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Abstract

Background: Genomic structural variations (SV) are important determinants of
genotypic and phenotypic changes in many organisms. However, the detection of
SV from next-generation sequencing data remains challenging.

Results: In this study, DNA from a Chinese family quartet is sequenced at three
different sequencing centers in triplicate. A total of 288 derivative data sets are
generated utilizing different analysis pipelines and compared to identify sources of
analytical variability. Mapping methods provide the major contribution to variability,
followed by sequencing centers and replicates. Interestingly, SV supported by only
one center or replicate often represent true positives with 47.02% and 45.44%
overlapping the long-read SV call set, respectively. This is consistent with an overall
higher false negative rate for SV calling in centers and replicates compared to
mappers (15.72%). Finally, we observe that the SV calling variability also persists in a
genotyping approach, indicating the impact of the underlying sequencing and
preparation approaches.

Conclusions: This study provides the first detailed insights into the sources of
variability in SV identification from next-generation sequencing and highlights
remaining challenges in SV calling for large cohorts. We further give
recommendations on how to reduce SV calling variability and the choice of
alignment methodology.
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Background
Structural variations (SVs) are an important class of genomic variation that are often

defined as being 50 base pairs (bp) or larger. SVs are categorized as deletions, duplica-

tions, inversions, insertions, translocations, and complex rearrangements [1–3]. They

have a profound impact on evolution, diseases including neurological disorders [4–6],

Mendelian disorders [7, 8], and cancer [9, 10]. Thus, the reliable detection of SVs is

becoming increasingly valuable for both research and clinical applications.

The identification of SV from next-generation sequencing (NGS) data is still not rou-

tine and suffers from multiple issues [1, 2, 11]. Several ongoing efforts aim to improve
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the reliability of SV calling by developing new benchmark sets, based on the application

of multiple sequencing technologies [12]. The Genome in a Bottle (GIAB) consortium

recently assembled a highly curated list of SVs for one trio and the Human Genome

Structural Variation (HGSV) consortium has released highly accurate sets of SVs across

15 genomes [13–15]. These studies provided highly accurate SV sets for a limited num-

ber of trios [12, 14]. The majority of genomic studies rely on short-read-Illumina DNA

sequencing [16] and leverage GIAB and HGSV data to provide important insights into

the performance of methods used to analyze SVs from short-read data [17]. Prior stud-

ies do not, however, address the low reproducibility of SV calls from NGS data. In con-

trast, studies of low reproducibility of single-nucleotide variants (SNVs) [18, 19] have

revealed the importance of standardized workflows and protocols to improve reprodu-

cibility; these are now used or prepared for analysis of data from large consortia (e.g.,

Trans-Omics for Precision Medicine (TOPMed), HGSV, All of US, etc.). The standard-

ized workflows can reduce the technical sources of low reproducibility and substantially

improve the ability to study biological variation, including novel sequences in samples

from diverse populations. However, these steps are likely insufficient for SV as they

may be impacted by other challenges.

To assess the impact of different sequencing centers, replicates, mappers, and plat-

forms on the SV calling performance for NGS, we studied a Chinese family quartet

from the Sequencing Quality Control Phase II (SEQC2) study [20]. The family consists

of the biological parents (LCL7 & LCL8) and two monozygotic twins (LCL5 & LCL6)

that were sequenced as three replicates at three different sequencing centers resulting

in 288 SV call sets, respectively [20] (Fig. 1A). The in-depth analysis of LCL5 and the

comparisons to family members demonstrated the contribution of different factors to

SV call set variability. Specifically, we discerned which SVs resulted from false positives

(falsely detected) or false negatives (missed in SV sample call sets) based on the vari-

ability of the sequencing process (sequencing centers and replicates) and the subse-

quent analyses (e.g., mapping methods: Isaac [21], Stampy [22], BWA-MEM [23], and

Bowtie2 [24]). We assessed the accuracy and variability of the NGS call sets through

comparing them to matched Pacific Biosciences (PacBio) Continuous Long Read

(CLR)-based SV calls. Based on these analyses, we detailed the characteristics of the

SVs that were introduced and potentially missed due to certain methodologies. We fur-

ther provided mechanisms on how to control for these variabilities.

Results
Overall identification of variability

Each of the four family members was sequenced using NGS Illumina technologies over

three replicates and across three different sequencing centers. Each resulting data set

was processed using four mappers and subsequently marked for PCR duplicated reads

(dedup) as well as base quality score recalibration (recal) (see the “Methods” section).

This generated 72 data points per individual and a total of 288 for the entire family.

We obtained a stringent set of SVs for each data point utilizing combined calls from

MetaSV [25] and Parliament2 [26] to avoid generating high variability from individual

SV callers (Fig. 1A, Methods for details) [17]. Overall, the call sets showed higher vari-

ability between the parents (LCL7 and LCL8) as expected than within the identical
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twins (LCL5 and LCL6) (Fig. 1C, D). On average, we identified 12,723.36 SVs across all 72

SV call sets from LCL5. The majority of these were deletions (7990.26 SVs) followed by

insertions (2330.22 SVs) and duplications (997.38 SVs). Figure 1E shows a summary of

the number, variability, and different types of SVs detected (see Additional file 1: Table S1

for details) across LCL5. The SV distribution followed the expected number and type of

SVs observable by short reads (Fig. 1E) [12]. On average, 9479.35 SVs overlapped with the

GIAB consortium high-confidence regions (see the “Methods” section). As expected, most

SVs were in intergenic regions followed by intragenic regions (Additional file 2: Table S2).

For this study, we also produced a SV call set using long-read sequencing (see the

“Methods” section) to examine the quality of the short-read SV calls; previous reports

demonstrate that long-read sequencing approaches often improves the sensitivity and

false positive rates compared to NGS [12, 14, 27, 28]. For PacBio LCL5, we detected

15,171 SVs of which 7465 (49.21%) were insertions and 6412 (42.26%) were deletions.

This follows the expected SV type distribution that has been previously observed by

GIAB [12]. For LCL5, 7,734 (50.98%) SV calls from Illumina SV call sets overlapped

with the PacBio SV call set. The vast majority of missed SV calls in the Illumina call

sets were insertions (4308) followed by deletions (1863). For LCL5, on average per Illu-

mina call set, we only observed 2279.99 overlapping SVs, where the majority were dele-

tions. These data further demonstrated the large variability across the Illumina call sets.

To investigate this variability further, we mapped the pairwise overlap of each data

set across the entire family. Figure 1C shows this overlap across a heatmap. While the

general trend is encouraging — we observe more similarity between the siblings

(LCL5+LCL6) compared to the parents (LCL7+LCL8) — it becomes apparent that

there are methodological differences within each sample that appear to be systematic.

Fig. 1 Overall study design and variability. A Sequencing and analysis overview of the Chinese quartet. The
samples were sequenced in three replicates at three different centers. The files were then analyzed by four
different mappers including base quality score recalibration (recal) and duplicate read marking (dedup). B
Overlap and level of support between the different centers, replicates, and SV mappers. C Heatmap of the
percent overlap between the different samples (red = high, yellow = low). D Assessing Mendelian
consistency in identical twins compared to parents by mapper. The x-axis shows SVs that were called in
replicates from identical twins (3 replicates x 3 centers x 2 twins = 18 replicates). The y-axis shows the
percentage of SVs that were called in at least one of the replicates in parents (LCL7 and LCL8). E
Distribution of SV events along the differently generated sample files for LCL5
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Short-read SV variability detection

Investigating variability between Illumina SV call sets required preliminary analyses of

SV prediction across short-read SV mappers, sequencing centers, and replicates. On

average, 26.86% of the SV were supported by 1 out of 4 mappers. More specifically,

mapper calls supported by one center represented 57.14% of SV calls and mapper calls

supported by one replicate represented 48.88% of SV calls (Fig. 1B). These variabilities

highlighted the contribution of different factors (mappers, sequencing centers, repli-

cates, and dedup/recal) to variability in SV calling. This is also apparent when consider-

ing the family structure as singleton (called in one replicate) SV calls in the twins are

often (23.13% on average) not supported by the call sets of the parents (Fig. 1D). This

reaffirmed a general high variability between the different centers, replicates, and ap-

proaches. To investigate each source of variability independently, we stratified for other

analytically accessible causes of variability and compared the outcomes across the fam-

ily. Figure 2A illustrates the use of this analytical strategy in investigating the different

sources of variability in this data set.. For example, concordant SV calls between cen-

ters, replicates, and dedup/recall SV call sets enable examining variability between map-

pers (see “Methods” section for further detail). Across strategies, we observed that most

singleton SVs were deletions, and a minority were insertions; this was consistent with

the pattern observed in the total number of SVs per stratification strategy (Additional

file 3: Table S3). The majority of SVs including singleton SVs are 100–1000bp in size

followed by 1000–10,000bp (Additional file 4: Table S4). Moreover, mapper variability

was enriched with insertions (13.23%) compared to other strategies (less than 2%),

which highlights the deficiencies in identifying insertions by mappers.

Variability due to mapping methods

First, we investigated the contribution of different mapping methods (BWA-MEM,

Bowtie2, Isaac, and Stampy) to the variability of SV calling after stratifying for other

sources (e.g., centers, replicates, and dedup/recal) of variability (Fig. 2A). The variability

attributed to different mappers per sample was the largest in comparison to other sources

of variability (Additional file 5: Table S5). This was exemplified by Bowtie2, which did not

report split reads leading to the smallest number of SVs identified (Fig. 2B). Generally,

most SVs were supported by one or two mappers (Fig. 2B). Stampy showed the largest

number of SVs per sample followed by Isaac; accordingly, both Stampy and Isaac showed

the largest overlap with other mapping methods (Fig. 2B). Bowtie2, BWA-MEM, Stampy,

and Isaac SVs overlapped the call set of at least one other method on average at 99.23%,

92.76%, 89.95%, and 85.19%, respectively.

Next, we investigated LCL5 and identified 4257 SVs across mappers after stratifying

for other variabilities (Fig. 2B). SVs supported by one mapper (i.e., singletons) repre-

sented 25.02% (1065) of the total SVs and most of them (903 SVs, 84.79%) did not

overlap with the PacBio call set. This high rate of non-overlapping SVs with the PacBio

set indicated a high false positive rate for the singletons across the different mappers.

For the non-singleton SVs (3192 SVs, 74.98%), we observed a substantial increase in

the overlap with the PacBio call set to 60.35% (1926 SVs). Thus, the majority of the SV

calls are likely true positives. Discrepancies between the call sets demonstrated that not

all mappers capture all SVs, leading to increased variability between the SV call sets.
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Moreover, SVs were likely missed due to the differences between the SV mapping

methods at that specific location. Thus, SVs supported by one (15.21% overlap), two

(31.81% overlap), three (43.09% overlap), or four (87.13% overlap) mappers overlapped

the PacBio call set at an increasing rate, respectively.

We observed that 59.25% of the SVs (631 SVs) supported by one mapper for LCL5

overlapped with mapper singletons from other family members (Fig. 3A). Both family

overlapping and non-overlapping SVs were highly discordant with PacBio at 12.68%

and 19.35%, respectively (Additional file 6: Table S6). This was consistent with a recur-

rent noise pattern pointing to false positive SV calls based on different SV mapping

methods.

Variability due to different sequencing centers

The second largest contribution to variability was observed across sequencing centers

(Fig. 2C). This was likely due to differences in coverage and sequencing library prepar-

ation including insert size variability. We observed that Center 1 showed the lowest

average coverage (24.37x) followed by Center 2 (26.33x) and Center 3 (36.33x) (Fig.

3F). The insert size also varied on average with Center 1 (321.55 bp), Center 2 (318.53

bp), and Center 3 (399.12 bp) (Fig. 3F). Overall, we identified a slightly positive correl-

ation in the number of detectable SV with an increase in coverage or insert size. Using

Pearson correlation, we observed only a slight correlation between total number of SVs

and the insert size that was statistically significant (cor=0.26, p value=0.028). This was

likely because the increase in insert size leads to a larger span of the read pairs, and

thus, a higher likelihood that they spanned a breakpoint. Accordingly, more pairs

Fig. 2 Analysis strategy and comparisons of mapper, center, and replicate SVs. A Analysis strategy for
examining variability attributed to different factors including centers, replicates, mappers, and dedup/recal.
To examine variability from each factor independently, SVs had to be concordant between the call sets of
the other factors to pass for downstream analysis (e.g., to examine variable SVs attributed to mappers, SVs
must be filtered to only include SV calls present in all replicates, centers, and dedup/recal). B Comparison of
variability due to different SV mapping methods in LCL5. C Comparison of variability due to different
centers in LCL5. D Comparison of variability across different replicates in LCL5
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supported a certain SV compared to a smaller insert size library. We observed no statis-

tically significant correlation between total SVs and mean coverage (cor=0.12, p value=

0.33). This is likely the result of standardized workflows between the labs as described

in the “Methods” section.

Next, starting with LCL5, we stratified for other sources of variability as described in

our analysis strategy and examined variability across centers (Fig. 2A). Post-stratification,

we obtained 2750 SVs for the three sequencing centers (Fig. 2C). We observed that a

majority of the center variability was attributed to SVs that were supported by one

sequencing center (i.e., singletons) with 696 (25.31%) SVs. Center 3 supported the highest

number of singleton SV calls per center followed by sequencing Centers 1 and 2. Interest-

ingly, 45.12% (314 SVs) of these singleton SVs overlapped with the PacBio SV call set.

Thus, they were likely true positives and indicated that these singletons represented false

negatives based on other centers. The variability in coverage, insert size, and library prep-

aration, discussed previously, contributed to the differences observed between the centers

(Fig. 3F). Overlapping SVs between two of the three centers resulted in 525 (19.09%) SVs

of which we observed an even higher rate of 59.23% (311) SVs overlapping with the

PacBio-based SV calls. The increase in false negatives and the decrease in false positives

indicated an expected higher rate of SVs missed in individual centers. After this stratifica-

tion strategy, 1529 SVs (55.6%) overlapped between all three centers and were concordant

with the PacBio SV call set (87.25% or 1334 SVs). Overall, and compared to mappers, cen-

ter variability SVs were concordant at a much higher rate with the PacBio data set

highlighting that these were not false positives as has often been believed. Rather, individ-

ual centers captured true positives representing false negatives for the other centers.

Fig. 3 Comparison of singleton (unique) SV calls across family members for SV mapper (A), sequencing
center (B), replicate (C), and dedup/recal (D) strategies. E Examining clustering of singleton SV in LCL5
across 100kbp windows genome-wide for each of the variability sources. F Scatter plots of total SVs
identified per sample compared to mean and standard deviation of coverage and insert size, respectively.
Each dot represents an SV call set with red representing Center 1, green representing Center 2, and blue
representing Center 3
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Next, we investigated if these singleton SVs per center were similar across the family

members (Fig. 3B). For LCL5, 59.91% (417 SVs) of singleton SVs overlapped with

LCL6, LCL7, and/or LCL8 singletons. Of these overlapping SVs, 47.72% (199 SVs)

overlapped with the PacBio SV call set (Additional file 6: Table S6). This indicated a

high recurrent incidence of missed SV calls (false negatives) in the call sets of multiple

centers even across related samples (Additional file 7: Fig. S1). Singleton SVs that are

non-overlapping with other family members amounted to 40.09% (279 SV) for LCL5

across the centers. Of these SVs, 41.94% (117 SVs) overlapped the PacBio call set and

were likely false negatives.

Other minor variability impacting SV detection

Subsequently, we analyzed variability attributed to differences between replicates per sample

(Fig. 2D). Starting again with LCL5, we stratified for other causes of variability to obtain an

SV set representing replicate variability (Fig. 2A). This resulted in 2453 SVs including

18.79% (461) supported by a single replicate, 18.51% (454 SVs) agreeing between two repli-

cates, and 62.70% (1538 SVs) agreeing among all three. Over half (54.88%) of the singleton

SV calls in LCL5 did not overlap with the PacBio SV call set and were likely false positive

calls. The concordance with PacBio increased as supporting replicates increased from two

replicates (64.10%) to three (87.26%). This indicated a decrease in false positives and an in-

crease in false negatives for SVs supported by two replicates. Overall, we observed similar

trends for other samples (Additional file 5: Table S5).

Next, we investigated the overlap among family members by aggregating each indi-

vidual’s detected SVs that were singletons in each replicate after stratification (Fig. 3C).

For LCL5, we observed that 54.01% (249 SVs) of replicate singleton SVs were shared

between family members and 45.99% (212 SVs) were unique to LCL5. Similar propor-

tions of each overlapped with the PacBio SV call set at 44.98% and 49.06%, respectively

(Additional file 6: Table S6). Singleton replicate variability across family members did

not show an enrichment of false positives or negative SVs based on this analysis.

Lastly, we investigated the impact of duplicate reads marking (dedup) and base qual-

ity score recalibration (recal) on the SV calling reproducibility. Differences between

these steps per sample were the smallest contributor to variability after stratifying for

variability from centers, mappers, and replicates. For LCL5, we defined a working set of

1653 SVs of which 150 were singletons and 1503 were non-singletons. 68% of singleton

and 86.96% of non-singleton SVs overlapped with the PacBio call set. Thus, most of the

variability in the call sets was likely due to false negative calls attributed to the differ-

ences between the dedup or recal call sets. For singleton SVs, we observed that 33.33%

(50 SVs) overlapped with family singletons while 66.67% (100 SVs) did not (Fig. 3D).

Of singleton SVs overlapping family singletons, 62% overlapped with the LCL5 PacBio

call set while 71% of singleton SVs not overlapping family singletons overlapped with

the PacBio call set. The majority of the LCL5 singleton SVs (80 SVs) were attributed to

the dedup strategy while a minority (70 SVs) were part of the recal call set.

Best practices for short-read-based SV calling

In the previous sections, we defined and ranked the analytically accessible sources of

variability impacting the SV call sets. This included examining alignment methods,

Khayat et al. Genome Biology          (2021) 22:347 Page 7 of 15



insert sizes/coverage, and variability attributed to centers and replicates. We further

examined all the different short-read sequencing pipelines and results to identify the

most robust settings and benchmarked its variability using the PacBio long-reads SV

call set. We observed that Stampy consistently resulted in the highest number of SVs

calls (~15,076.55 across LCL5), however, with the smallest ratio of 21.89% overlapping

SVs (~3301.61 SVs across LCL5) with the Pacbio call set (Additional file 8: Table S7).

In contrast, Bowtie2 resulted in the least SVs called (~7704.55 SVs across LCL5), but

with a higher ratio of 32.83% overlapping SVs (2529.83 SVs on average) with the PacBio

call set (Additional file 8: Table S7). For non-overlapping SV, we observed that the

major difference was seen in an increase in duplications, inversions followed by inser-

tion calls. For example, for LCL5, the portion of falsely detected SVs increases from

Bowtie2 (~5174.72 SVs), BWA-MEM (~8370.67 SVs), and Isaac (~9308.78 SVs) to

Stampy (~11774.94 SVs) in that order, respectively.

Next, we investigated if by taking a consensus between mappers the SV calling can

be improved. We observed that using a consensus between mapping techniques

increased precision (Additional file 8: Table S7). This is especially useful when utilizing

SV mappers that have a high sensitivity such as Stampy and Isaac, but initially a lower

precision compared to Bowtie2. For example, for LCL5, SVs identified by both align-

ments from Isaac and Stampy (~8384.83 SVs) had a 34.18% overlap with Pacbio

(2866.72 SVs) compared to Isaac alone (26.57%) or Stampy alone (21.9%). Whereas an

overlap between Bowtie2 and Stampy did not yield a high recall (~5190.33 SV with a

recall of 15.66%) although it had higher precision (~2376.5 SVs or 45.79%).

In summary, we observed that Bowtie2 mappings lead to the SV sets with the highest

precision, but lowest sensitivity. This might promote its usage in settings where preci-

sion is more important outside of the research setting or in the clinical setting. Never-

theless, Bowtie2 potentially leads to less precise breakpoints that could hinder the

interpretation of the SV itself. Combined approaches using Stampy, Isaac, and BWA-

MEM allow for a less precise albeit a more sensitive approach to detecting SVs, which

lends itself better to research applications. These observed trends hold true across SV

call sets from all family members across the different mappers (Additional file 8: Table

S7).

Discussion
In this study, we investigated the impact of factors that influenced our ability to

accurately identify SVs. This is an important step towards the robust and routine

identification of SVs in research and medical applications where SV calling is

currently underrepresented. By investigating three replicates for each of the fam-

ily members of a Chinese quartet, we were able to identify the source of variabil-

ity between replicates and between sequencing centers. We showed that

variability between sequencing centers appears to be the second largest source of

variability, some of which could be explained by varying coverage between the

centers. The SV mapping methods showed the largest impact likely due to the

different heuristics and their ability to provide split read alignments. This of

course also impacted the coverage slightly in certain regions, but not overall

(Additional file 7: Fig. S2). The least impactful source of variability on SV calling

was the base pair recalibration and marking of the duplicated reads. While this
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step is recommended for SNV calling (as part of the Genome Analysis Toolkits

best practices), it did not have a significant impact on the SV analysis. Over the

entire analysis, we did not identify any significant clustering of the highly variable

events (Fig. 3E, Additional file 9: Table S8, and Additional file 10: Table S9).

Moreover, we observed that a significant proportion of singletons for sequencing

centers and replicates were indeed true positives and thus indicate a higher false

negative (i.e., missing) rate by others. This concurs with previous literature

highlighting a lower sensitivity over short-read approaches [12, 28]. On the other

hand, we did not observe a high false positive rate per our analysis and filtering

strategy given that we did not take translocations into account. These transloca-

tions have been previously discussed as large sources of false positive SV calls

(e.g., representing repeat expansion) [2, 3, 28].

This study provides new insights for the discussion of reproducibility among NGS

data sets. Previous studies showed a low reproducibility given the same data set due to

incomplete workflow documentation or differences in versions of the methods used

[29]. However, this can be overcome with documentation and careful analysis. What re-

mains challenging, especially for SV identification, seems to be the heterogeneous study

design especially across sequencing centers [30]. This is important for consideration of

small to midsize projects, but unavoidable for large scale studies such as TOPMed etc.

Thus, simple checks like the singleton rate per center, sequencing technology, or PCA

would potentially highlight these issues together with SV genotyping of the identified

variation [31]. Another strategy would be to use SV genotyping methods such as SVTy-

per [32] or Paragraph [33] to go back with a candidate list of SVs and check for any

support across the samples. We applied this here for a subset of SV that showed the

highest diversity (center and mapper only SV). We found that while the majority of

LCL5 bam files are supportive of the deletions we genotyped there is still substantial

variability present (see Additional file 7: Fig. S3). This indicates that the variability of

SV is not due to individual callers but indeed is based much deeper as certain samples

do not indicate a deletion even down to a single read support. Still SV genotyping re-

mains challenging and thus certain SV were not genotyped at all [31].

Moreover, our study might have underestimated the variability of SV calling given

our stringent SV calling pipeline. While this led to deeper insights into each of the

sources of variability, we might have inadvertently filtered out some other specific vari-

ability since we could not fully independently investigate the impact from the sequen-

cing center (e.g., coverage) vs. the mapping-based biases. Nevertheless, the aim of this

study is not to obtain a comprehensive SV call set or another SV calling benchmark,

but rather better understand underlying mechanisms. Lastly, we focused on only one

family of Chinese ethnicity, however, the approach and comparisons were standardized

steps independent of the sample origin and should thus reflect a similar trend across

populations.

Conclusions
This study is the first step to better understand the variability that is often observed for

SV calling and its associated challenges. This work paves the way for new QC and SV

calling methods that are likely needed to overcome many challenges. Improving short-

read SV calling by using multiple mapping methods can have a profound impact on
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precision and sensitivity in SV calling. Consideration would still need to be given to the

compute cost of such an approach. Thus, it may be more practical for smaller scale

projects. Insights obtained here could lead to a more routine application of SV calling

for humans and other organisms, which should allow for more insights into biology

and medicine.

Methods
Ethics, consent, and sample ascertainment

This study was approved by an independent ethics committee at the Fudan University

School of Life Sciences. A Chinese family quartet from the Fudan Taizhou cohort con-

sisting of two identical twins and their biological parents were consented to participate

in this research. Sample DNA was extracted from lymphoblastoid cell lines (LCLs) de-

rived from Epstein-Barr Virus transformed B cells. Specifically, LCLs were maintained

and sub-cultured every 3–4 days using RPMI 1640 (Gibico Catalog No. 31870-082)

supplemented with 10% fetal bovine serum (Gibico 10091-148). Cells were cultured at

37oC with 5% CO2 for six passages (2×109 cells) before total DNA extraction. Cells

were washed with PBS twice before DNA extraction using a Blood and Cell Culture

DNA Maxi Kit (QIAGEN 13362) and stored in TE buffer (10 mM TRIS, pH 8.0, 1 mM

EDTA, pH 8.0).

Next-generation sequencing

Libraries were prepared consistently across three sequencing centers (Annoroad (ARD),

NovoGene (NVG) and WuXi NextCODE (WUX)) using 200 ng of DNA with the Illu-

mina TruSeq DNA nano following manufacturer’s instructions. DNA fragmentation

was achieved using a Covaris (LE220) instrument with a target size of 350bp. All librar-

ies were assessed for quantity and quality using the Qubit 3.0 fluorometer with the

Quant-iT dsDNA HS Assay kit (ThermoFisher Scientific, Q32854) and the Agilent

2100 Bioanalyzer or TapeStation instrument. All materials were prepared with three

replicates in a single batch at each sequencing center. They were then sequenced on

the Illumina X10 platform with paired end 150 bp read length leveraging synthesis

(SBS) chemistry per the manufacturer’s instructions.

Short-read SV identification

SVs were mapped to the human reference genome (GRCh38 with decoy sequences from

NCI-GDC) using default settings for BWA-MEM (v0.7.15), ISAAC (v1.0.7), Stampy

(v1.0.29), and Bowtie2 (v2.2.9). Duplicate read marking (dedup) and base pair recalibration

(recal) were applied for each SV mapper call set (creating two independent SV call sets per

SV mapper per sample set) followed by SV calling with MetaSV [25] and Parliament2 [26]

pipelines. The Parliament2 (v0.1.8) (https://github.com/dnanexus/parliament2) SV calls

were generated using the default setting. Results from DELLY [34], BreakDancer [35],

LUMPY [36], Manta [37], and CNVnator [38] were used as inputs into Parliament2 [26].

The MetaSV call sets were generated using MetaSV [25] (v0.5.4) (https://github.com/

bioinform/metasv) with default settings. Specifically, special options were ‘--boost_sc --dis-

able_assembly --max_ins_cov_frac 2 --min_support_frac_ins 0.015 --min_support_ins 25

--max_ins_intervals 10000 --age_window 50 --extraction_max_read_pairs 20000 --min_inv_
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subalign_len 100 --min_del_subalign_len 100 --svs_to_softclip INS INV DEL DUP --svs_

to_report INV DEL INS DUP --svs_to_assemble INV DEL DUP INS’. Results from Break-

Seq [39], BreakDancer [35], Pindel [40], and CNVnator [38] were used as inputs into

MetaSV. For Parliament2, we filtered based on the recommendation: Include Manta only

calls and otherwise only calls that are supported by at least two SV callers. For MetaSV, the

recommendation was to filter for PASS only variations. Subsequently, the so filtered calls

were merged using SURVIVOR [4] with the following parameters for all merges: a max-

imum distance of 1000 bp measured pairwise from the beginning and ends of each SV, re-

spectively, SVs were required to be the same type and larger than 30bp. Per sample, a union

set of MetaSV and Parliament2 results were generated. This resulted in the generation of

288 total SV call sets for downstream analyses (4 samples x 4 mappers x 3 centers x 3 repli-

cates x 2 dedup/recal).

Mapper comparisons

The SURVIVOR package was used to merge VCF files with the following parameters

for all merges: a maximum distance of 1000 bp measured pairwise from the beginning

and end of each SV respectively, SVs were required to be the same type, and SVs had

to be larger than 30 bp. Overlapping SVs were stratified for dedup/recal variability

using a SURVIVOR merge per sample, replicate, mapper, and center with a require-

ment of 2 out of 2 dedup and recal supporting calls. The SVs were then stratified for

replicate variability using a SURVIVOR merge per sample, mapper, and center with a

requirement of 3 out of 3 replicates supporting an SV. Center variability was stratified

for using a SURVIVOR merge per sample and mapper with a requirement of 3 out of 3

centers supporting an SV. A union merge using SURVIVOR per sample was then used

to combine SVs from the 4 different mappers for downstream analyses with a mini-

mum SV size of 50 bp.

Center comparisons

The SURVIVOR package was used to merge VCF files with the following parameters

for all merges: a maximum distance of 1000 bp measured pairwise from the beginning

and ends of each SV, respectively, SVs were required to be the same type, and larger

than 30 bp. Overlapping SVs were stratified for dedup/recal variability using a SUR-

VIVOR merge per sample, replicate, mapper, and center with a requirement of 2 out of

2 dedup and recal supporting calls. Mapper variability was stratified for using a SUR-

VIVOR merge per sample, replicate, and center with a requirement of 4 out of 4 map-

pers supporting an SV. Replicate variability was stratified for using a SURVIVOR merge

per sample and center with a requirement of 3 of 3 replicates supporting an SV. A

union merge using SURVIVOR per sample was then used to combine SVs from the dif-

ferent centers for downstream analyses with a minimum SV size of 50 bp.

Replicate comparisons

The SURVIVOR package was used to merge VCF files with the following parameters

for all merges: a maximum distance of 1000 bp measured pairwise from the beginning

and ends of each SV respectively, SVs were required to be the same type, and larger

than 30 bp. Overlapping SVs were stratified for dedup/recal variability using a
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SURVIVOR merge per sample, replicate, mapper, and center with a requirement of 2

out of 2 dedup and recal supporting calls. Mapper variability was stratified for using a

SURVIVOR merge per sample, replicate and center with a requirement of 4 out of 4

mappers supporting an SV. Center variability was stratified for using a SURVIVOR

merge per sample and replicate with a requirement of 3 out of 3 centers supporting an

SV. A union merge using SURVIVOR per sample was then used to combine SVs for

the different replicates for downstream analyses with a minimum SV size of 50 bp.

Dedup/recalibration comparisons

The SURVIVOR package was used to merge VCF files with the following parameters

for all merges: a maximum distance of 1000 bp measured pairwise from the beginning

and ends of each SV respectively, SVs were required to be the same type and larger

than 30 bp. SVs were stratified for mapper variability using SURVIVOR merges per

sample, center, and replicate with a requirement of 4 out of 4 mappers supporting an

SV. The SVs were then stratified for replicate variability using a SURVIVOR merge per

sample and center with a requirement of 3 out of 3 replicates supporting an SV. Center

variability was stratified for using a SURVIVOR merge per sample with a requirement

of 3 out of 3 centers supporting an SV. A union merge using SURVIVOR per sample

was then used to combine SVs from the dedup and recal pipelines for downstream ana-

lyses with a minimum SV size of 50 bp.

GIAB high confidence regions filter

We obtained GIAB v0.6 high confidence regions (ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/

data/AshkenazimTrio/analysis/NIST_SVs_Integration_v0.6/HG002_SVs_Tier1_v0.6.bed )

[12] and used NCBI (NCBI Genome Remapping Service) to map these coordinates from

hg19 to GRCH38. SV call sets were subsequently filtered with the aforementioned regions

using bedtools intersect before they were compared across family members and strategies.

Generation and comparisons to long-read-based SV calls

Samples LCL5-8 were sequenced utilizing the Pacific Biosciences (PacBio) platform. Specif-

ically, PacBio SMRTbell libraries (CLR = Continuous Long Read) were constructed with the

standard PacBio library preparation protocols using 20 kb insert size preparation solution,

and the sequencing was conducted on PacBio Sequel (Pacific Biosciences, USA) platform.

The main steps for library preparation are: (1) gDNA shearing, (2) DNA damage repair,

(3) blunt end-ligation with hairpin adapters from the SMRTbell Express Template Prep Kit

2.0 (Pacific Biosciences, USA), (4) size selection, and (5) binding to polymerase. A total

amount of 2 μg DNA per sample was used for the DNA library preparations. The genomic

DNA sample was sheared by g-TUBEs (Covaris, USA) according to the expected size of the

fragments for the library. Single-strand overhangs were then removed and DNA fragments

were damage-repaired, end-polished, and ligated with the stem-loop adaptor for PacBio se-

quencing. Link-failed fragments were further removed by exonuclease, and target fragments

were screened by the BluePippin (Sage Science, USA). The SMRTbell library was then puri-

fied using AMPure PB and Agilent 2100 Bioanalyzer (Agilent technologies, USA) was used

to detect the size of Library fragments. Reads were mapped to GRCH38 using minimap2 (v

2.17-r941) [41]. Subsequent SVs were identified using Sniffles (v1.0.11) [28] with default
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parameters. SV calls from different analysis strategies were then merged with the PacBio SV

call set for comparison using SURVIVOR with the following parameters: a maximum dis-

tance of 1000 bp measured pairwise from the beginning and ends of each SV, respectively,

SVs were required to be the same type and larger than 50bp.

Coverage and insert size analysis

For coverage analysis, mean coverage over a window size of 1KB was computed using

samtools. For each sample, the mean and standard deviation of coverage were analyzed

against the number of detected SVs. Similarly, for each sample, the mean and standard

deviation of insert size were analyzed against the number of detected SVs.

Cross mapper comparisons

The SURVIVOR package was used to merge all VCF files per sample (LCL5-8). The

following parameters were used for all merges: a maximum distance of 1000 bp mea-

sured pairwise from the beginning and ends of each SV, respectively, SVs were required

to be the same type, and larger than 50 bp. A resulting VCF file was then used per sam-

ple (encompassing all mapper, center, technical replicates, and dedup/recal SV call sets)

to calculate total SVs resulting from each mapper SV call set. Additionally, compari-

sons were done across mappers using the same VCF file as input.

SV genotyping

SVTyper (version 0.7.1) was run on two sets of SV (center specific and mapper specific

variability) with the default parameters on all LCL5 bam files. Subsequently, we filtered

the VCF file and kept only those SVs that had at least a single read support. These SV

were then merged using SURVIVOR with a 1000bp distance and requiring the same

SV type. A custom perl script was used to extract the SUPP_VEC values reported by

SURVIVOR for each SV. R was used to plot the histograms per input VCF file to repre-

sent the overall agreement across all different bam files for LCL5.
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