used for the analysis on each run. For each strain, an array repre-

sented the genome (per base), where the entries were either 0 (not covered) or 1 (cov-

ered). An alignment to a strain updated the corresponding array by adding 1s to the

alignments reference position. Coverage was calculated by summing the array and div-

iding by its length.

MAG assembly

Reads mapping to S. dysgalactiae were binned by their start time, with bins containing

reads that were sequenced in the first hour, the first two hours, etc. up to all 12 h, using

the script GetReadsByTargetAndTime.py. After 6 h, a nuclease flush was performed.

Each bin was assembled with Flye v2.8.1 using the command

flye --nano-raw <read bin> --genome-size 2.1m
Assembly statistics were collected with a custom script, and each assembly was com-

pared to the reference genome using dnadiff (part of Mummer v3.23 [33]).

Bioinformatic analysis of compost sample

The first 100,000 reads from an initial control run were classified with MetaMaps v0.1

using the miniSeq+H database provided with the tool [28]. Default options were used,

which means that MetaMaps only classifies reads > = 1 kbp in length. This gave 72,638

reads long enough, of which 57,825 were unmapped. To determine the number and

abundance of species in the sample, the rows for the ‘definedGenomes’ AnalysisLevel

were extracted from the .EM.WIMP file output by MetaMaps, then sorted in order of

absolute read count. To determine the number of genera, the same approach was used,

but instead the rows for the ‘genus’ AnalysisLevel were extracted.

All reads from the control run that passed QC were assembled with Flye using the

options --nano-raw and --meta. The resulting contigs were classified with Meta-

Maps v0.1, again with default options.

The reference sequence for Hydrogenophaga sp. PBC was downloaded from RefSeq

as accession NZ_CP017311.1, having been published in 2012 [29].

MetaMaps was again used to classify enriched reads. However, in order to determine

the total size of sequence, it was necessary to write a program, MMParse, to parse

MetaMaps .reads2Taxon file in order to identify if each read was classified as a des-

cendent of Hydrogenophaga and to calculate the total sequence bp of such reads. The

source code can be found at https://github.com/richardmleggett/MMParse (MIT

license).

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s13059-021-02582-x.

Additional file 1. Alignment statistics. Excel spreadsheets showing detailed calculations of alignment statistics.
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