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Abstract

Background: Pancreatic ductal adenocarcinoma initiation is most frequently caused
by Kras mutations.

Results: Here, we apply biological, biochemical, and network biology methods to
validate GEMM-derived cell models using inducible KrasG12D expression. We describe
the time-dependent, chromatin remodeling program that impacts function during
early oncogenic signaling. We find that the KrasG12D-induced transcriptional response
is dominated by downregulated expression concordant with layers of epigenetic
events. More open chromatin characterizes the ATAC-seq profile associated with a
smaller group of upregulated genes and epigenetic marks. RRBS demonstrates that
promoter hypermethylation does not account for the silencing of the extensive gene
promoter network. Moreover, ChIP-Seq reveals that heterochromatin reorganization
plays little role in this early transcriptional program. Notably, both gene activation
and silencing primarily depend on the marking of genes with a combination of
H3K27ac, H3K4me3, and H3K36me3. Indeed, integrated modeling of all these
datasets shows that KrasG12D regulates its transcriptional program primarily through
unique super-enhancers and enhancers, and marking specific gene promoters and
bodies. We also report chromatin remodeling across genomic areas that, although
not contributing directly to cis-gene transcription, are likely important for KrasG12D

functions.

Conclusions: In summary, we report a comprehensive, time-dependent, and
coordinated early epigenomic program for KrasG12D in pancreatic cells, which is
mechanistically relevant to understanding chromatin remodeling events underlying
transcriptional outcomes needed for the function of this oncogene.
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Background
Epigenomic regulators are emerging as key critical downstream effectors of driver mu-

tations during the process of cancer initiation, progression, metastasis, and tumor het-

erogeneity [1]. Pathogenic variants in KRAS act as driver mutations in many cancers,

with pancreatic cancer being the most frequent. In this work, we use a mechanistically

oriented, multi-omics approach based on the integrative analyses and modeling of sev-

eral next-generation sequencing technologies to define epigenomic changes that under-

lie KrasG12D-mediated effects. Using cells derived from genetically engineered mouse

models (GEMM) expressing this oncogene in an inducible manner, we systematically

describe the impact of KrasG12D on both methylation changes and chromatin remodel-

ing that account for transcriptional and non-transcriptional responses to signaling by

this oncogene. First, using ChIP-seq, we demonstrate that while KrasG12D induces

changes in heterochromatic and euchromatic histone marks, its effects on gene expres-

sion can be primarily explained by remodeling of enhancers and super-enhancers

(H3K27ac and H3K4me1), promoters (H3K4me3), and gene body-associated functions

(H3K36me3). Integration of all multi-omics data sets show that changes in heterochro-

matin marks (H3K9me3 and K27me3) have a minor impact on the transcriptome. Our

data also provides insight into the repertoire of writer, reader, and eraser proteins, for

which expression is consistent with deposition of their target marks. This data confirms

and extends previous studies, by integrating more omics methodologies that are con-

comitantly performed in a tightly controlled and inducible GEMM-derived cell system

[2]. Thus, this systematic investigation highlights the ability of KrasG12D to give rise to

an epigenomic landscape that is conducive to pancreatic cell growth. Mechanistically,

the finding that KrasG12D induced chromatin remodeling, primarily involving similar

pathways for both gene activation and repression, helps to focus future experiments

aimed at drugging these pathways to antagonize KrasG12D functions. Moreover, we de-

scribe chromatin remodeling events that do not appear to be directly associated with

transcription, though may still account for KrasG12D effects. Thus, because the path-

ways studied here have increasingly available druggable options, this result bears bio-

medical relevance for chemoprevention and therapeutic studies.

Results
Cells derived from genetically engineered mouse models recapitulate early oncogenic

KrasG12D signaling in vitro

First, we sought to better understand how KrasG12D coordinates over time, the

reorganization of the genome. We used GEMM-derived cell models that carry a

doxycycline-inducible KrasG12D transgene (iKras cell lines designated 4292, 9805, and

1012) [3, 4]. However, the ability of these cells to serve as models for studying molecu-

lar signaling and transcription coupling events is not known. Here, we show that induc-

tion of the oncogene by doxycycline increases their growth linearly after 48 hours (hrs),

which was considered here as early events in KrasG12D function (Fig. 1a). We initiated

our studies by using the 4292-cell line, although aspects of the data were also validated

in the whole subset of cell lines. Total levels of histone marks were measured by west-

ern blot for enhancers (H3K27ac, H3K4me1), super-enhancers (H3K27ac), active pro-

moters (H3K4me1 and H3K4me3), transcriptionally active gene bodies (H3K36me3)
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and silent heterochromatin (H3K27me3 and H3K9me3). We observed significant (p

value < 0.05) increases in the levels of enhancers, super-enhancers, and active pro-

moters through the H3K27ac (3.1 ± 0.7 fold) and H3K4me3 (2.7 ± 0.5 fold) histone

marks, with the levels of H3K4me1 and H3K36me3 remaining relatively stable

Fig. 1 Induction of KrasG12D leads to changes in cell features. a iKras cells (4292, 9805, and 1012) were
cultured without doxycycline (0 hr) or treated with doxycycline (48 hrs) to induce KrasG12D. Proliferation was
measured by cell confluence in all four lines and expressed as a ratio of KrasG12D-expressing cells to control
for each cell line. Cell confluency is an average of three separate experiments for each line. b Western blot
analysis was performed in 4292 iKras cell line at 0, 12, 24, and 48 hrs time points. Cell lysates were probed
with the indicated antibodies for KRASG12D and the histone marks. c Densitometry of western blots
was performed on three separate experiments. * and ** indicates p value < 0.05 and 0.01 respectively. All
data is expressed as mean ± SEM
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throughout the time course of KrasG12D induction (Fig. 1b, c). These changes were

similarly observed in other iKras cell lines tested (9805, 1012 Additional file 1: Fig S1).

Silent chromatin likewise increased in overall levels with H3K27me3 (2.9 ± 0.3 fold, p

value < 0.01) and H3K9me3 (1.7 ± 0.1 fold, p value < 0.05; Fig. 1b, c and Additional file

1: Fig S1). We hypothesized that beyond the global changes of histone marks measured

by western blot, there is a redistribution of histone marks in the genome that leads to

epigenetic alterations with the ability to be targeted and antagonize the KrasG12D effect,

a hypothesis that we explored using multi-omics methodologies.

Next, to assess signaling phosphorylation events induced by KrasG12D, we used a

proteomic approach through phase-absorbed phospho-antibody (PAPA) arrays. Ana-

lysis of phospho-protein densitometric signals at 0, 12, 24, and 48 hrs after KrasG12D in-

duction revealed a total of 66 differential protein phosphorylations (Fig. 2a, b).

KrasG12D induction by western blot (Fig. 1c) shows moderate expression and levels con-

tinuing to increase out to 24 hrs. By mirroring these time points in the PAPA array, we

may miss early signaling events, but we can observe phosphorylation changes that are

initiated at 12 hrs and maintained by KrasG12D in these cells. There were 23 phosphor-

ylation states in common for all three time points, whereas 2, 7, and 10 were exclusive

to 12, 24, and 48 hrs, respectively (Fig. 2a). Comparing the signal ratios of protein phos-

phorylation across the time points demonstrates a complete reversal of the phosphoryl-

ation states between 0 and 48 hrs, with intermediate values following this trend at 12

and 24 hrs (Fig. 2b). We then categorized the protein phosphorylation status using two

criteria, for each time point, based on their functional effect: (1) whether the magnitude

of phosphorylation increased or decreased and (2) whether they are known to be acti-

vating or inhibiting modifications. Phosphorylation states were categorized as “activity

down” if either an activating protein phosphorylation decreased in magnitude, or an in-

hibitory phosphorylation increased (Fig. 2c, d, Additional file 2: Table S1). Phosphoryl-

ation states were categorized as “activity up” if an activating phosphorylation increased

in magnitude, or an inhibitory phosphorylation decreased. We performed pathway en-

richment analysis of these two groups for each time point using the R package Rapid

Integration of Term Annotation and Network resources (RITAN) [5] and the Molecu-

lar Signatures Database (MSigDB) hallmark gene set collection [6]. We confirmed that

in these cell models, KrasG12D induced processes related to cell growth and survival via

the PI3K-AKT-mTOR-NF-κB pathway (Fig. 2c, d). We also identified induction of sig-

nals for cell proliferation that include those which are G2/M checkpoint proteins and

E2F targets (Fig. 2c, d), marking the arrival of the KrasG12D signal to the nucleus. Con-

gruently, 24 hrs after KrasG12D induction, we noted activation of early response gene

products, such as ELK-1 (pSer383, fold change = 1.6) and JUN (pSer73, fold change =

2.46), as well as activation of immediate early genes like MYC by downregulation of in-

hibitory phosphorylation (pSer62, fold change = 0.4, pThr58, fold change = 0.6) (Fig.

2d, bold letters and Additional file 2: Table S1) [7–11]. Additionally, downstream of

MYC, phosphorylation of RB1 (pSer780, fold change = 1.8) (Fig. 2d, bold letters and

Additional file 2: Table S1) releases E2F to mediate cell cycle progression and DNA

synthesis [12, 13]. Another important pathway, recapitulated by our cell model, was

that of PI3K/AKT signaling, including PDK1 (pSer241, fold change = 1.5) [14]. Cells

also indicated an activated AKT1 (pSer473, fold change = 1.7; pThr208, fold change =

1.5) to promote cell survival by inhibitory phosphorylation events of BAD (pSer112,
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fold change = 1.6; pSer115 fold change, = 1.7) [15, 16] (Fig. 2d, bold letters and Add-

itional file 2: Table S1). Next, evidence of AKT1 activation of MDM2 (pSer166, fold

change = 2.6) was seen, which inhibits p53 [17] (Fig. 2d and Additional file 2: Table S1)

as well as triggers pro-survival signals by NF-κB, through IKK-α (pThr23, fold change

= 1.6) [18–20]. Interestingly, we found activation of several subunits of NF-κB (RELA,

pThr254, fold change = 2.4; NFKB1, pSer893, fold change = 2.2; NFKB2, pSer869, fold

change = 1.6) (Fig. 2d, bold letters and Additional file 2: Table S1). Lastly, we detected

markers for oncogene-mediated replication stress, such as CHEK1 (pSer317, fold

change = 2.1), CHEK2 (pThr68, fold change = 1.5), and BRCA1 (pSer1423, fold change

= 1.5; pSer1524, fold change = 1.7) [21] (Fig. 2d, bold letters and Additional file 2:

Fig. 2 Analysis of cancer signaling phospho-antibody array containing 269 antibodies following oncogenic
KrasG12D induction. a Venn diagram of differentially phosphorylated proteins (DPPs) at 12, 24, and 48 hrs
with signal fold change ≥ |1.5|. b Signal ratios of DPPs normalized to the Z scale and plotted for 0, 12, 24,
and 48 hrs. c Pathway enrichment analysis of DPPs for 12, 24, and 48 hrs using the Molecular Signatures
Database (MSigDB) hallmark gene set collection. Color scale represents standardized –log10(FDR) values. d
Protein-Protein interaction network obtained from DPP using the STRING database and interaction
confidence score ≥ 999. Center blue circle: downregulated protein phosphorylation log2(fold change).
Center yellow circle: upregulated protein phosphorylation log2(fold change). Some proteins have multiple
phosphorylation sites and, hence, will have multiple colors in the center circle. Outer concentric circles
represent activating (orange) or inhibiting (light blue) protein activity. The effect on activity by the
combination of the mark’s effect and its level were interpreted. For instance, an inhibitory mark decreasing
should lead to a more active protein. Some proteins have both inhibitory and activating phosphorylations
and, hence, will have multiple colors in the outer concentric circle. Protein names highlighted in bold are
mentioned in the text with their fold changes

Mathison et al. Genome Biology          (2021) 22:289 Page 5 of 29



Table S1). As a control, western blots confirm the upregulation of phosphorylated

AKT1, CDC25C, and NF-κB and downregulation of inhibitory MYC phosphorylation

in the 4292, 9805, and 1012 KrasG12D cell lines at 48 hrs (Additional file 1: Fig S2).

Thus, this data validates the usefulness of our cell models by showing that KrasG12D in-

duces a proliferative phenotype, by triggering the canonical cytoplasmic signaling that

reaches the nuclei to likely regulate, in a comprehensive and coordinated manner, a

chromatin-mediated effect, which we investigate below.

KrasG12D changes histone chromatin accessibility and induces mobilization of histone

marks to coding and non-coding areas of the genome

Using ATAC-Seq, we identified areas of chromatin that are remodeled in KrasG12D-in-

duced cells. These analyses revealed 6123 regions that gain and 559 regions that lost

accessibility (FDR ≤ 0.05; Fig. 3a, i). Most regions that change accessibility were in in-

trons (33%), promoters (within 10 kb, 29%), and intergenic (29%) (Fig. 3a, iii). Hence, a

characteristic of the KrasG12D response is predominantly a gain in accessible chromatin,

affecting 2711 genes (2564 in their introns, 1563 in promoters, from 3595 to 1830

peaks, respectively), while only 323 genes became inaccessible (312 in their introns, 79

in promoters, from 346 and 82 peaks, respectively; Fig. 3a, ii). In fact, when considering

the ± 10-kb region surrounding gene transcription start sites (TSS), the global chroma-

tin accessibility in KrasG12D-induced cells increased the most in areas adjacent to the

TSS (7.7% increase in the −1 kb promoter region and 10.4% in first intron) (Fig. 3b, i–

ii). Thus, we investigated whether the genes within newly opened chromatin begin to

account for the oncogenic signal induced by KrasG12D. Genes mapped to NF-κB and

growth regulatory expression networks (Fig. 3c, i), encoding transcription factors that

work downstream of these pathways, including AP1, ETS2, SRF, and MAZ [22–24]

(Fig. 3c, ii). Figure 3d–e shows two examples of TSS accessibility changing after

KrasG12D induction at single gene loci; the upregulated Etv4 gene has increased accessi-

bility and the Cxcl15 locus shows decreased accessibility.

Due to the fact that these open areas of chromatin may correspond to different epige-

nomic regulatory areas, such as promoters, enhancers, and super-enhancers, we next

performed ChIP-seq on the six histone marks for both KrasG12D negative (0 hr) and

KrasG12D-positive (24 hrs) cells (Fig. 1b, c). ChIP-Seq for H3K27ac revealed an overall

gain in enrichment of differentially marked regions, which mapped to specific genes

and were located at intronic, intergenic and promoter regions after 24 hrs of

KrasG12D expression in cells (Fig. 4a, i–iii). We found a similar enrichment in differen-

tially marked regions around gene TSSs for H3K4me3, which in our data set marked

most promoters responsive to KrasG12D (Fig. 4b, i–iii). In contrast, KrasG12D had little

effect on mobilizing the H3K4me1 mark, which was differentially bound at fewer gene

loci as compared to previous marks and was present at intergenic, intronic, and pro-

moter regions (Fig. 4c, i–iii). In response to KrasG12D, the H3K36me3 mark became

equally divided between areas that show gain or loss of enrichment mapped to pro-

moters, 3′UTRs, exons, and 5′UTRs (Fig. 4d, i–iii). Next, we studied marks that associ-

ate with inactive chromatin. We found that the facultative heterochromatin mark,

H3K27me3, locates primarily outside of promoters in intergenic regions upon KrasG12D

expression (Fig. 4e, iii), which is congruent with published cell biology data that show
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accumulation of non-promoter regions and heterochromatin at the nuclear periphery

and lamina-associated domains (LADs) [25–27]. The other heterochromatic mark,

H3K9me3, demonstrated a modest enrichment at differentially marked regions with

Fig. 3 Global changes in accessible chromatin following oncogenic KrasG12D induction. a (i) ATAC-seq was
used to measure chromatin accessibilities. Each point represents a region of accessible chromatin
comparing KrasG12D off (0 hr) versus on (24 hrs). a (ii) Venn diagrams comparing the number of gene
promoters gained or lost in differentially accessible regions at 24 hrs. a (iii) Pie graphs showing the genomic
distribution of the significantly differentially accessible regions. b (i) Average profile plot of normalized reads
± 10 kb around gene transcription start sites (TSSs). Y-axis represents read count per million (RPM) mapped
reads. Orange and green shaded areas represent the standard error of the mean. b (ii) Heatmap of
normalized reads around the TSS for each gene for 0 and 24 hrs. c (i) Pathway enrichment and (ii)
transcription factor enrichment analysis of genes annotated to accessible chromatin for 0 and 24 hrs. Color
scale represents standardized −log10(FDR) values. The tags following the transcription factors in c (ii)
represent the TRANSFAC database nomenclature, which indicates either a different motif and/or the quality
of the data that was used to make the motif. d, e Normalized ATAC-seq read coverage tracks for: d Etv4
(upregulated RNA-seq gene) and e Cxcl15 (downregulated RNA-seq gene)
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KrasG12D at 24 hrs (Fig. 4f, i), mapping to 90 genes enriched and to 1 gene depleted

(Fig. 4f, ii). These sites mostly mapped to intergenic, intronic, and exonic regions of the

genome (Fig. 4f, iii). Promoters were poorly represented within H3K9me3 rich areas,

consistent with a role for this mark in heterochromatic regions to form centromeres

and membrane-to-heterochromatin attachment regions [26, 28]. KrasG12D activation

also increased super-enhancers from 298 at 0 hr (Fig. 5a) to 415 after 24 hrs (Fig. 5b).

When super-enhancers were mapped to genes, 87 were unique at 0 hr versus 184 at 24

hrs, with an additional 184 overlapping, although depending on the time point, signal

intensity varied (Fig. 5c and Additional file 2: Table S2). We found that unique super-

enhancers, as predicted using the ROSE algorithm [29, 30], before KrasG12D expression

(0 hr) (Fig. 5d) were near genes regulating the mesenchymal phenotype and interferon

responses, while super-enhancers after KrasG12D expression (24 hrs) were near genes

encoding transcription factors that mediate oncogenic functions related to proliferation

and cell cycle progression [31–38] (Fig. 5d). Super-enhancer formation also encom-

passed regulating pathways downstream of KrasG12D, including RAS, NF-κB, and G2M

checkpoint-mediated gene expression networks [6, 39] (Fig. 5d). An independent ChIP

assay performed on all three KrasG12D cell lines (4292, 9805 and 1012) in the promoter

regions of Btc, Etv4, Cdkn1a, and Npm1 showed an increase in the deposition of

H3K27ac and H3K4me3 marks and a decrease in the deposition of those same marks

at Itgb5, Pdgfrb, Wnt10b, and Uba7. This was confirmation that KrasG12D induction

leads to the same remodeling of activating chromatin marks as seen with ChIP-seq ana-

lysis (Additional file 1: Fig S3). These results indicate that super-enhancers make an im-

portant contribution to the KrasG12D response and its phenotypic transitions.

We next investigated how these KrasG12D induced super-enhancer changes related to

gene expression changes, proximally and via transcription factors. We plotted expres-

sion levels (reads per kilobase per million mapped, RPKM) of the 87 genes proximal to

super-enhancers that are present only at 0 hr (Fig. 5e, i) and the 184 genes associated

to those present only at 24 hrs (Fig. 5e, ii). Generally, genes associated with super-

enhancers have higher expression compared to the same genes when the super-

enhancers were not formed. This consistent change in gene expression supports a clear

functional role for these changes in super-enhancer architecture, rapidly after oncogene

induction. Next, we investigated how many of the super-enhancer-associated genes ex-

clusive to each time point were transcription factors and had significant changes in

gene expression, to better understand how super-enhancer assembly and disassembly

could signal throughout the genome. At 0 hr (no KrasG12D), super-enhancers associated

with 15 different transcription factors, out of which 13 were highly expressed and then

downregulated by KrasG12D induction at 24 hrs (Fig. 5f, i). Notably, these transcription

factors are all regulators of cell differentiation and xenobiotic metabolism [40–44].

There were 6 transcription factors associated with super-enhancers at only 24 hrs in

KrasG12D and half of them had corresponding transcriptional upregulation at 24 hrs

(Fig. 5f, ii). Therefore, gene expression was relatively concordant with super-enhancer

regulation and further implicated transcription factors could be initiating genome-wide

reorganization after super-enhancer remodeling. Ongoing studies that consider the im-

pact of three-dimensional chromatin structure and regulation of super-enhancers on

more distal genes will elucidate additional levels of regulation that may explain differ-

ences from the simple model that super-enhancers always upregulate cis-acting genes.
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Transcription factors among the differentially expressed genes at both time points

function in various signaling pathways necessary for immune and oncogenic functions

(Fig. 5g). Therefore, KrasG12D expression triggers an active remodeling of super-

enhancers, which act in concert with the expression of transcription factors to contrib-

ute to the effects of this oncogene. Furthermore, combined ATAC-Seq and ChIP-Seq

Fig. 4 Global changes in histone marks following oncogenic KrasG12D induction. a H3K27ac, b H3K4me3, c
H3K4me1, d H3K36me3, e H3K27me3, f H3K9me3. a (i)–f (i): Each point represents a binding region
comparing KrasG12D off (0 hr) versus on (24 hrs) condition. Loss or gain of enrichment set by an FDR ≤ 0.05.
a (ii)–f (ii) Venn diagrams comparing the number of genes gained or lost in differentially bound regions at
24 hrs. a (iii)–f (iii) Pie graphs showing the genomic distribution of the significantly differentially
bound regions
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data demonstrates that KrasG12D induces a robust global remodeling of primarily acti-

vating chromatin marks for enhancers (H3K27ac), promoters (H3K4me3), and gene

bodies (H36Kme3), with less of a contribution from H3K4me1. On the other hand, het-

erochromatin reorganization (H3K27me3, H3K9me3) is less associated with promoters,

suggesting that these marks play an additional role apart from a direct influence on

transcription, as revealed below by integrative analyses of all our omics datasets. These

changes are a dominant feature associated to the KrasG12D phenotype in this GEMM-

derived cell model.

KrasG12D induces rapid and global changes in DNA methylation, primarily at promoter

regions and distinct repetitive areas of the genome

Due to the fact that many of the histone-based pathways work in coordination with 5-

cytosine methylation of CpGs, we performed reduced representation bisulfite sequencing

(RRBS) [45] (Additional file 2: Table S3). We found that KrasG12D deploys a rapid and ro-

bust methylation response with thousands of differentially methylated CpGs (DMCs)

identified in KrasG12D-expressing cells (Fig. 6a, b). More than half of these DMCs were in

CpG islands or flanking shores (Fig. 6c). Further annotation revealed that majority of

these modifications occurred within promoters, followed by intergenic, intronic, and ex-

onic regions (Fig. 6d). Pathway enrichment analysis of genes annotated to DMCs upon

KrasG12D induction revealed that overall hypermethylation with concomitant gene silen-

cing of promoters were primary involved in epithelial-to-mesenchymal transition (EMT),

congruent with transcriptional silencing of genes in this pathway identified by RNA-seq

experiments (Fig. 6e, f genes with yellow circles, Fig. 7c) [46–49].

We next analyzed methylation of repetitive elements such as long interspersed nu-

clear elements (LINE), short interspersed nuclear element (SINE), and long terminal re-

peats (LTR), which can be differentially methylated in cancers and linked to genomic

instability [50]. The majority of the DMCs found in KrasG12D-expressing cells were in

non-repetitive elements, although a significant number of LINE, LTR, simple repeats,

and SINE were also represented (Fig. 6g and Additional file 1: Fig S4a). Changes in

DMCs within non-repeats and repetitive elements revealed that LINE are hypermethy-

lated in KrasG12D cells at 12 hrs (Additional file 1: Fig S4b), but hypomethylated, along

with LTR and SINE elements, after 24 hrs (Fig. 6h). At 48 hrs, LINE and SINE elements

continued to be hypomethylated, whereas hypermethylation marked simple repeats

(Additional file 1: Fig S4c). DMCs in non-repetitive regions became hypermethylated in

KrasG12D cells at 24 and 48 hrs (Fig. 6h and Additional file 1: Fig S4c). Thus, we con-

clude that KrasG12D causes an overall decrease in methylation of LINE, SINE, and LTR

by elements, which has yet to be recognized in response to this oncogene. Combined,

these analyses demonstrate that KrasG12D triggers a rapid methylation response that

varies in genomic location, although quantitatively similar through time. Simultan-

eously, KrasG12D causes demethylation of repetitive elements that associate to pathways

such as reactivation of endogenous retroelements and genomic instability [51]. Thus,

these phenomena are an important reflection of the potential of KrasG12D to participate

in different aspects of carcinogenesis, such as genomic instability, which may underlie

the accumulation of genetic alterations in pancreatic tissues over time, increasing the

likelihood for a second hit.
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Transcriptional outcome of the combined remodeling of nuclear functions induced by

KrasG12D

RNA-seq, performed at 0, 12, 24, and 48 hrs after doxycycline treatment, detected 2091

differentially expressed genes (DEG) (Fig. 7a and Additional file 2: Table S4). A total of

Fig. 5 Identification of super-enhancers following KrasG12D induction. a, b Super-enhancers identified at
a 0 hr and b 24 hrs. c Venn diagram of super-enhancers annotated with genes comparing unique and
shared super-enhancers at 0 and 24 hrs. d Pathway enrichment analysis of annotated super-enhancers for 0
and 24 hrs using the MSigDB hallmark gene set collection. Color scale −log10 (FDR). e Gene expression
heatmap of all genes associated with super-enhancers at (i) only 0 hr (87 genes) and (ii) only 24 hrs (184
genes). f Gene expression heatmap of the transcription factors associated with super-enhancers at (i) only 0
hr and (ii) only 24 hrs. RPKM values were normalized to the Z scale. g Pathway enrichment analysis of
transcription factors for 0 and 24 hrs using MSigDB hallmark gene set collection. Color scale −log10 (FDR)
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Fig. 6 Identification of DNA methylation changes following oncogenic KrasG12D induction using RRBS. a
Venn diagram of unique and overlapping differentially methylated cytosines (DMCs) for 12, 24, and 48 hrs.
DMCs were classified based on p value < 0.01 and methylation difference > |10%|. b Methylation ratio of
DMCs normalized to the Z scale and plotted for 0, 12, 24, and 48 hrs. Yellow: hypermethylated DMC. Blue:
hypomethylated DMC. Black: no change. c Annotation of DMCs with CpG islands and shores. d Annotation
of DMCs with genic features. e Pathway enrichment analysis of DMCs located within ± 3 kb of gene
transcription start sites (TSSs) for 12, 24, and 48 hrs using the MSigDB hallmark gene set collection. Color
scale: −log10(FDR). f Protein-protein interaction network obtained from DMCs for the epithelial to
mesenchymal transition (EMT) pathway using the STRING database. Confidence score: 700. g Distribution of
DMCs within various repetitive element types. h Methylation ratio of DMCs distributed within non-repeats
and repetitive elements. Non-repeat n = 10,864, LINE n = 1411, LTR n = 791, Simple repeat n = 465, SINE n
= 347. Wilcoxon signed rank test was used to test for differences between 0 and 24 hrs for each category. *
significant at p value < 0.05
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Fig. 7 RNA-seq analysis following oncogenic KrasG12D induction. a Venn diagram of differentially expressed
genes (DEGs) at 12, 24, and 48 hrs. DEGs were classified based on expression fold change ≥ |2| and FDR ≤
0.05. Total number of DEGs across time points: 2091. b RPKM expression levels of DEGs normalized to the Z
scale and plotted for 0, 12, 24, and 48 hrs. Yellow: positive change. Blue: negative change. Black: no change.
c Pathway enrichment analysis of DEGs for 12, 24, and 48 hrs using RITAN and MSigDB hallmark gene set
collection. Color scale − log10(FDR). Gene expression networks obtained from upstream regulatory analysis
at 24 hrs in Ingenuity Pathway Analysis (IPA) software for downregulated d TGFB1, and upregulated e MYC
and f KRAS. The blue and green gene shapes and lines indicate predicted or observed inhibition
respectively, while the yellow line indicates the predicted relationship is inconsistent with gene expression.
The orange and red gene shapes and lines indicate predicted activation or observed upregulation
respectively. Gray lines indicate no predicted effect
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646 DEGs were identified at all post-induction time points. However, distinct subsets

only changed at specific times, with 248, 245, and 208 DEGs at 12, 24, and 48 hrs, re-

spectively (Fig. 7a). Hierarchical clustering defined four expression patterns (Fig. 7b,

color bars). Two patterns (labeled red and green) were primarily represented by tran-

scripts that were downregulated in KrasG12D cells at 12 hrs and remained low through

24 hrs (1395 genes). At 48 hrs, 421 genes in the red pattern were upregulated, separat-

ing from the green pattern. The third pattern (labeled pink) contained 241 genes min-

imally expressed at 0 hr, but gradually increased to their maximum expression at 48

hrs. Finally, the 455 genes in the fourth pattern (labeled blue) increased in expression

at 12 hrs and returned to near-basal levels by 48 hrs. Thus, in contrast with changes to

chromatin, where we found a gain of enrichment for marks involved in transcriptional

activation, nearly two-thirds of the DEGs exhibited robust downregulation. Pathway en-

richment analyses using RITAN indicated that, at all three time points, downregulated

genes, which included transcripts such as Snai2, Acta2, and multiple collagen genes,

participate in EMT (Fig. 7c) [47]. Another set of downregulated genes were represented

by the hallmark interferon alpha and gamma responses (Fig. 7c). Other algorithms such

as IPA and cluster Profiler show that these pathways ranked among the top 5 in

KrasG12D cells at 12 and 24 hrs (Additional file 1: Fig S5 and S6). Genes exclusively up-

regulated by KrasG12D at 12 and 24 hrs were enriched for proliferation and survival

pathways, such as Myc targets and Mtorc1 signaling, both involved in protein synthesis

and growth [52–57] (Fig. 7c and Additional file 1: Fig S5 and S6). Using upstream regu-

latory analysis (URA), we found Tgfb1 as a key node for regulating a mesenchymal net-

work (Fig. 7d and Additional file 1: Fig S7). URA also shows that KrasG12D induction

maintained the proliferative and growth-related MYC and KRAS gene networks at 24

hrs (Fig. 7e, f and Additional file 1: Fig S7). KrasG12D induction increased expression of

EGF-like pathways [58], which reinforce its oncogenic potential [59–61] (Additional file

2: Table S4). To confirm the gene expression patterns and consistency of alterations in

key pathways, transcriptomics were completed on the 1012 and 9805 cell lines (Add-

itional file 2: Table S4). Filtered to match the set of 2091 genes altered by the 4292

cells, we observed that approximately 85% of the time the direction of the DEG was

matched across all 3 cell lines (Additional file 1: Fig S8). Additionally, genes of the IFN-

alpha, IFN-gamma, EMT, Myc, Mtorc1, and Kras up-/downregulation were similarly al-

tered in these three KrasG12D-inducible cell lines. In summary, RNA-seq complements

our cellular studies at a quantitative level by showing that KrasG12D induces the down-

regulation of a sizable percentage of gene networks with selective upregulation of those

which promote oncogenicity.

Integrative analyses uncover single and combinatorial chromatin events underlying the

early transcriptional response to KrasG12D

Our integrative analyses were initiated by filtering RNA-seq data and overlaying this

data with peaks derived from ChIP-seq. We plotted H3K27ac, H4K4me3, H3K36me3,

and H3K4me1 ChIP-seq signals for DEGs obtained from our RNA-seq data set in

KrasG12D cells at 24 hrs (Fig. 8). We found an increase in H3K27ac and H3K4me3 at

gene TSSs and H3K36me3 within gene bodies (Fig. 8a, i–iii). In fact, two-thirds of the

genes expressed in KrasG12D cells displayed enrichment of these 3 marks at 24 hrs
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compared to 0 hr (Fig. 8a, v–vii). Concomitantly, nearly two-thirds of genes downregu-

lated at 24 hrs in KrasG12D-expressing cells exhibited a decrease in these marks (Fig. 8b,

i–iii, b, v–vii). In contrast, changes observed in other marks, such as H3K4me1 (Fig. 8a,

iv, viii, b, iv, viii), H3K27me3, and H3K9me3 (Additional file 1: Fig S9), were not signifi-

cantly enriched at promoter or enhancer regions and thus likely do not participate in

transcriptional initiation. Moreover, we integrated information from ChIP-seq, ATAC-

seq, and RRBS, using ChromHMM, to develop a model with 15 distinct chromatin

states (States 1–15) as outputs, annotated as previously reported [62–64]. These ana-

lyses confirmed that active TSSs or flanking TSSs were marked by combinations of

H3K4me3 with H3K27ac and H3K4me1 (Fig. 9a; States 1–4). Surprisingly, these

Fig. 8 Chromatin marks at gene transcription start sites and gene bodies correlate with up- and
downregulated transcripts following KrasG12D induction. a (i–iv) Average profile plots of normalized
H3K27Ac, H3K4Me3, H3K36Me3, and H3K4me1 reads around the transcription start site (TSS) and gene body
for upregulated genes at 24 hrs in the RNA-seq data (446 genes). Orange and green shaded areas represent
the standard error of the mean. a (v–viii) Red heatmaps show normalized reads around the TSS or gene
body for each upregulated gene. b (i–iv) Average profile plots of normalized H3K27Ac, H3K4Me3,
H3K36Me3, and H3K4me1 reads around gene TSS and the gene body for downregulated genes at 24 hrs in
the RNA-seq data (1165 genes). Color scheme is same as a (i–iv). b (v–viii) Red heatmaps show normalized
reads around the TSS or gene body for each downregulated gene
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Fig. 9 Multi-omics data integration reveals single and combinatorial chromatin remodeling events that affect gene
transcription and cell phenotype. a ChromHMM segmentation of the genome. TES: Transcription end site, S: States
1–15. Integration of ChromHMM with b RNA-seq, c DNA methylation, and d ATAC-seq. Chromatin segmentation of
e two upregulated genes, Btc and Etv5 and f two downregulated genes, Acta2 and Pdgfrb illustrating the change in
marks at 0 and 24 hrs. g Heatmap displaying log2 fold changes of genes in the RNA-seq, ATAC-seq, ChIP-seq, and
methylation ratio of RRBS data set at 24 hrs. h Pathway enrichment analysis of genes represented in panel g using
RITAN. Gain or loss of enrichment: RNA-seq genes enriched in (1) ATAC-seq (2), H3K27ac (3), H3K4me3 (4), H3K4me1
(5), H3K36me3 (6), H3K27me3 (7), H3K9me3, and (8) hypermethylated (gain), hypomethylated (loss) gene promoters
respectively. i Gene networks generated from the genes represented in g. Center red or blue dots represent
upregulated and downregulated genes in the RNA-seq data set respectively. Concentric circles around the dots
represent changes in H3K27ac, H3K4me3, and H3K36me3 respectively (going inside out) with red representing gain
of the mark and blue representing loss of the mark. Enlarged figure with gene details provided as Additional file 1:
Fig S10. j RPKM expression levels of differentially expressed histone readers, writers, and erasers normalized to the Z
scale and plotted for 0, 12, 24, and 48 hrs
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regions combined only represent 1.3% of the entire genome. Of similar importance,

these marks were absent in 74% of the genome (Fig. 9a; State 14). Thus, this data pro-

vides insights into the existence of an early KrasG12D-associated epigenomic landscape

that accounts for the transcriptional outcome, which at a global and quantitative level

facilitate the remodeling of euchromatic vs. repressive chromatin.

This pattern of histone-based chromatin remodeling correlated with expression of

upregulated genes in RNA-seq, hypomethylation of DNA promoters by RRBS, and in-

creased accessible chromatin regions by ATAC-seq (Fig. 9b–d; State 2). States 5 and 6,

which represent transcription of genes at 5′ and 3′ ends, were marked with H3K4me3,

H3K27ac, H3K4me1, and H3K36me3, constituting 0.26% of the genome (Fig. 9a; States

5–6). Nine percent of the genome was also enriched in H3K36me3 reflecting the ability

of KrasG12D to induce an active program of post-initiation, transcriptional processing

within gene bodies (Fig. 9a, b; States 7–8). Enhancer regions were the primary remodel-

ing target of KrasG12D and comprised about 5% of the genome marked by both

H3K4me1 and H3K27ac (Fig. 9a; States 9-13). Another important finding is that 10% of

the genome was marked by H3K9me3 or H3K27me3 (Fig. 9a; States 13 and 15 respect-

ively), which as suggested by ChromHMM, relocated to LADs (Fig. 9a; States 13–15) in

response to KrasG12D induction. Mapping the ChromHMM states along a 2D linear

gene representation depicts how chromatin states alternate along segments of DNA, al-

though they likely represent contacts that these genes make with chromatin proteins

which aggregate in distinct 3D domains [65]. For instance, two upregulated genes, Btc

and Etv5, were part of the proliferative network observed in RNA-seq (Fig. 7f), which

gained transcriptionally active chromatin and lost the quiescent state within the gene

body in KrasG12D cells (Fig. 9e). Under the same conditions, Etv5 gained marks of an

active TSS. Conversely, close examination of genes downregulated at 0 hr, representing

networks regulated by Tgfb1 (Acta2 and Pdgfrb) (Fig. 7d), demonstrated that their gene

bodies lost marks and acquired a quiescent chromatin state upon KrasG12D induction

(Fig. 9f). We also integrated RNA-seq expression patterns with all epigenomic data sets

by a hierarchical clustering-based method which illustrated that KrasG12D cells dis-

played a total of 859 DEGs with upregulated genes mapping to accessible chromatin re-

gions (ATAC-seq) and enrichment for H3K27ac, H3K4me3, and H3K36me3 marks

(Fig. 9g). Conversely, downregulated genes primarily located at accessible chromatin re-

gions lost enrichment of H3K27ac, H3K4me3, and H3K36me3. However, both up- and

downregulated genes demonstrated an overall increase in H3K27me3. Pathway enrich-

ment analyses on the integrated epigenomics dataset found that genes within accessible

ATAC-seq regions and triple-marked by H3K27ac, H3K4me3, and H3K36me3 partici-

pate in cell survival, growth, and proliferative pathways (Fig. 9h). Conversely, genes that

lost H3K27ac, H3K4me3, and H3K36me3 but gained H3K27me3 and underwent pro-

moter hypermethylation primarily belong to pathways that can aid cells to acquire a

pro-oncogenic capacitation by KrasG12D (Fig. 9h). We also built interacting gene ex-

pression networks of loci modified by different epigenomic pathways, overlaying fold

changes in RNA expression (center circle) with the changes in H3K27ac, H3K4me3,

and H3K36me3 (Fig. 9i and Additional file 1: Fig S10). Most downregulated genes that

control EMT as well as IFN-α and IFN-γ responses exhibited depletion of at least one

of the activating histone marks (Fig. 9i and Additional file 1: S10). Conversely, upregu-

lated genes that control ribosomal biogenesis through Myc were enriched in at least
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one of these marks (Fig. 9i and Additional file 1: Fig S10). Interestingly, analyses of the

effects of KrasG12D on key epigenomic regulators that are known to impact the marks

studied here demonstrated the downregulation of histone deacetylases (HDACs), en-

zymes which remove the H3K27ac mark, in order to dissemble enhancers and super-

enhancers (Fig. 9j). Hence, these changes are congruent with a hierarchical and critical

role of enhancers and super-enhancers and, potentially, some regulators (e.g.,

HDAC, histone acetyltransferases (HATs)) to initiate transcription in response to

KrasG12D. In summary, this study integrates knowledge derived from multiple datasets,

generated in a controlled and time-dependent manner, to account for many features

shown to characterize the KrasG12D phenotype in GEMM-derived pancreatic cells.

Discussion
The current study extends our understanding of how the epigenome functions as an ef-

fector of early KrasG12D signaling. Using an extensive battery of state-of-the-art multi-

omics methodologies, we have used a step-wise design to follow the impact of this

oncogene on levels of chromatin marks and their genome localization for 6 different

histone marks, as well as its impact on chromatin accessibility, DNA methylation, and

the transcriptome. The analyses of results from each of these datasets were mapped ini-

tially to the entire genome (global remodeling), without taking into consideration their

impact on transcription. Subsequently, the integration of all the data together provided

information on how distinct changes in the epigenome associate or not with the tran-

scriptional response to KrasG12D. The new knowledge derived from these experiments

represents a robust characterization of these oncogene-driven events in a pancreatic

cell model. Consequently, it is important to summarize and discuss these findings in

light of the role that this oncogene has in preparing pancreatic cells to begin the transi-

tion toward abnormal cell growth.

The choice of cell model for the study was carefully considered since previous studies

have demonstrated that pancreatic tumor cells are heterogenous [1]. Thus, we first vali-

dated the usefulness of GEMM-derived pancreatic cells carrying an inducible KrasG12D

allele as an appropriate model for our study. These modifications were accompanied by

changes in a phenotypic transition from a slow proliferative cell to a more epithelioid

proliferative one. Using PAPA arrays, we defined that the extensive signaling cascade

triggered by KrasG12D was congruent with its biological effect and complemented the

analyses that support the use of these GEMM-derived cells as a model for studying the

early epigenomic landscape of KrasG12D.

While several studies seeking to understand the role of KrasG12D-mediated effects in

pancreatic cells using multi-omic approaches have emerged and provide useful data,

our current investigation has the advantage of describing a controlled, time-dependent,

coordinated, and comprehensive design, following the signal from the oncogene to the

moment it enters into the nucleus to remodel the epigenome. This allows us to build a

“landscape” for the early epigenomic response to KrasG12D, which should be a key re-

source for future mechanistic studies to determine the role of a myriad of writers,

readers, and erasers of both DNA methylation and the histone code. First, we analyzed

the data in a general manner, seeking to understand the total remodeling of the epige-

nome, independent of considering the impact on transcription. Subsequently, we

mapped the key events that can account for the early oncogenic transcriptional
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response of KrasG12D. These results are important, since most work in this area has

been directed to underscore transcriptionally linked chromatin-remodeling events.

However, epigenomic changes without an apparent link to direct transcriptional control

may still influence gene expression through changes in nuclear structure and dynamics.

Further support for this idea is given by the fact that the transcriptional response to

KrasG12D is dominated by gene silencing events, including for transcription factors

which likely have trans-activity, while ATAC-Seq shows the largest effects on chroma-

tin opening. However, heterochromatin marks (H3K9Me3 and H3K27Me3) do not ap-

pear as major direct contributors to the transcriptional outcome. Instead, we suggest,

and is predicted by ChromHMM and published cell biology data, that heterochromatin

marks primarily undergo relocation to the nuclear periphery and LADs [25–27], rather

than with mRNA synthesis and processing. Therefore, KrasG12D mounts a transcrip-

tional response primarily characterized by gene expression silencing, for which the

underlying mechanism cannot be attributed to reduced chromatin accessibility, DNA

methylation, nor heterochromatin formation on transcriptionally active genes.

Notably, we find that most of the transcriptional output in response to KrasG12D sig-

naling can be accounted for by a hierarchical cascade of changes that begin with the

formation of enhancers and super-enhancers to influence the function of gene pro-

moters and bodies. Hence, our study both confirms and extends a previous report per-

formed in GEMM using an elegant approach, which concluded that the metastatic

potential of PDAC cells correlates with changes in enhancers reflected by a global

H3K27ac enrichment [2]. Interestingly, although human and mice PDAC might differ

in many aspects, work from our laboratory has also demonstrated a key role for en-

hancers and super-enhancers in enabling the acquisition of specific pancreatic cancer

subtypes [64]. Hence, these studies expand our understanding of chromatin remodeling

in response to KrasG12D signaling and may help to delineate potential evolutionarily

conserved mechanisms for oncogenesis from mice-to-human. Interestingly, examin-

ation of the expression of writers, readers, and erasers of both DNA and histone-based

pathways demonstrate that these changes primarily correlate with the downregulation

of HDACs. This observation is relevant since these molecules can deacetylate the

H3K27ac mark for enhancers and super-enhancers, which are necessary to trigger and

maintain other epigenomic events.

We should also consider potential impact of the current study for future biomedical

experiments in mice, as well as the search for novel therapeutic strategies. Indeed,

many of the writers, readers, and erasers of both DNA methylation and the histone

code are emerging as important mechanistic nodes in cancer development as well as

promising new therapeutic targets [66]. Emerging in vivo studies using GEMM are

finding that some nuclear regulators known to either deposit, bind, or reverse both

DNA and/or histone marks impact KRASG12D initiation [2]. However, the field is just

at an early stage and a deeper, exhaustive understanding of the role of the epigenome

as an effector of oncogenes will remain a matter of intensive investigations [65].

Conclusion
In conclusion, outlining how all the pathways studied here work in concert and in a

time-regulated manner to mediate the effects of the most common initiating mutation

for PDAC is important for helping to interpret mechanistic experiments and inspire
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the exploration of future therapeutic directions. We demonstrate that KrasG12D has a

quantitatively larger effect on transcriptional activation via remodeling euchromatin-

associated histone pathways while its role in repression is rather passive, by decreasing

their level and reorganization. We also describe, however, chromatin remodeling events

which, although not directly associated with transcriptional output, are part of the

KrasG12D epigenomic landscape likely necessary for achieving its full oncogenic poten-

tial. KrasG12D-induced chromatin remodeling in GEMM pancreatic cells, as captured

using multi-omics, shows the early nuclear response and describes how changes in gene

expression are brought about by this oncogene, bearing both mechanistic and potential

medical relevance due to promising and emerging experimental therapeutics targeting

these pathways. Thus, this new knowledge should be taken into consideration when

planning future mechanistic studies directed toward antagonizing early effects of

KrasG12D, a critical step for inhibiting cancer initiation.

Experimental procedures
Tissue culture and reagents

iKras cell lines 4292, 9805, and 1012 were maintained in complete media (RPMI, Gibco

11875 with 10% fetal bovine serum and 1 μg/mL doxycycline) to continually express

constitutively active KrasG12D as described [4, 67]. Cell lines were provided by Dr. Mar-

ina Pasca di Magliano and have regularly tested negative for mycoplasma with the last

test occurring in July 2020. For RNA, DNA, ATAC, and ChIP experiments, cells were

grown for 48–72 hrs without doxycycline to inactivate expression of KrasG12D. To initi-

ate the time course, cells were counted and split to 5E5 cells per 100 mm dish and

allowed to attach overnight. The following morning, 0 hr (no KrasG12D expression) was

collected per RNA/DNA/ChIP protocols and doxycycline (1 μg/mL) was added to

media and allowed to incubate for 12, 24, and 48 hrs prior to harvest. The inducible

KrasG12D expression system utilized here does not allow for the elimination of any con-

founding effects that doxycycline treatment alone may initiate on the transcriptome

and epigenome of these cells. For proliferation assays, cells were plated at 1000 cells

per well in a 96-well plate, doxycycline added to experimental groups and then incu-

bated in the IncuCyte S3 with images captured every 6 hrs. Cell confluence was calcu-

lated using the IncuCyte software, with each condition normalized to 0 hr and fold

changes calculated between doxycycline (KrasG12D expressing) and no doxycycline con-

dition at each time point.

Western blot

iKras proteins were collected from cells at all time points after KrasG12D induction by

lysis in RIPA buffer (20 mM Tris-HCl (pH 7.5) 150 mM NaCl, 1 mM Na2EDTA, 1 mM

EGTA, 1% NP-40, 1% sodium deoxycholate), supplemented with phosphatase and pro-

tease inhibitors (Thermo Fisher Scientific). Equal amounts of protein were electropho-

resed on 12% SDS-PAGE gels and transferred to nitrocellulose membranes (GE

Healthcare). Membranes were blocked in either 5% milk or 3% BSA for 1 hr, and pri-

mary antibody incubations were performed overnight at 4 °C with rocking. Additional

file 2: Table S5 contains primary antibodies and dilutions used. Anti-mouse or anti-

rabbit secondary antibodies (1:5000, Millipore) were incubated on the membranes for
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1 hr at room temperature with shaking, followed by detection of bands with chemilu-

minescence (Thermo Fisher Scientific). Uncropped versions of all western blots are

available (Additional file 1: Fig S11, Fig S12, Fig S13). Quantification of bands in three

independent biological experiments was completed using ImageJ and statistical signifi-

cance determined by Student’s t tests in GraphPad Prism.

Phospho-antibody array

Cancer Signaling Phospho-Antibody Array from Full Moon BioSystems were used per

manufacturer recommendations and sent back to the company for scanning and quan-

tification. The protein phosphorylation state ratio was defined as the signal intensity of

phospho site-specific antibody/signal intensity of site specify antibody. The ratio change

between samples was defined as the treatment sample/control sample. RITAN [5] and

the Molecular Signatures Database (MSigDB) hallmark gene set collection [6] were

used to perform pathway enrichments.

Assay for transposase-accessible chromatin sequencing (ATAC-seq)

iKras 4292 pellets of 5E3 cells were collected at 0 and 24 hrs and resuspended in ATAC

buffer and processed as described by Volk et al. [68]. Briefly, the genome was fragmen-

ted by tagmentation, DNA fragments purified, and sequencing and indexing primers

added by PCR. Additional cycles of amplification, ranging from 10 to 14 cycles, was

completed to minimally increase library content. Libraries were recovered with the

MinElute PCR Cleanup kit (Qiagen, 28004) and size selected for fragment sizes of 100–

500 bp with AMPure XP beads (Beckman Coulter, A63881). Sequencing was completed

by the GSPMC at the Medical College of Wisconsin on the Illumina HiSeq-2500 with

126 bp paired end read length and an average of 125 million paired end reads per sam-

ple, completed in biological triplicate. The ATAC-seq pipeline from Encode consortium

was used for adapter trimming, read alignment, and peak calling of libraries [69].

Briefly, paired end reads were mapped by Bowtie using the mm10 reference genome.

ATAC-seq peaks were called using MACS2 software at p value ≤ 0.01. The R package

DiffBind was used to identify differentially accessible regions with FDR ≤ 0.05. As de-

fined in DiffBind, the coordinates and the size of these regions were defined by obtain-

ing the narrowest region of overlapping peaks. The identified regions were annotated

with genes if they were located within ± 10 kb of gene transcription start sites (TSSs)

using the R package ChIPseeker [70]. R package RITAN and the Molecular Signatures

Databases [6, 71] was used to perform pathway and transcription factor enrichment

analysis. To identify global differences in accessible chromatin at each time point,

ngsplot software was used to generate normalized tag density profiles around ± 10 kb

of gene transcription start sites. ATAC-seq reads around specific genes were visualized

using the integrative genomics viewer (IGV) [72]. Prior to visualization, reads were nor-

malized (RPKM) using the deepTools software [73].

ChIP-seq

At time points of 0 and 24 hrs, DNA-protein interactions were crosslinked in 4292

iKras cells using 10% formaldehyde. The reaction was quenched with glycine and cells

harvested in PBS containing protease inhibitors. Chromatin was sheared,
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immunoprecipitated, and processed as previously described in Lomberk et al. [64].

Supernatant was incubated with various histone mark antibodies (Additional file 2:

Table S6) and protein G-agarose beads (Roche 11719416001) for 3 days with mixing at

4 °C. Following DNA purification, samples underwent real-time PCR at positive and

negative loci and confirmed histone mark enrichment over 1% input. Sequencing was

completed at the Mayo Clinic Medical Genomics Core on the Illumina HiSeq 2000

with 51 bp paired end and 25 million reads per sample, completed in biological dupli-

cate. Data was analyzed using the HiChIP pipeline [74]. Briefly, paired end reads were

mapped by BWA [75] using the mm10 reference genome and pairs with one or both

ends uniquely mapped were retained. H3K4me3, H3K4me1, and H3K27ac peaks were

called using the MACS2 software package [76] at FDR ≤ 1%. SICER [35] was used to

identify enriched domains for H3K36me3, H3K27me3, and H3K9me3. The R package

DiffBind [77, 78] was used to identify differentially bound regions (DBRs) with FDR ≤

0.05. The DBRs were annotated with genes using the R package ChIPseeker [70]. The

following cut-offs from the transcription start site was used for gene annotation:

H3K27ac (± 10 kb), H3K4me3 (± 3 kb), H3K36me3 (− 3 kb,10 kb), H3K4me1 (± 10 kb),

H3K27me3 (any distance from TSS), H3K9me3 (any distance from TSS). The ROSE

software [29, 30] was used to identify stitched enhancers and to separate super-

enhancers from typical enhancers based on K27ac bam files and peak files. The stitch-

ing distance used was 12,500 kb. Regions around TSS 2500 kb were not considered

while calling super-enhancers. R package RITAN [79] and the MSigDB hallmark gene

set collection [6] was used to perform pathway enrichment analysis of genes annotated

to super-enhancers.

qPCR of histone marks at specific ChIP locations

At time points of 0 and 24 hrs, DNA-protein interactions were crosslinked in 4292,

9805, and 1012 iKras cells in triplicate and prepared for ChIP assay as described above.

The immunoprecipitation was performed against H3K4me3 and H3K27ac marks (Add-

itional file 2: Table S6). BED files generated by H3K4me3 and H3K27ac ChIP-seq per-

formed on 4292 iKras were imported to IGV and enriched bound regions were selected

for primer design (Additional file 2: Table S7). As sample reference, we utilized 1% of

input for all ChIP performed, and to normalize the samples, we employed the following

standard equation: 1% input = 2 ^ [(mean Ct input − 6.64) − mean Ct ChIP] × 100.

The results are shown as fold change (sample/control).

Reduced representation bisulfite sequencing (RRBS)

At each time point (0, 12, 24, and 48 hrs), cells were washed once in PBS, detached

with a scraper in 1mL PBS, pelleted, and preserved at −20 °C. DNA was isolated from

cell pellets using the QIAamp DNA Mini and Blood Mini Kit (Qiagen, 51304). A single

biological condition was collected and provided to the Mayo Clinic Medical Genomics

Core for bisulfite conversion, library preparation, and sequencing. Briefly, DNA (250

ng) was digested with Msp1 (New England Biolabs (NEB), R0106M) and purified using

Qiaquick Nucleotide Removal Kit (Qiagen, 28004). End-repair A tailing was performed

(NEB, M0212L) and TruSeq methylated indexed adaptors (Illumina, 15025064) were li-

gated with T4 DNA ligase (NEB, M0202L). Size selection was performed with
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Agencourt AMPure XP beads (Beckman Coulter, A63882). Bisulfite conversion was

performed using EZ-DNA Methylation Kit (Zymo Research, D5001) as recommended

by the manufacturer with the exception that incubation was performed using 55 cycles

of 95 °C for 30 s and 50 °C for 15 min. Following bisulfite treatment, the DNA was puri-

fied as directed and amplified using Pfu Turbo C Hotstart DNA Polymerase (Agilent

Technologies, 600414). Library quantification was performed using Qubit dsDNA HS

Assay Kit (Life Technologies, Q32854) and the Bioanalyzer DNA 1000 Kit (Agilent

Technologies, 5067-1504). The final libraries from RRBS were prepared for sequencing

as per the manufacturer’s instructions in the Illumina cBot and HiSeq Paired end clus-

ter kit v3. Samples were sequenced at 51 bp paired end reads using Illumina HiSeq

2000 with TruSeq SBS sequencing kit v3. Data was collected using HiSeq data collec-

tion v1.5.15.1 software, and bases were called using Illumina’s RTA v1.13.48. Raw data

was further analyzed using SAAP-RRBS [80], a streamlined analysis and annotation

pipeline for RRBS. Briefly, FASTQ files were trimmed to remove adaptor sequences

and reads less than 15 bp were discarded. Trimmed FASTQ files were then aligned

against the reference genome mm10 using BSMAP [81]. Methylation was reported

along with custom CpG annotation. A minimum of five reads was required for inclu-

sion of a cytosine in subsequent high-level analyses. Differential methylation of individ-

ual CpG loci was detected by performing a Fisher exact test with Methylkit [82]

between a pair of samples at different time points (0, 12, 24, and 48 hrs) after selecting

only the CpGs which have a data available across all the samples. The differentially

methylated CpGs (DMCs) were selected according to the combination of p value (p

value < 0.01) and absolute methylation difference > 10%. DMCs within ± 3 kb of gene

TSS were used for pathway enrichment analysis using RITAN and the Molecular Signa-

tures Database (MSigDB) hallmark gene set collection [6] for each time point. Gene

networks were generated using RITAN and Cytoscape [83]. R package genomation [84]

was used for DMC annotation with CpG islands and genic elements. Annotation of

DMCs with repetitive elements was performed using repeat element coordinates

(mm10) obtained from RepeatMasker [85] and BEDTools [86].

RNA-seq

At each time point (0, 12, 24, and 48 hrs for 4292 and 0, 24 hrs for 1012 and 9085),

cells were washed once in PBS and harvested with RLT + βME as per RNeasy Mini Kit

(Qiagen, 74106). RNA isolation included an on-column DNA digestion step and yielded

> 1 μg per sample. For 4292 cells, three independent biological replicates were collected

and provided to the Mayo Clinic Medical Genomics Core for sequencing. RNA libraries

were prepared with the Illumina TruSeq RNA v2 kit and sequencing completed on the

Illumina HiSeq-2000 with 101 bp paired end reads. For 1012 and 9085 cells, two inde-

pendent biological replicates were collected and provided to the Genomic Science and

Precision Medicine Center (GSPMC) at the Medical College of Wisconsin. Libraries

were prepared with the Illumina TruSeq RNA stranded kit and sequencing completed

on the Illumina NovaSeq6000 with 100 bp pair-end reads. Raw sequencing reads were

processed through the Mayo RNA-seq bioinformatics workflow, MAPR-Seq v1.2.1.3

[87]. Raw and normalized (RPKM) counts for 23,398 genes and corresponding exons,

expressed single nucleotide variants (SNVs) as well as gene fusions were obtained per
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sample. The R package from Bioconductor, edgeR v3.8.6 [88], was used for differential

analysis comparing gene expression at all time points (12, 24, and 48 hrs) to 0 hr. Prior

to the analysis, lowly expressed genes (raw counts less than 30 reads) were removed.

Genes with false discovery rate (FDR) less than 5% and an absolute fold change ≥ 2

were considered to be significantly differentially expressed. The Ingenuity Pathway

Analysis software (IPA, Qiagen) [89], RITAN and clusterProfiler [90] software was used

to analyze canonical pathways, upstream regulators, diseases, and toxicity functions

using the subset of genes that were significantly differentially expressed.

Data integration

RNA-ChIP integration

To identify local differences in occupancy of H3K27ac, H3K4me3, and H3K36me3

around differentially expressed genes (DEGs), we merged bam files from both replicates

at 0 and 24 hrs and used ngsplot to generate normalized tag density profiles around

gene TSSs or the gene body. The upregulated and downregulated DEGs were identified

from 24 hrs in RNA-seq analysis.

Integration of ChromHMM with RNA-seq, ATAC-seq, and RRBS

We used the software ChromHMM which uses hidden Markov model to segment the

genome into distinct states [91]. ChIP-sequencing replicates at each time point were

merged before binarization step to learn models from the data. Fifteen states of seg-

mentation were visualized for both 0 and 24 hrs time points. The 15-state segmentation

was used to identify fold enrichment across various genomic features (note y-axis of

fold enrichment plots such as CpG islands and refseq Exon). The coordinates for LADs

were obtained from Peric-Hupkes et al. [92]. For integration of ChromHMM with

RNA-seq, ATAC-seq, and RRBS, bed files containing coordinates for each region of

interest were generated using the following methods: (1) RNA-seq: DEGs identified at

24 hrs were annotated with chromosome number, start and end position using the R

Bioconductor package -biomaRt [93], (2) ATAC-seq: peak files for 0 and 24 hrs were

sorted using BEDTools [86] and the three replicates for each time point merged using

BEDOPS [94] to generate bed files, (3) RRBS: coordinates of the DMCs identified at 24

hrs (p value < 0.01 and methylation difference > │10%│) that were within ± 3 kb of

gene TSSs were extracted into hyper- and hypomethylated bed files. ChromHMM out-

put files containing the segmented genome for 0 and 24 hrs were used to view chroma-

tin states of gene loci on the UCSC genome browser [95]. Heatmap of RNA-seq and

combined epigenomic markers was generated using log2fold changes for RNA-seq,

ATAC-seq, and histone marks, while methylation ratio was used for RRBS. Pathway en-

richment analysis and gene networks were generated using RITAN [79], MSigDB hall-

mark gene set collection [6], and Cytoscape [83].
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