
Letcher et al. Genome Biology (2021) 22:259
https://doi.org/10.1186/s13059-021-02474-0

SOFTWARE Open Access

Gramtools enables multiscale variation
analysis with genome graphs
Brice Letcher1*, Martin Hunt1,2 and Zamin Iqbal1*

*Correspondence:
bletcher@ebi.ac.uk; zi@ebi.ac.uk
1EMBL-EBI, Hinxton, UK
Full list of author information is
available at the end of the article

Abstract

Genome graphs allow very general representations of genetic variation; depending on
the model and implementation, variation at different length-scales (single nucleotide
polymorphisms (SNPs), structural variants) and on different sequence backgrounds can
be incorporated with different levels of transparency. We implement a model which
handles this multiscale variation and develop a JSON extension of VCF (jVCF) allowing
for variant calls on multiple references, both implemented in our software
gramtools. We find gramtools outperforms existing methods for genotyping
SNPs overlapping large deletions inM. tuberculosis and is able to genotype on multiple
alternate backgrounds in P. falciparum, revealing previously hidden recombination.

Keywords: Genome graph, Pangenome, Variant calling, Plasmodium falciparum,
Mycobacterium tuberculosis, VCF

Background
Variant calling, the detection of genetic variants from sequence data, is a fundamental
process on which many other analyses rely. There are two standard approaches, each with
their own limitations. For Illumina data, mapping to a reference genome causes reference
biases that affect discovery and genotyping: mapped reads favour the reference allele and
reads in divergent regions fail to map [1–4]. For PacBio/Oxford Nanopore Technology
(ONT) data, genomes can be fully assembled, and therefore, the discovery and genotyping
problems are in principle partially solved, by aligning each assembly against a reference.
(There are caveats about how to get high per-base quality, either by hybrid ONT/Illumina
or PacBio Hifi reads, but we leave this aside). However, the problem of how to coherently
represent all of the variants in a cohort, comparing all against all, remains challenging
both algorithmically and in terms of outputting results.
There are data structures that in principle can genotype alternate alleles which

include both long structural variants and SNPs—some implementations include Cortex,
GraphTyper, vg, and BayesTyper [4–7]. All of these are based on graph representa-
tions of one form or another ranging from genotyping a whole-genome de Bruijn graph

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-021-02474-0&domain=pdf
http://orcid.org/0000-0001-8466-7547
mailto: bletcher@ebi.ac.uk
mailto: zi@ebi.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Letcher et al. Genome Biology (2021) 22:259 Page 2 of 27

(Cortex), mapping all reads to a whole-genome Directed Acyclic Graph (DAG) of infor-
mative k-mers (BayesTyper), mapping all reads to a whole-genome graph of minimis-
ing k-mers and matched haplotype index (vg/Giraffe [8]) or remapping premapped
reads either to local DAGs of SNPs and indels off the reference (GraphTyper) or to
graphs built from structural variant breakpoints (GraphTyper2 [9]). These all reduce
the impact of reference bias, and allow cohort genotyping at consistent sites, but all of
them struggle with the issue of representation.We highlight two important types of situa-
tions which pose representation challenges—any good solution will need to address these,
and conversely, solving these alone would address most of the needs of most users.
First, a long deletion that “covers” 10 SNPs will in principle have 210 alternate alleles.

This would be painful to output in the widely used variant call format [10] (VCF), but
more fundamentally, it would force the genotyper tomake statements about long alternate
alleles that only differ by SNPs. If two long alleles, one true and one not, differed by just
one SNP, then under most models they would have very similar likelihoods, and it would
be impossible to tell clearly which was the correct allele. In other words, there would be no
fine-scale data about variants, making SNP filtering impossible (Additional File 1: Figure
S1).
Indeed, there is no tool (to our knowledge) that self-advertises as supporting joint SNP

and structural variant (large insertions/deletions) genotyping (although we note the soft-
ware Birdsuite was developed for jointly genotyping SNPs and copy-number variants
[11]). Benchmarking in this paper shows GraphTyper2 and vg both work in this sce-
nario if given VCF input. The second key challenge occurs when variants fall on different
genetic backgrounds such as diverged MHC haplotypes [3] or large insertions—for this
there is no current solution.
We highlighted above two key situations to address: SNPs as alternatives to long dele-

tions, and SNPs on top of long alternate haplotypes. In both of these cases, variants are
bound by relationships. In the first, they are mutually exclusive and in the second, they
occur on top of alternative sequence backgrounds, thus combining exclusion and a hier-
archy. We call such variation nested and identify these relations as sufficient to capture
a valuable proportion of natural genetic variation. We therefore model the genome as a
directed acyclic graph that is a succession of locally hierarchical subgraphs. This is a rich
enough model to incorporate our key use-cases, without incurring the price of excessive
generality; we discuss the benefits and limitations in the “Discussion” section. Based on
this, we can use gramtools to identify these nested site relationships, leverage them
during genotyping and output variants, genotypes and likelihoods in a file format extend-
ing VCF. This is, to our knowledge, the first framework for jointly analysing genetic
variation at different scales (SNPs and structural variants) and on different sequence
backgrounds.
We start by detailing the genome graph workflow implemented in gramtools and

an algorithm for genotyping nested variation. We build graphs of variation from 2498
samples at four Plasmodium falciparum surface antigen genes which harbour high lev-
els of diversity, including two that each have two diverged allelic forms (DBLMSP and
DBLMSP2). We use simulated haplotypes from graphs to evaluate the impact of nesting
on genotype confidences, and then benchmark with empirical data from 14 P. falci-
parum samples which have high quality PacBio assemblies for ground truth. We then
address the two canonical use-cases we highlighted above. We show that gramtools

Letcher et al. Genome Biology (2021) 22:259 Page 3 of 27

outperforms vg and GraphTyper2 when genotyping long deletions and all the overlap-
ping small variants from a cohort of 1017 Mycobacterium tuberculosis genomes. Finally,
we apply gramtools to the use-case for which no current solution exists. We genotype
706 African and SE Asian P. falciparum genomes at the gene DBLMSP2, which possesses
variation on two diverged backgrounds which had previously appeared to either never or,
very rarely, recombine. This generates the first map of genetic variation on both diverged
backgrounds, revealing patterns of recombination that were previously unknown.

Results
gramtools implements a workflow for building, genotyping and augmenting genome
graphs (Fig. 1). Genotyping serves two main use cases in this workflow. First, it is used
for inferring a sample’s closest path in the graph, which we can use as a “personalised”
reference genome, since it should be a closer approximation than any individual genome
would be. We are thereby able to discover new variants by using standard reference-
based variant callers with this personalised reference, an approach previously described in
[3, 12, 13]. Second, gramtools is used for genotyping cohorts of samples on a graph con-
taining all such discovered variants. Neither case requires finding variants absent from the
graph because novel variants are found by standard tools applied to the personalised ref-
erence. Thus, while other tools such as vg [4] perform full alignment of reads to the graph,
gramtools achieves the same aims while only needing to do exact matching of reads

Fig. 1 Genome graph workflow implemented in gramtools. Black nodes represent genomic sequence or
site entry/exit points. Build consists of producing a genome graph that is directed and acyclic, a requirement
for gramtools. Genotyping consists of calling alleles at each variant site and thereby inferring a haploid
personalised reference genome for a sample. New variants, shown in red, are discovered using standard
reference-based callers run against the personalised reference

Letcher et al. Genome Biology (2021) 22:259 Page 4 of 27

(after quality trimming). Our implementation is currently limited to high-accuracy short
reads (e.g. Illumina); support for long erroneous reads requires matching read substrings.

Graph constraints and genotyping with the vBWT

In gramtools, sequence search in genome graphs is supported using the compressed
suffix array [14] of a linearised representation of the graph, which we call variation-
aware Burrows-Wheeler Transform (vBWT). The vBWT algorithm was introduced with
a proof-of-concept implementation in [12]; details of how it converts BWT string match-
ing to graph mapping are provided in the “vBWT data structure in gramtools” section.
A key requirement of the vBWT is that the graph be decomposable into a succession of
subgraphs (sites) each of which is strictly nested (see Fig. 2 and the “Graph definitions”
section for formal definitions) interspersed by linear, non-variable regions.
This results in a graph where genotyping a site with alternate alleles is well-defined, pre-

serving a notion with biological value, but also places some restrictions on the structure
of the genome graph. We give an example in Additional File 1: Figure S3 showing a pair
of allowed/disallowed graphs that generate equivalent sequence.
These graphs can be built from multiple sequence alignments (MSAs) or a reference

genome plus VCF file; we used MSAs in this paper. The construction process, first intro-
duced in [15], is explained further in the “Genome graph construction and make_prg”
section, and we consider the implications of this model in the “Discussion” section. The
original vBWT implementation was slow and did not support nesting [12]. In this paper,
we introduce our nesting implementation and have optimised the codebase to improve
mapping, coverage recording and genotyping.

Genotyping nested genome graphs

gramtools genotypes a nested DAG in which variant sites have been defined (see the
“Graph definitions” section). Sites are genotyped independently, choosing the maximum-
likelihood allele under a coverage model that draws on ideas from kallisto [16],

Fig. 2 Gramtools requires variation to be expressed as a nested directed, acyclic graph (DAG). A nested DAG
represents the genome as a DAG with a single source and sink, which can be decomposed into a succession
of subgraphs (or sites). Each site starts with an opening node, and finishes with a closing node, and consists
of strictly nested sub-sites. This allows hierarchical genotyping of alternate alleles. Strict nesting means that
sub-sites must close off and complete before their parent site and without connecting to different sub-sites
(e.g. the dotted pink edges would not be permitted)

Letcher et al. Genome Biology (2021) 22:259 Page 5 of 27

including both per-base coverage information, and equivalence class counts for reads that
could equally support different alleles (see the “Genotyping model” section). Genotype
likelihoods are calculated for each allele at a site, and the ratio of likelihoods between the
maximum likelihood allele and the next best is termed the genotype confidence. The per-
sonalised reference (PR) genome inferred by gramtools is the path obtained by taking
the maximum-likelihood call at each variant site, and the genotype confidence at each
site provides a measure of the adequacy of the inferred PR. For example, a stretch of low-
confidence calls suggests no close path in the graph was found or that no reads mapped
in this region. While the genotyping model can handle both haploid and diploid cases,
in the diploid case two unphased PRs are produced (as was done in [3]) whereby the two
alleles at heterozygous sites get randomly allocated to each. In this paper, we evaluate
gramtools on haploid organisms only.
With nested variation, we apply the genotyping model recursively from child sites to

their parents, with candidate alleles in parent sites generated based on the genotype calls
of child sites (see the “Nested genotyping” section). We refer to each outgoing branch
from a parent site as a haplogroup; if there is no nesting then these correspond to alleles,
but when there is nesting, they can be seen as alternate sequence backgrounds (see Fig. 3
in the following section)

Fig. 3 Example VCF and jVCF calls for a graph containing nested variation. Three sites exist in the graph, and
site-opening edges are labelled by haplogroup (0 or 1). Below the graph, parts of VCF and jVCF files describe
a genotyped sample (blue path in the graph). In VCF, only one variant site is genotyped, with the “sample”
column stating that allele 4 has been called (this corresponds to “ATCCAC”, as the numbering is 0-based).
However, the two nested variants—sites 1 and 2—cannot be expressed independently from site 0, as they
do not occur on the linear reference (red path in the graph). jVCF stores the same information as VCF in the
“Sites” array (one entry per site) and additionally records site relationships using a “Child_Map” entry, which
states that sites 1 and 2 occur under site 0 (first key), haplogroup 1 (second key). This places sites 1 and 2 on
an alternate reference background (the sequence “ATACTTC”) allowing them to be expressed in the “Sites”
entry. Alternate reference sequences are obtained by following haplogroup 0 at each nested variant site
(here this spells “ATACTTC”)

Letcher et al. Genome Biology (2021) 22:259 Page 6 of 27

jVCF output format

In attempting to provide genotypes at all variant sites within a cohort, one is inevitably
faced with densely clustered genetic variants, which leads to difficulties when using VCF.
First, the genomic positions of output records can overlap, implying they should be con-
sidered jointly. Second, sites can occur on sequence backgrounds (haplogroups) that do
not include the reference genome sequence. In VCF, overlapping records require care-
ful genotyping and alternate references are not supported. To address these limitations,
gramtools outputs a variant call file in JavaScript Object Notation (JSON), a widely
used format for storing data as key-value pairs [17]. The format stores variant records
mirroring VCF and additionally stores genome graph-specific information—we thus call
it jVCF.
To illustrate the purpose of jVCF, we show in Fig. 3 a graph containing nested varia-

tion and parts of VCF and jVCF files describing genotype calls in this graph. Both formats
store the reference and alternate alleles of a variant site and its location in the genome and
can genotype the first site (site 0) in the graph. However, sites 1 and 2 occur on a different
sequence background from the linear reference and thus cannot be expressed indepen-
dently of site 0 in the VCF output. In jVCF, the parent/child site relationships are stored
in a “Child_Map” entry which locates variant sites based on what sequence background
(haplogroup) they fall on. This enables jVCF to express sites 1 and 2, by placing them
on a different reference background with its own coordinates and to give independent
genotypes for those sites. In jVCF, storing site relationships also makes incompatibil-
ities between sites explicit, allowing variants in overlapping genomic positions to be
consistently genotyped (see the “Nested genotyping” section).
A full format specification for jVCF is provided in Additional File 1. In addition to a

jVCF file, gramtools outputs a regular VCF file containing only non-nested sites, yield-
ing a VCF file with no overlapping records and referring only to the linear reference
genome.

Validation of nested genotyping with simulated data

Our first simulation was designed to evaluate both genotyping performance and whether
nested genome graphs resulted in improved calibration of genotype confidences. We
based the simulation on a real example where there are two alternate haplotypes each
bearing variants, building graphs of P. falciparum variation for two genes, DBLMSP and
DBLMSP2. These genes exhibit a dimorphism at the Duffy Binding-Like (DBL) domain,
each having a region > 500bp in length with two allelic forms that are highly diverged
[18, 19]. We built two versions of the graph, one without any nesting, and one
allowing nesting up to five levels deep (see the “Genome graph construction and
make_prg” section). The graphs were built from high confidence variant calls in 2498
samples from the Pf3k project [20] (see the “Graph construction” section for details).
The graph without nesting contained 451/413 variant sites for DBLMSP/DBLMSP2
respectively and the graph with nesting contained 558/500 variant sites respec-
tively. The nested graphs contain more sites because they allow SNPs/indels to
occur on different sequence backgrounds, as illustrated in Fig. 4. We randomly
sampled 10 paths from the non-nested graph (which therefore exist in the nested
one), recorded the implied truth variant calls, simulated reads from the paths and
passed them to gramtools for genotyping (see the “Path and read simulation”

Letcher et al. Genome Biology (2021) 22:259 Page 7 of 27

Fig. 4 Nested graphs improve site resolution and coverage differences. A call for part of DBLMSP2 is shown
(P. falciparum reference genome Pf3D7 chromosome 10 positions 1433921:1433987). Red nodes mark the
called allele and spell the same sequence across nested (a) and non-nested (b) graphs. Numbered nodes
mark variant sites and edges are labelled by haplogroup. Blue text under the nodes gives read coverage for
the called and next best allele. In the non-nested graph, the next best allele is long and only one SNP away
from the best allele so that reads mapping to common sequence add coverage to both. This reduces
coverage differences compared to the nested graph. For clarity, only 3 of the 13 alleles that exist in the
non-nested graph are shown in b

section for details). Out of 17,280 evaluated calls in the non-nested graph, gramtools
recovered 99.9% (recall) and of all calls made, 99.8%were correct (precision). In the nested
graph, out of 21,160 evaluated calls, recall and precision were both 99.9%.
While gramtools genotypes both types of graphs to high accuracy, nested graphs pro-

vide better call resolution. This is shown in Fig. 4 for (a subregion of) DBLMSP2where the
nested graph reflects the allelic dimorphism: SNPs/small variants fall on top of each allelic
form. We also confirm that the genotype confidence of correct calls is also increased,
since nesting allows likelihood calculations based on coverage precisely at SNPs on alter-
nate haplotypes, rather than an average across the whole haplotype (coverage shown in
Fig. 4, and effect on confidences shown in Additional File 1: Figure S6).

Benchmarking gramtools genotyping against single-reference variant callers at surface

antigens

Building on the simulation results in P. falciparum, we set out to evaluate gramtools

genotyping in comparison with standard single-reference callers SAMtools [21] (the
classical “pileup” variant caller) and Cortex [5] (which discovers bubbles in a de Bruijn
graph, and then maps flanking sequence to the reference to get coordinates). We include
Cortex because it has previously been shown to produce high-quality calls even in the
indel-rich P. falciparum genome and can successfully identify alternate alleles at the genes

Letcher et al. Genome Biology (2021) 22:259 Page 8 of 27

we analyse here [22] but has no capacity to consider nested variation. We built a whole-
genome graph containing variation from 2498 P. falciparum samples (as in the simulation
experiment) in four surface antigen genes: DBLMSP, DBLMSP2, EBA175, and AMA1 (see
the “Graph construction” section). The additional genes, EBA175 and AMA1, are both
vaccine targets, where there is great value in being able to correctly identify known and
novel variation [23, 24]. We used 14 P. falciparum validation samples with both Illumina
data and high-quality PacBio long-read assemblies [25], and which had been excluded
from graph building, to assess gramtools genotyping. Performance is measured as the
edit distance between the gene sequence with called variants applied and the long-read
assembly, normalised by gene length. Note that the gramtools graphs are themselves
built from Cortex calls in the 2498 samples (see the “Graph construction” section); thus,
we are comparing genotyping via a graph of known population variation (gramtools)
with reference-based variant calling (SAMtools and Cortex).
We show in Fig. 5 the scaled edit distance (i.e. edit distance divided by gene length)

achieved by these tools on the 14 validation samples, aggregated across all four genes. As
a baseline, we show the distribution of scaled edit distances between the 3D7 (reference)
gene sequences and the truth assemblies, giving a mean distance of 3.7% (top-left panel,
dotted line). SAMtools and Cortex both improve on this, achieving means of 2.3%
and 1.3% respectively. gramtools outperforms both variant callers, achieving a mean
of 0.6%. We provide performance for each individual gene in Additional File 1: Figure

Fig. 5 gramtools genotyping compared to reference-based callers at four surface antigens in 14
validation samples. The x-axis is the scaled edit distance (edit distance divided by the length of the gene) to
the true sequence (as determined from high-quality PacBio assemblies). The y-axis gives sequence counts
across all four genes (AMA1, EBA175, DBLMSP and DBLMSP2) and all 14 evaluated samples. The top left panel
shows the distances between the 3D7 sequence and the truth assemblies, while the other panels show the
distances for sequences inferred by the evaluated tools. The dotted lines and adjacent numbers show the
mean scaled edit distance

Letcher et al. Genome Biology (2021) 22:259 Page 9 of 27

S7-10 and further confirm gramtools genotyping finds optimal paths in the graphs in
Additional File 1: Figure S11.

Application: unified SNP and large deletion analysis inM. tuberculosis

Nested variation occurs naturally when jointly genotyping small variants overlapping
structural variants. We assessed how gramtools compares to two other genome graph
tools, GraphTyper2 [9] and vg [4], in one such situation in M. tuberculosis. We eval-
uated each tool’s ability to genotype a fixed set of input small variants (SNPs and indels)
and overlapping deletions.
We started from variant calls obtained by running Cortex on 1017 publicly available

Illumina samples (see the “Variant discovery” section). We also produced high-quality
hybrid assemblies for 17 of these samples using matched Illumina [26] and PacBio reads
[27] (see the “Hybrid assembly of the 17 evaluated samples” section). These assemblies
were used as ground truth for evaluating genotyping.
We identified 73 high quality large deletion calls in the 17 samples, spanning a total of

45 distinct genomic regions (confirmed using the assemblies (see the “Variant discovery”
section)). We then extracted all variation in the 1017 samples overlapping these 45
regions. Together, these provide the variant sites at which we evaluate each tool.
For gramtools, we built a genome graph of each deletion region from multiple-

sequence alignments of the Cortex variant calls applied to the M. tuberculosis H37Rv
reference genome [28] (see the “gramtools genome graph construction” section). The
graphs were then combined with the rest of the reference genome. To genotype the same
variants in GraphTyper2 and vg, we merged the VCF files of all 1017 input samples
using bcftools. VCF is the required input format for genotyping in GraphTyper2

and the only input format that worked in vg after failing onmultiple sequence alignments
(see the “vg and GraphtTyper2 genome graph construction” section).
We first looked for each of the 73 known deletions in each tool’s VCF output and found

GraphTyper2 called all 73, gramtools called 70 and vg called 66. We then assessed
each tool’s ability to resolve each deletion region in the 17 evaluation samples. For each
region, we applied called variants to theM. tuberculosis reference genome and measured
edit distance to the truth assembly using minimap2 [29] (similar results were obtained
using bowtie2 [30]; see Additional File 1: Figure S17 and the “Mapping evaluated regions
to truth assemblies” section).
Figure 6 shows the cumulative distribution of scaled edit distances (edit distance divided

by the length of the aligned sequence) for each tool. gramtools achieves the lowest
mean distance to the truth (1.2%), followed by vg(2.4%) and GraphTyper2 (3.2%) (as
a baseline, the mean distance of the reference genome sequence to the truth is 4.8%).
We note that without 8 long, false positive insertions with edit distances >0.5, the
mean distance for GraphTyper2 is 2.6%. gramtools also achieves the highest frac-
tion of perfectly resolved sequences (edit distance 0) (86.7%), followed by GraphTyper2
(69.3%) and vg (54.0%). A small number of sequences remained unmapped (9 for
gramtools, 12 for GraphTyper2 and 13 for vg (Additional File 1: Figure S18)).
To understand genotyping performance in more detail, we broke down called vari-

ants into different types (insertions, deletions, SNPs) and sizes and measured precision
(what proportion of calls made were correct) and recall (what proportion of the expected

Letcher et al. Genome Biology (2021) 22:259 Page 10 of 27

Fig. 6 gramtools joint SNP and deletion genotyping performance compared to other genome graph
tools. For each of the 45 deletion regions in each of the 17 validation samples, we made a sequence
containing each tool’s calls, giving a total of 765 data points per tool (gramtools, vg, graphtyper). The
curves show the cumulative frequency of edit distances between these sequences and truth assemblies.
Baseline refers to using theM. tuberculosis H37Rv standard reference sequence only

calls were recovered) (see the “Evaluating variant calls using varifier” section). Com-
pared to the other tools, we found vg has a larger number of incorrect and missing small
variants (insertions and deletions < 10bp, and SNPs). Notably, SNP recall and preci-
sion were 57.2% and 86.7% for vg, compared to 91.3% and 93.8% for gramtools and
90.0% and 99.1% for GraphTyper2 (Additional File 1: Figure S19). Similarly, we found
GraphTyper2 has a larger number of incorrect and missed large insertions and dele-
tion calls (> 50bp): for large deletions, GraphTyper2 recall and precision were 67.3%
and 64.4%, compared to 97.8% and 99.6% for gramtools, and 97.1% and 99.5% for vg
(Additional File 1: Figure S19). gramtools achieved the highest recall across all variant
categories but has lower precision than vg or GraphTyper2 for some categories, notably

Table 1 Computational performance of each tool

Index Map and genotype

Disk (Mb) Max RAM (Mb) Speed (sec) Max RAM (Mb) Speed (reads/sec)

vg 29 609 105 605[158] 3,961

gramtools 153 480 32 632 34,290

GraphTyper2 – – – 869[88] 7,604

Index: genome graph processing step allowing subsequent read mapping. For vg, includes a graph pruning step to reduce
graph complexity (else temporary disk use exceeded 500 Gb before completion, see “vg and GraphtTyper2 genome graph
construction” section). GraphTyper2 has no separate indexing operation.Map and Genotype: Speed shows the average
number of reads mapped across the 17 samples (10.7 million) divided by the average CPU time. vg and GraphTyper2 have
separate read mapping and genotyping steps: for speed, CPU time is summed, and for RAM, mapping is shown followed by
genotyping in square brackets. GraphTyper2 does not implement its own mapping but requires an input file of reads mapped
to a linear reference genome; mapping RAM and speed is shown for bowtie2 with default parameters.metrics: Mb, megabytes;
sec, total CPU seconds (accounts for multi-threading, 10 threads used for genotyping in each tool)

Letcher et al. Genome Biology (2021) 22:259 Page 11 of 27

SNPs and small (1–10bp) and mid-size (11–50bp) insertions (Additional File 1: Figure
S19).
In terms of computational performance, gramtools processed the most reads per

CPU second while using comparable amounts of RAM on this dataset (Table 1). A bot-
tleneck in vg is temporary disk use, exceeding 500 Gigabytes without pruning the graph
to remove densely clustered variation. For GraphTyper2, we include counting a sep-
arate mapping step to the reference genome (with bowtie2) as it is a prerequisite to
genotyping (for vg and gramtools, performance includes mapping reads to genome
graphs before genotyping). While gramtools’ mapping and genotyping is 4 to 8 times
faster than vg and GraphTyper2 in this benchmark, we are also aware of gramtools’
much lower mapping speed to the human genome [31]. Computational performance
depends on the genome and variants under analysis and on the genome graph approach;
we consider these further in the “Discussion” section.
In this experiment, GraphTyper2 and vg are able to genotype variation at multiple

scales. One caveat is the VCF file they genotype can contain inconsistencies. For example,
if one VCF record describes a deletion and another describes an overlapping SNP, a refer-
ence call at the deletion and an alternate call at the SNP are inconsistent because the two
calls imply different sequences. This occurs because the variants are related but expressed
in isolation. By contrast gramtools models site relationships explicitly, outputting a
VCF file without inconsistencies and a jVCF file mapping the nested variation.
An output format like our proposed jVCF becomes especially important when analysing

more complex variation such as SNPs on top of alternate haplotypes, where variants need
to be expressed against different references. We now show such an application of multi-
scale variation analysis using the P. falciparum surface antigen DBLMSP2, which would
not be possible using the VCF files output by vg or GraphTyper2.

Application: charting SNPs on top of alternate haplotypes

When two diverged forms of a gene segregate in a population, we want to access
small variants on top of each. Returning to the surface antigen DBLMSP2 in P. falci-
parum—which we have shown is accurately genotyped by gramtools using simulated
and real data—we assessed whether gramtools’ multiscale genotyping and jVCF out-
put could recover the two diverged forms of DBLMSP2 and access variation on top of
each form. We genotyped 706 P. falciparum samples from Ghana, Cambodia and Laos
using gramtools and analysed a combined jVCF file of all calls in all samples (see the
“P. falciparum dimorphic variation analysis” section). Genotyping, including read map-
ping, used an average of 1.14 Gigabytes of peak RAM, processing an average of 2525 reads
per CPU second.
Figure 7 shows a matrix of calls in each sample at each variant site inside the DBL

domain of DBLMSP2, known to be dimorphic [32]. The tree on the left depicts a hierar-
chical clustering of the sample haplogroups. Its most basal split distinguishes two forms of
the domain (form 1 (dark pink) and form 2 (light pink) on the right of the heatmap), with
an average scaled edit distance between the two forms of 16.8% compared to within-form
distances of 1.4% and 4.8%. gramtools can thus recover two divergent forms, as expected
given the known dimorphism. Building a phylogenetic tree of the sequences confirmed
the presence of the two forms and showed high concordance with the clustering tree in
how samples are assigned to each form (Additional File 1: Figure S20).

Letcher et al. Genome Biology (2021) 22:259 Page 12 of 27

Fig. 7 gramtools captures allelic dimorphism and nested variation in P. falciparum gene DBLMSP2.
Genotypes of 706 samples from Ghana, Laos and Cambodia spanning the DBL domain of gene DBLMSP2 are
represented in a heatmap of variant sites (x-axis) versus samples (y-axis). Each cell in the main square is
coloured by haplogroup, which can be considered here as an alternate allele number; a null (darkest blue)
haplogroup indicates no call made at a site. The tree on the left shows a hierarchical clustering of alleles. The
clade nearest to the reference genome 3D7 is shown with a red asterisk to the right of the tree. The vertical
strip to the left of the heatmap shows country of origin of each sample. The vertical strip to the right of the
heatmap shows the broad classification of haplotypes into two forms—form 1 (dark pink) and form 2 (light
pink), corresponding to the deepest split in the tree and the two known dimorphic forms. Comparing the
location of the asterisk shows 3D7 is of form 2. In order to linearise the sites within the graph for display in a
heatmap, they are sorted topologically, and a strip across the top of the heatmap shows whether sites are
nested. As a clarifying example, the blowout at the top shows how two incompatible nested SNPs on
different backgrounds are displayed as either dark-then-light-blue or light-then-dark blue blocks in the
heatmap, with the incompatible haplotype shaded darkest blue (null call). This heatmap allows visualisation
of haplotype patterns and recombination. We show, bottom right, a blowout with 5 haplotype patterns
coloured yellow, blue, grey (all from the left side of the heatmap) and green, red (from the right). Using these
classifications, we describe all alleles as combinations of two haplotype patterns, shown in the far-right
vertical strip. Form 1 is almost entirely yellow-green, and form two itself has two subforms—blue-red and
grey-red. We highlight two recombinant haplotype patterns labelled A (yellow-red) and B (blue-green). Both
A and B exist in all 3 countries

Letcher et al. Genome Biology (2021) 22:259 Page 13 of 27

gramtools also produces calls in nested sites, shown as dark bars at the top of the
matrix. As an example, we provide an illustrative blowout at the top of the heatmap of
a region where variants are nested and occur on different sequence backgrounds. The
graphs illustrate how the nested sites are called mutually exclusively: when one of the
gene forms has a genotype call, the other form receives a null call (shown as the darkest
blue-coloured cells), and vice-versa. This is essentially showing that there are SNPs on
both genetic backgrounds (the dimorphic types) and gramtools is genotyping variants
irrespective of background.
Interestingly, the heatmap in Fig. 7 also shows, for the first time to our knowledge, clear

evidence of recombination between the two forms of DBLMSP2. At the bottom-right of
the figure, we show a blowout of the matrix that is coloured by broad haplotype patterns,
with form 1 being predominantly yellow followed by green and form 2 being predomi-
nantly blue or grey followed by red. This reveals two sets of samples (labelled A,B by the
blowout) which are inter-form recombinants. Those labelled A have a yellow haplotype
(form 1) followed by red (form 2) and those labelled B have blue (form 2) followed by green
(form 1).The leftmost column of the matrix is coloured by the country of origin of each
sample. Strikingly, for each group of samples (i.e. A and B) almost identical recombinants
exist across each of Ghana, Laos and Cambodia. We do not yet know if these inter-form
recombinants derive from a single recombination event (either ancestral to the samples or
transmitted across countries) or if this recombination event has occurred multiple times
independently.
Finally, we indicate, using a red asterisk on the right of the tree, the closest clade to the

reference genome sequence 3D7. Leveraging gramtools’ graphmodel and jVCF output,
we can move beyond a 3D7-only reference-based analysis that would neither genotype
nested variants on the two different backgrounds nor reveal the inter-form recombinants.

Discussion
Genetic variation occurs through different mechanisms at different scales ranging from
SNPs to large structural variants. The need to jointly analyse SNPs and structural vari-
ants therefore arises immediately when trying to genotype a cohort. We have presented
a method for identifying, calling and outputting such variation in gramtools. By iden-
tifying site relationships in the graph, gramtools is able to genotype incompatible sites
mutually exclusively and to output variation both against the standard reference genome
and against locally defined alternate references.
One of the challenges of extending linear references with graphs is recognising mod-

elling assumptions. Working from a single reference implicitly assumes that individuals
within a species have genomes that are close to the reference. When addressing this
model’s limitations by moving to a graph, we are forced to make new modelling choices.
At one end of the spectrum is the gramtools approach: genome graphs must be nested,
directed acyclic graphs. This simple model allows direct access to two key notions we
want to use: easily distinguishing horizontal (paralog-like) and vertical (ortholog-like)
variation and defining distinct alternate sequence backgrounds. At the other extremes
are very general sequence graphs with no ordering, whether De Bruijn (which collapse all
repeats of size k) or vg-like (bidirected and allowing cycles). These models better support

Letcher et al. Genome Biology (2021) 22:259 Page 14 of 27

more complex events such as duplications and inversions, with an added cost in com-
plexity of implementation (e.g. reconstructing variant sites, identifying coordinates and
mapping reads).
Choice of graph model also affects the computational performance of read mapping.

Data structures supporting linear-time exactmatching exist for a restricted class of graphs
(seeWheeler graphs [33], which include De Bruijn graphs). In gramtools, graphs do not
have this property, and we use a data structure (the vBWT) with run time and memory
use that can scale exponentially with genome size and density of stored variation. In
practice, however, gramtools shows good computational performance on the P. falci-
parum and M. tuberculosis graphs used in this study. Here, we analyse variation from a
few thousand samples and a small number of regions, but gramtools has also success-
fully been used to genotype 70,000 (whole genome) M. tuberculosis samples in a graph
containing 1.25 million variants (one variant every 3.5 bases) [34]. We are also, however,
aware of gramtools’ very low mapping speed on the human genome [31]. More work
is required in the pangenomics field to understand the different real-world performance
challenges of repetitiveness (P. falciparum is much more repetitive than human), genome
size (microbes are tiny but diverse) and amount, type and density of variation.
Applying gramtools’ genome graph model on microbial datasets, we obtain three

main results. First, in P. falciparum genes with high diversity, gramtools genotyping
with genome graphs outperforms reference-genome-based callers. Second, gramtools
provides superior genotyping accuracy compared to genome graph tools vg and
GraphTyper2 when jointly genotyping large deletions and overlapping small variants
in M. tuberculosis. (We note that during the finalisation of this paper, a new caller based
on vg named Giraffe [8] was released, which we have not tested here). Third, we show
how locally defined alternate references allow accessing small variants on top of diverged
forms of a dimorphic gene in P. falciparum.
These results highlight three central concepts for genome graph based analyses:

compatibility, consistency and interpretability.
First, while genome graphs extend beyond a single linear reference, maintaining com-

patibility with linear references is essential. gramtools outputs variation in terms of
the standard reference genome in a VCF file and also produces a personalised reference
genome, allowing reference-based callers to discover previously inaccessible variation.
Many genomic analyses rely on a linear reference, which provides a simple coordinate sys-
tem for referring to genomic annotations and comparing individuals. Recently, the rGFA
format for describing genome graphs was proposed [35]; starting from a central linear
reference, it assigns stable names and offset coordinates to alternate references. rGFA is a
valuable and complementary idea to the jVCF described here: it assigns coordinates and
references in constructed genome graphs, while our jVCF describes sites and called vari-
ation in genotyped genome graphs. Like the graphs used by gramtools, rGFA works
on globally linear graphs in order to maintain clear homology relationships. Although
this feature is not implemented, jVCF could easily be extended to store rGFA-defined
alternate references, allowing for expressing variant calls against any reference.
Second, genome graphs offer the opportunity to genotype cohorts of samples consis-

tently. By representing all variation found in a set of samples, they can be used to produce
a full sample-by-site matrix. gramtools achieves this by detecting all variant sites in

Letcher et al. Genome Biology (2021) 22:259 Page 15 of 27

the graph and outputting them, along with their relationships, in a jVCF call format. Pre-
vious work has explored graph decomposition into a fixed set of variant sites [36] and is
available in vg with the deconstruct command. However, vg genotyping currently does
not output all such sites nor define and output alternate references. gramtools provides
(to our knowledge) the first working implementation of consistent graph to variant site
mapping.
An important determinant of compatibility and consistency is the graph construc-

tion process. In gramtools, we use our tool make_prg [15]. From a multiple
sequence alignment, make_prg collapses common sequence between samples, clus-
ters the remaining sequence into subgroups, and repeats the process recursively. This
algorithm provides two main advantages. First, it limits recombination to similar input
haplotypes, which reduces combinatorial explosions in variant dense regions, a source of
computational bottlenecks and graph ambiguity [37]. Second, it naturally creates a hierar-
chy between sites as they are gradually defined on different sequence backgrounds. This
captures incompatibility between sites (as in SNPs under a large deletion) as well as the
process of divergent sequence evolution.
Finally, while single references and VCF provide good interpretability, we show how

analysing two diverged forms of a dimorphic surface antigen in P. falciparum (DBLMSP2)
benefits from locally defined alternate references. In contrast to existing sequences such
as the alternate MHC loci in the human reference genome [38], here these are tied
together in a graph-based framework. Outputting variation on different sequence back-
grounds can provide finer resolution than with a single reference and will enable studying
the functional impact and population genetics of nested variants.

Conclusions
We provide a framework for identifying and genotyping multiscale variation in genome
graphs and show its successful implementation in gramtools. We find good genotyping
performance compared to state-of-the-art genome graph tools GraphtTyper2 and vg

and additionally provide an analysis of allelic dimorphism usingmultiple references which
to our knowledge can only be performed by gramtools.
Multiscale variation analysis goes hand in hand with the gradual extension of reference

genomes beyond their linear coordinates. Accessing this complex variation requires care-
ful genome graph construction and stable names and coordinates for referring to alternate
references. It also calls for new developments in variant call output formats, a proposal of
which we implement and use in gramtools.

Methods
Graph definitions

Here, we formally define a variant site and the type of graph that gramtools can sup-
port. LetG = (V ,E) be a directed acyclic graph (DAG) with a unique minimal and unique
maximal element, i.e. G has a unique source and unique sink. Each node v has a number
of ingoing edges deg−(v) and a number of outgoing edges deg+(v). Define a node v to be
opening if deg+(v) > 1 and closing if deg−(v) > 1. Note that a node can be both opening
and closing.
Let s be the sink ofG. Given any opening node v, let S be the set of nodes that are in every

path from v to s, excluding v itself. Then, S is non-empty because s belongs to S. Let a and

Letcher et al. Genome Biology (2021) 22:259 Page 16 of 27

b be any elements of S. Then, by definition of S, there exists a path that contains both a
and b. Therefore, using the partial order defined by the edges ofG, a and b are comparable
and it follows that S is a totally ordered finite non-empty set. Therefore, S contains a
unique minimal element, which we denote c(v). Informally, c(v) can be thought of as the
first node that “closes” all paths from v. Similarly, given a closing node u, we define o(u)

to be c(u) applied to the transpose of G. Informally, o(u) is the node that “opens” u. See
Additional File 1: Figure S2 for an example of how S and closing nodes are identified.
We use the notion of opening and closing nodes to define a variant site as follows.

Definition. Let G be a DAG with a unique source and unique sink. A variant site is
defined as the subgraph of G induced from {u, c(u)} or from {o(v), v}, where u is any
opening node and v is any closing node of G.
We remind the reader that for any DAG G, there exists at least one ordering of all the

nodes v0, v1, . . . , vn such that given any edge (vi, vj) of G, vi appears before vj in the order-
ing. This is called a topological ordering of G. Using the above definitions, we can now
define the type of graph that is supported by gramtools, which we call a “nested directed
acyclic graph”.
Definition. Let G be a DAG with a unique source and unique sink. G is said to be a
nested directed acyclic graph (NDAG) if there exists a topological ordering of all nodes
v0, v1, . . . , vn such that adding brackets to this ordered list of nodes according to the
following rules results in balanced opening and closing brackets:

1 For each opening node u, add [u after u, and add]u before c(u);
2 For each closing node v, add [v after o(v) and add]v before v, unless these brackets

were already added by case 1.

Note that each matching pair of brackets in the above definition corresponds to one
variant site. See Additional File 1: Figure S3 for an illustration.
To be able to index with the vBWT, gramtools would apply the following modifica-

tions to the graph, producing a new graph where there is a one-to-one correspondence
between the set of opening and closing nodes. Specifically, this means that a node is
either opening or closing and cannot open or close more than one node. Essentially,
the method entails adding a new node to the graph for each balanced bracket that was
added to the topological ordering of the nodes. Starting from the innermost brack-
ets, for each matching pair of brackets [a and]a, where node a precedes [a and node
b follows]a in the topological ordering with balanced brackets (so we are considering
. . . , a, [a , . . . ,]a , b, . . .):

• Add a node called [a with no sequence and an edge (a, [a) to the graph and move the
outgoing edges of a to [a;

• Add a node called]a with no sequence and an edge (]a , b) to the graph and move the
incoming edges of b to]a.

See Additional File 1: Figure S4 for an illustration of this process.
In practice, gramtools does not need to transform an NDAG or verify if an input

DAG is an NDAG, as it takes as input constructed graphs that are already indexable
NDAGs. This is achieved using one of two ways described below.

Letcher et al. Genome Biology (2021) 22:259 Page 17 of 27

Genome graph construction and make_prg

gramtools can construct genome graphs without nested variation from a reference
genome and a VCF of variants. Overlapping records in the VCF file are merged by enu-
merating all possible combinations up to a specifiable limit. This method creates an
NDAG because no variant sites overlap, giving a natural balanced bracket representation
of sites. However, this approach rapidly fails in variant-dense regions or for large cohorts
of samples due to a prohibitively large number of allele combinations. We solve this prob-
lem by allowing for nested variation. To build nested graphs, we apply an algorithm called
recursive collapse and cluster (RCC) starting from a multiple-sequence alignment. RCC
was first introduced in the context of bacterial pan-genomic tool pandora [15] and is
implemented in and available at https://github.com/iqbal-lab-org/make_prg.
RCC identifies invariant regions of a given minimum size and collapses them into a

single graph node. The remaining regions form variant sites, and each gets clustered based
on their k-mer content. This procedure is repeated recursively on each cluster, until either
a maximum nesting level is reached or the sequences are too small (in which case they
are directly enumerated as alternative alleles). In this way, variants appear in subsets of
samples with similar sequence backgrounds. The RCC algorithm generates hierarchically
nested sites by construction: each cluster of sequences corresponds to one variant site, the
clustering process generates distinct clusters, and recursive sequence collapsing occurs
fully inside of a cluster, making new clusters nested. RCC thus produces an output graph
that is an NDAG. We provide an illustration of RCC and how it induces the balanced
bracket representation of an NDAG in Additional File 1: Figure S5.
Two command-line parameters affect what graph gets produced. First, max_nesting

is the maximum number of collapse and cluster recursions to perform, which gives
the maximum number of nesting levels in the graph. Second, min_match_length is the
number of invariant bases between samples for them to be collapsed in a single node.
Sequence collapse is what allows paths coming before and after to cross; a larger value
thus reduces recombination between the input haplotypes. This provides a way to control
combinatorial path explosions in the graph.

vBWT data structure in gramtools

The vBWT data structure marks variant sites with numeric identifiers so that alleles
get sorted and queried together in the suffix array (Fig. 8a). This representation induces
branching at each site entry and exit such that mapping has worst-case exponential run-
time. To speed mapping, we seed reads from an index storing the mapped intervals of all
sequences of a given size k. Linear-time exact match indexes on genome graphs exist (e.g.
GCSA [39]) but require a prefix-sorting step that is worst-case exponential.
vBWT’s numeric identifiers are also used for recording mapped read coverage along

variant sites (Fig. 8b). Coverage recording handles two types of uncertainty: horizontal,
where sequence is repeated across the genome, and vertical, where sequence is repeated
in alleles of a site. To handle horizontal uncertainty, we randomly select one read map-
ping instance, as is typically done in standard aligners [30]. To handle vertical uncertainty
we store allele-level equivalence class counts which are counts of reads compatible with
groups of alleles, an idea introduced in kallisto [16]. This allows allelic uncertainty to
be accounted for during genotyping. Per-base coverage is also stored on the graph (Fig. 8)
and used during genotyping.

https://github.com/iqbal-lab-org/make_prg

Letcher et al. Genome Biology (2021) 22:259 Page 18 of 27

Fig. 8 gramtoolsmapping and coverage recording. a Variant-aware Burrows Wheeler Transform (vBWT).
Each row of the text matrix encodes one position in a linear representation of the graph. BWT: stores the
character in the previous position; SA: suffix array, stores the position in the text; suffix: stores the text from SA
position to the end. Two markers are used for every variant site in the genome graph: odd markers mark site
entry and even markers allow alleles to sort and be queried together. Black intervals mark regular BWT
backward searching, with each match to the currently mapped base shown in green. Arrows from red
intervals mark vBWT-specific jumps in and out of sites, making the search branch. The read being mapped is
shown in dashed orange. b Square brackets under allele nodes show per-base coverage storage. Another
array shown below stores allele-level coverage at each site. Mapped reads increment equivalence class
counts representing compatibility: in this example, the read is compatible with both alleles 0 and 1 at site 5
and only with allele 1 at site 7. Both kinds of coverage are used in genotyping

Letcher et al. Genome Biology (2021) 22:259 Page 19 of 27

Genotypingmodel

The genotyping model in gramtools supports haploid and diploid genotyping. It
assigns a likelihood to each candidate allele (or pair of alleles for diploid) computed from
base-level and allele-level read coverage.
gramtools stores coverage in equivalence classes, following ideas from [16]. Let A

be the set of alleles at a variant site. We partition the set of all reads overlapping A into
subsets, i.e. equivalence classes, where all reads belonging to one subset map perfectly to
the same subset X of A (e.g. reads that map uniquely to allele 1, or reads that map equally
well to alleles 1 and 2; see Fig. 8b). For each equivalence class, we store a count cX ∈ N

of reads compatible with the alleles in set X, and for each mapped read, we increment
its cX at each overlapped site. If a read has multiple (horizontal) mapping instances, we
select one at random, and the counts cX are incremented as above. When a read’s count
cX is incremented, for each allele a ∈ X, the count of each base the read mapped to is also
incremented. Base-level counts are written c(ai), where ai is the ith base of allele a.
Coverage compatible with allele a of length la is defined as c(a) = 1

la
∑la

i=1 c(ai) and
incompatible coverage as i(a) = ∑

X⊂A:a/∈X cX . In this way for each candidate allele, we
capture a per-base correct coverage generation process as well as an incorrect coverage
generation process on incompatible alleles.
We model the expected per-base read coverage in a site using an estimate of the mean λ

and the variance σ 2 of true coverage across all variant sites. For each site, true coverage is
estimated as the average per-base coverage of the allele with the most coverage. If σ 2 � λ,
we model observed coverage as coming from a Poisson distribution:

p(c(a) = k|λ) = e−λ λk

k!

Else, we use the negative binomial (NB) distribution

p(c(a) = k|p, r) =
(
k + r − 1

k

)

(1 − p)rpk

When using the NB distribution, we need to estimate the standard parameters of the
NB distribution, r and p. r is estimated from rearranging the formula for the expected
variance of NB as r = λ2

σ 2−λ
, and similarly p is estimated from the expected mean of NB

as p = λ
λ+r .

We model incorrect coverage i(a) as coming from sequencing errors with rate ε:
p(i(a) = k|ε) = εk . ε is estimated from the mean base quality score in the first 10,000
processed reads.
We also use per-base coverage to penalise gaps in coverage. Given a function g(a)

returning the number of zero-coverage positions in allele a, the probability p(g(a) = k) of
seeing k gaps if a is the true allele is p(zero_cov)k , where p(zero_cov) is obtained by com-
puting p(c(a)) using the above formula with c(a) set to zero. In practice, we use k

la as the
exponent instead of k so as not to penalise long alleles.
These three terms combined give the likelihood of allele a

L(a) = p(c(a))p(i(a))p(g(a))

Letcher et al. Genome Biology (2021) 22:259 Page 20 of 27

The allele a′ that gets called is the maximum-likelihood allele, and we define the
genotype confidence of the call as

min
a∈A:a �=a′

L(a′)
L(a)

which is the likelihood ratio of the called allele and the next most likely allele.
This holds for haploid genotyping. For higher ploidy, the likelihood function generalises

to a set of alleles S as

L(S) = p(i(S))
∏

a∈S
p(c(a))p(g(a))

where i(S) = ∑
X⊂A:X∩S=∅ cX .

For diploid genotyping, S = {a1, a2} and p(c(a)) is parameterised by λ
2 because we

expect half the total site coverage on each of two called alleles.

Nested genotyping

The gramtools genotyping model is applied recursively from child sites to their parent
sites. Calls in child sites restrict the set of alleles considered in the parent so that the num-
ber of choices is reduced: for each outgoing path from a site,

∏n
i pi paths are considered,

where pi is the number of distinct alleles called at site i (e.g. in diploids 0, 1 or 2) and n
the number of child sites encountered. Some extra paths are also retained when genotype
confidence for a child site is low, in order to propagate uncertainty to parent calls. If there
are more than 10,000 possible alleles, only the 10,000 most likely alleles are considered.
This does not require enumerating all possible alleles as the most likely alleles in child
sites have already been computed.
An example of the nested genotyping procedure is shown in Fig. 9. To maintain coher-

ence, if child sites on two different branches of a parent site are genotyped, whole branches
can get invalidated. For example at a ploidy of one if an outgoing branch from a parent
site is called, all children sites on the other branches receive null calls.

P. falciparum surface antigen graphs and genotyping validation

Graph construction

We started from VCF files produced by running Cortex, a de novo assembly-based
variant caller [5], on read sets of 2,498 samples from the Pf3k project [20] (all reads are
publicly available on the ENA, see the Availability of data and materials section). Cortex
has a very low false positive call rate and can call the divergent forms of P. falciparum sur-
face antigens [22]. The Cortex independent workflow was run, using the bubble caller
with k=31. The VCF files are publicly released on zenodo (see Availability of data and
materials) and Cortex is publicly available at https://github.com/iqbal-lab/cortex.
For each surface antigen gene (DBLMSP, DBLMSP2, EBA175 andAMA1), we generated

sequences for each sample by applying Cortex variants at the gene coordinates, plus
5000 bp on each side, to the P. falciparum 3D7 reference genome.We generated multiple-
sequence alignments of each gene using mafft [40] and passed them as input to our
construction tool make_prg. For the simulation experiment, two graphs were built for
DBLMSP and DBLMSP2 with maximum nesting levels of 1 and 5. The graphs without
nesting have 451 and 413 variant sites for DBLMSP and DBLMSP2, and the graphs with
nesting have 558 and 500 variant sites respectively.

https://github.com/iqbal-lab/cortex

Letcher et al. Genome Biology (2021) 22:259 Page 21 of 27

Path and read simulation

From each non-nested graph, 10 paths were simulated and threaded through the nested
graph using gramtools’ simulate command. This results in jVCF files recording the
true genotypes for each path in each graph. Illumina HiSeq25 75-bp reads (0.023% per-
base error rate) were simulated from each unique path using ART [41] at 40-fold coverage,
genotyped using gramtools and calls evaluated by comparing the genotyped and truth
jVCF files.
The nested graph contains more paths than the non-nested graphs due to allowing

greater recombination between variant sites. We therefore simulated paths from the
non-nested graph to ensure each path exists in both graphs.

Comparisonwith reference-based callers

The nested graphs of the four surface antigens DBLMSP, DBLMSP2, EBA175 and AMA1
were combined in positional order with the rest of the reference genome, using a custom
script (see the Availability of data and materials section).
For each of the 14 validation samples, we ran SAMtools and Cortex using the P.

falciparum 3D7 reference genome and gramtools using the surface antigen genome
graph. For each genotyped sample, gramtools infers a haploid personalised genome

Fig. 9 Nested genotyping procedure. Nodes with numbers mark the start and end of variant sites. In each
panel, blue-filled nodes mark which site is being processed, red-filled nodes mark called alleles, and red paths
mark alleles considered for genotyping. Ref is the reference allele, Alts are the alleles considered for
genotyping, and GT is the called genotype. The example shows haploid genotyping. a Genotyping of child
site 2. Allele “G” gets called. b Genotyping of child site 3. Allele “CC” gets called. c Genotyping of parent site 1.
Alts are generated from the alleles called in child sites 2 and 3: allele “G” is used from site 2, and allele “CC” is
used from site 3, producing alleles “AGT” and “CC”. Allele “AGT” gets called, going through site 2. d In c, the
path going through site 2 was called. Because genotyping is haploid, the call at site 3 is invalidated (GT
becomes “null”)

Letcher et al. Genome Biology (2021) 22:259 Page 22 of 27

(PR) as the whole-genome path taking the called allele at each variant site. SAMtools
and Cortex were then run once more using the personalised reference instead of 3D7.
When mapping the gene sequence with variants applied to the truth assemblies, we

measure performance as the edit distance reported by bowtie2 (version 2.4.1) divided
by gene length.

M. tuberculosis SNP and large deletion analysis

Hybrid assembly of the 17 evaluated samples

Each sample was initially assembled using Unicycler [42] and Canu [43], followed
by Circlator [44] using the corrected reads output by Canu. Unicycler version
0.4.8 was used with the option ‘-mode bold’, Illumina reads given using the options
‘-short1 and ‘-short2’, and the PacBio subreads using the ‘-long’ option. Canu ver-
sion 2.0 was used with the option ‘genomeSize=4.4m’ and the PacBio reads provided
with the option ‘-pacbio-raw’. The only exception was sample N1177, which was ini-
tially assembled using Flye [45] version 2.8-b1674 with the PacBio subreads input with
the option ‘-pacbio-raw’.
The initial assembly for each sample was chosen for further manual polishing based

on inspection of mapped reads and comparison with the H37Rv reference genome.
The Unicycler assembly was used for samples N0004, N0091, N0155, N0157, N1283,
N0072, N1202 and N0153. The Canu assembly was used for samples N0031, N1176,
N0052, N0136, N0146, N1216, N1272 and N0054. Redundant and/or contamination
contigs were removed from samples N0072, N1202, N0052, N0136, N0146, N1216 and
N1272. Manual fixes were applied to samples N0054 and N0153 by breaking contigs at
errors, with the aid of the Artemis Comparison Tool (ACT) [46], and re-merging using
Circlator using the default settings. Next, Pilon [47] (version 1.23) was run itera-
tively on each assembly using the Illumina reads as input, mapped with BWA-MEM [48]
(version 0.7.17-r1188, default settings) until no more corrections were made, up to a max-
imum of 10 iterations. Finally, the ‘fixstart’ function of Circlator was used to ensure
that each assembly began with the dnaA gene, for consistency with the H37Rv reference
genome. The result was all 17 samples assembled into a single, circularised contig.

Variant discovery

We first obtained variant calls from the read files of the 17 evaluated samples and an
additional 1000 samples available in the ENA (see the Availability of data and materials
section). We ran Cortex to obtain the calls, using our lab’s wrapper clockwork version
0.8.3, publicly available at https://github.com/iqbal-lab-org/clockwork. clockwork runs
Cortex’s independent workflow using the bubble caller with k=31. The VCF files are
publicly released on zenodo (see Availability of data and materials).
Cortex identified a total of 73 deletions in the 17 evaluated samples, between 100 and

13,000 bases in length and falling in 45 distinct genomic regions. To validate the calls, we
mapped their corresponding long-read assemblies to theM. tuberculosisH37Rv reference
genome with minimap2, which validated 68. The remaining 5 were manually confirmed
using ACT: for each sample we mapped the short reads to the reference genome and to
the assembly using bowtie2 and mapped the assembly to the reference using nucmer

[49]. In ACT, we view all three together and validate a deletion when it appears in the

https://github.com/iqbal-lab-org/clockwork

Letcher et al. Genome Biology (2021) 22:259 Page 23 of 27

assembly-reference mapping at the expected coordinates and when read pileups confirm
the event. These are shown in Additional File 1: Figure S12-16.
Having validated all the deletions, we extracted all Cortex calls occurring under the

45 deletion regions in the 1017 samples, giving us a joint set of large deletions and
overlapping SNPs and indels.

gramtools genome graph construction

We built one genome graph for each of the 45 regions identified as containing large dele-
tions in our 17 evaluation samples. As for the P. falciparum surface antigen graphs, for
each region, we applied Cortex calls to the M. tuberculosis H37Rv reference genome,
generated multiple sequence alignments with mafft, passed them as input to our
construction tool make_prg and combined them with the rest of the genome.

vg and GraphtTyper2 genome graph construction

We set on building a vg genome graph from the same multiple sequence alignments
(MSA) used by gramtools to maximise comparability. Using vg version 1.26.0, we built
each of the 45 regions from MSA using vg construct and combined them with the
invariant parts of theM. tuberculosis H37Rv reference genome using vg concat.
Indexing this graph, a prerequisite to read mapping and variant calling, used >10

Terabytes of temporary disk space before we stopped it. We deemed > 500 Gigabytes pro-
hibitive and set that as a limit. We ran vg prune to remove densely clustered variation
from the graph and, after exceeding 1 Terabyte of disk indexing the pruned graph using
default parameters, successfully indexed the pruned graph with parameters -k10 -X3.
We then ran vg call for each of our 1017 samples against the MSA graph. However,

after successful mapping to this indexed graph,vg call failed with a segmentation fault.
We therefore built a graph from a VCF file instead. We ran vg deconstruct

-p -e to obtain a VCF file describing the variants identified by vg in the vg MSA-
constructed graph, and manually validated the variation using one sample when com-
pared to gramtools. However, running vg construct with this VCF also failed with
a segmentation fault.
We therefore used vg graph construction and genotyping from a merged VCF of all

variants in the 45 regions which we produced using bcftools. This ran successfully
after graph pruning to stay under our disk limit.
This VCF file was also used as input to GraphtTyper2 via graphtyper version

2.5.1, running its genotype_sv subcommand. GraphtTyper2 only accepts VCF files
as input and not MSAs.

Covered positions and number of variants

Altogether, the 45 deletion regions cover 51,701 bp of the reference genome. The variants
under them cover 4105 reference positions in 1,109 sites in the gramtools graph and
2,386 positions in 1434 sites in the merged VCF file used by vg and GraphTyper2.

Mapping evaluated regions to truth assemblies

We evaluated a total of 3,060 sequences by mapping them to truth assemblies: 17 sam-
ples x 45 regions x 4 tools (gramtools, vg, GraphtTyper2 and the reference genome
sequence). Using bowtie2, 10.4% all sequences failed to be fully aligned due to excessive
divergence between the called sequence and the truth.

Letcher et al. Genome Biology (2021) 22:259 Page 24 of 27

To recover more alignments, we used minimap2 which is designed to align more
highly diverged sequences (such as ONT long reads) [29]. For each evaluated sequence,
we took the alignment with the greatest number of matches to the assembly and
extracted assembly sequence of the same length from the first aligned position (includ-
ing soft- or hard-clipped). We obtained the edit distance between the two sequences
from Needleman-Wunsch alignment using edlib [50]. Using this approach reduced the
proportion of unaligned sequences to 1.1%.
To ensure evaluated alignments are unambiguous, we filter them byMAPQ≥ 30 so that

the probability they are non-unique is ≤ 10−3 as estimated by minimap2. This removed
0.62% of the evaluated sequences. For each tool, 13 of 765 sequences were not mapped
or had insufficiently high mapping quality. The number of unmapped and low MAPQ
sequences for each tool are shown in Additional File 1: Figure S18.
We required the VCF records output by each tool to have a FILTER status set to “PASS”.

This changed results only marginally, giving the same number of unmapped and low
MAPQ sequences and a decreased mean edit distance by 0.11% for GraphtTyper2,
0.08% for gramtools and no differences for vg.

Evaluating variant calls using varifier

varifier is a tool for measuring accuracy of variant calls in a VCF using a reference
genome and a truth assembly. Given a variant call, varifier determines if it is correct
by aligning the reference genome sequence with called variant applied (plus some flanking
sequence tomake the alignment specific) to the truth assembly. To compute call precision,
which we define as the fraction of calls made that are correct, this procedure is applied to
each variant in the evaluated VCF file. To compute call recall, which we define as the frac-
tion of calls made out of all expected calls, varifier first aligns the reference genome
to the truth assembly to derive a set of expected variant calls. Each expected call is then
evaluated (by the mapping procedure above) against an ‘induced truth genome’ obtained
by applying the evaluated VCF call’s variants to the reference genome sequence. Then, if
the expected call has beenmade in the evaluated VCF, it will be found in the induced truth
genome. For both recall and precision, we restricted the evaluation to calls with FILTER
set to “.” or “PASS” in order to ignore low-confidence calls. This led to an improvement in
recall and precision of 0% and 1.9% (gramtools), 0.1% and 2.1% (graphtyper2) and
0.9% and 1.1% (vg) on average across the variant types.
varifier is described inmore detail in [51] and available at https://github.com/iqbal-

lab-org/varifier.

P. falciparum dimorphic variation analysis

We took a subset of 706 samples fromGhana, Cambodia and Laos out of the 2498 samples
used to build the P. falciparum genome graphs (see the “Graph construction” section).
Using gramtools, each sample was genotyped using the graph containing four sur-
face antigens (DBLMSP, DBLMSP2, EBA175, AMA1). We combined each sample’s jVCF
output file into a single multi-sample jVCF file using gramtools’ combine_jvcf exe-
cutable and analysed the final jVCF using custom scripts (see the Availability of data and
materials section).

https://github.com/iqbal-lab-org/varifier
https://github.com/iqbal-lab-org/varifier

Letcher et al. Genome Biology (2021) 22:259 Page 25 of 27

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s13059-021-02474-0.

Additional file 1: Contains all supplementary text and figures for this paper.

Additional file 2: Review history

Acknowledgements
The authors thank Rachel Colquhoun for the algorithms and first development of make_prg, Sorina Maciuca for the
vBWT data structure and algorithms behind gramtools and Robyn Ffrancon for software engineering in gramtools.
We would also like to thank the anonymous reviewers, whose detailed feedback led to considerable improvements in
the manuscript.

Peer review information
Anahita Bishop was the primary editor of this article and managed its editorial process and peer review in collaboration
with the rest of the editorial team.

Review history
The review history is available as additional file 2.

Authors’ contributions
BL developed gramtools, performed the analyses, drafted the manuscript and wrote the repository for the study (see
the Availability of data and materials section). MH produced theM. tuberculosis assemblies and Cortex VCF files, helped
using ACT and developed varifier. ZI designed the study and produced the P. falciparum Cortex VCF files. MH and
ZI defined the graph constraints and edited the manuscript. MH and ZI designed, and BL modified, the genotyping
model. All authors reviewed and approved the manuscript.

Funding
BL is funded by an EMBL predoctoral fellowship. MH is funded by the Wellcome Trust/Newton Fund-MRC Collaborative
Award [200205] and the Bill & Melinda Gates Foundation Trust [OPP1133541]. Open Access funding enabled and
organized by Projekt DEAL.

Availability of data andmaterials
gramtools is open-source under an MIT license and publicly available on Github [52] (https://github.com/iqbal-lab-
org/gramtools). The version of gramtools used in this paper is archived on Zenodo [53].
We provide an open repository for reproducing all results in this study, available at https://github.com/iqbal-lab-org/
paper_gramtools_nesting. The repository README provides all the instructions and commands to obtain the data and to
re-run each part of the analysis (using Snakemake [54]). The data used are all openly available. Accessions for data
deposited at the ENA are stored as tables, listed in https://github.com/iqbal-lab-org/paper_gramtools_nesting#input-
data. All other data, as well as a software container, are available on zenodo at https://doi.org/10.5281/zenodo.5075458.
All versions/commits of the software used in this study are frozen in the software container and can be found at https://
github.com/iqbal-lab-org/paper_gramtools_nesting/blob/master/container/singu_def.def.

Declarations

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1EMBL-EBI, Hinxton, UK. 2Nuffield Department of Medicine, University of Oxford, Oxford, UK.

Received: 10 February 2021 Accepted: 20 August 2021

References
1. Brandt DYC, Aguiar VRC, Bitarello BD, Nunes K, Goudet J, Meyer D. Mapping bias overestimates reference allele

frequencies at the HLA genes in the 1000 genomes project phase I data. G3: Genes Genomes Genetics (Bethesda,
Md.) 2015;5(5):931–41. https://doi.org/10.1534/g3.114.015784.

2. Schneeberger K, Hagmann J, Ossowski S, Warthmann N, Gesing S, Kohlbacher O, Weigel D. Simultaneous
alignment of short reads against multiple genomes. Genome Biol. 2009;10(9):98. https://doi.org/10.1186/gb-2009-
10-9-r98.

3. Dilthey A, Cox C, Iqbal Z, Nelson MR, McVean G. Improved genome inference in the MHC using a population
reference graph. Nat Genet. 2015;47(6):682–8. https://doi.org/10.1038/ng.3257.

4. Garrison E, Sirén J, Novak AM, Hickey G, Eizenga JM, Dawson ET, Jones W, Garg S, Markello C, Lin MF, Paten B,
Durbin R. Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nat
Biotechnol. 2018;36(9):875–9. https://doi.org/10.1038/nbt.4227.

https://doi.org/10.1186/s13059-021-02474-0
https://github.com/iqbal-lab-org/gramtools
https://github.com/iqbal-lab-org/gramtools
https://github.com/iqbal-lab-org/paper_gramtools_nesting
https://github.com/iqbal-lab-org/paper_gramtools_nesting
https://github.com/iqbal-lab-org/paper_gramtools_nesting#input-data
https://github.com/iqbal-lab-org/paper_gramtools_nesting#input-data
https://doi.org/10.5281/zenodo.5075458
https://github.com/iqbal-lab-org/paper_gramtools_nesting/blob/master/container/singu_def.def
https://github.com/iqbal-lab-org/paper_gramtools_nesting/blob/master/container/singu_def.def
https://doi.org/10.1534/g3.114.015784
https://doi.org/10.1186/gb-2009-10-9-r98
https://doi.org/10.1186/gb-2009-10-9-r98
https://doi.org/10.1038/ng.3257
https://doi.org/10.1038/nbt.4227

Letcher et al. Genome Biology (2021) 22:259 Page 26 of 27

5. Iqbal Z, Caccamo M, Turner I, Flicek P, McVean G. De novo assembly and genotyping of variants using colored de
Bruijn graphs. Nat Genet. 2012;44(2):226–32. https://doi.org/10.1038/ng.1028.

6. Eggertsson HP, Jonsson H, Kristmundsdottir S, Hjartarson E, Kehr B, Masson G, Zink F, Hjorleifsson KE, Jonasdottir
A, Jonasdottir A, Jonsdottir I, Gudbjartsson DF, Melsted P, Stefansson K, Halldorsson BV. Graphtyper enables
population-scale genotyping using pangenome graphs. Nat Genet. 2017;49(11):1654–60. https://doi.org/10.1038/
ng.3964.

7. Sibbesen JA, Maretty L, Krogh A. Accurate genotyping across variant classes and lengths using variant graphs. Nat
Genet. 2018;50(7):1054. https://doi.org/10.1038/s41588-018-0145-5.

8. Sirén J, Monlong J, Chang X, Novak AM, Eizenga JM, Markello C, Sibbesen J, Hickey G, Chang P-C, Carroll A,
Haussler D, Garrison E, Paten B. Genotyping common, large structural variations in 5,202 genomes using
pangenomes, the giraffe mapper, and the vg toolkit. bioRxiv. 2020. https://doi.org/10.1101/2020.12.04.412486.

9. Eggertsson HP, Kristmundsdottir S, Beyter D, Jonsson H, Skuladottir A, Hardarson MT, Gudbjartsson DF,
Stefansson K, Halldorsson BV, Melsted P. GraphTyper2 enables population-scale genotyping of structural variation
using pangenome graphs. Nat Commun. 2019;10(1):5402. https://doi.org/10.1038/s41467-019-13341-9. Number: 1
Publisher: Nature Publishing Group.

10. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST,
McVean G, Durbin R, Group GPA. The variant call format and VCFtools. Bioinformatics. 2011;27(15):2156–8. https://
doi.org/10.1093/bioinformatics/btr330. Publisher: Oxford Academic.

11. Korn JM, Kuruvilla FG, McCarroll SA, Wysoker A, Nemesh J, Cawley S, Hubbell E, Veitch J, Collins PJ, Darvishi K,
Lee C, Nizzari MM, Gabriel SB, Purcell S, Daly MJ, Altshuler D. Integrated genotype calling and association analysis
of SNPs, common copy number polymorphisms and rare CNVs. 40(10):1253–60. https://doi.org/10.1038/ng.
237. Accessed 08-06-2021.

12. Maciuca S, Elias CdO, McVean G, Iqbal Z. A natural encoding of genetic variation in a Burrows-Wheeler Transform
to enable mapping and genome inference. In: Springer, editor. Proceedings of the 16th International Workshop on
Algorithms in Bioinformatics; 2016. p. 222–33.

13. Valenzuela D, Norri T, Välimäki N, Pitkänen E, Mäkinen V. Towards pan-genome read alignment to improve
variation calling. BMC Genomics. 2018;19(2):87. https://doi.org/10.1186/s12864-018-4465-8.

14. Ferragina P, Manzini G. Opportunistic data structures with applications. In: Proceedings 41st Annual Symposium on
Foundations of Computer Science. Redondo Beach, CA, USA: IEEE Comput. Soc; 2000. p. 390–8. https://doi.org/10.
1109/SFCS.2000.892127. http://ieeexplore.ieee.org/document/892127/.

15. Colquhoun RM, Hall MB, Lima L, Roberts LW, Malone KM, Hunt M, Letcher B, Hawkey J, George S, Pankhurst L,
Iqbal Z. Nucleotide-resolution bacterial pan-genomics with reference graphs. bioRxiv. 20202020–1112380378.
https://doi.org/10.1101/2020.11.12.380378. Publisher: Cold Spring Harbor Laboratory Section: New Results.

16. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol.
2016;34(5):525–7. https://doi.org/10.1038/nbt.3519.

17. Ecma International: The JSON Data Interchange Syntax. Geneva. 2017. Ecma International. https://www.ecma-
international.org/publications-and-standards/standards/ecma-404/.

18. Ochola LI, Tetteh KKA, Stewart LB, Riitho V, Marsh K, Conway DJ. Allele frequency–based and polymorphism-versus-
divergence indices of balancing selection in a new filtered set of polymorphic genes in Plasmodium falciparum. Mol
Biol Evol. 2010;27(10):2344–51. https://doi.org/10.1093/molbev/msq119. Publisher: Oxford Academic.

19. Amambua-Ngwa A, Tetteh KKA, Manske M, Gomez-Escobar N, Stewart LB, Deerhake ME, Cheeseman IH,
Newbold CI, Holder AA, Knuepfer E, Janha O, Jallow M, Campino S, MacInnis B, Kwiatkowski DP, Conway DJ.
Population genomic scan for candidate signatures of balancing selection to guide antigen characterization in
malaria parasites. PLoS Genet. 2012;8(11):1002992. https://doi.org/10.1371/journal.pgen.1002992.

20. The Pf3K Project 2015 Pilot Data Release 3. http://www.malariagen.net/data/pf3k-3. Accessed 27 Aug 2021.
21. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Subgroup GPDP. The

Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078–9. https://doi.org/10.1093/
bioinformatics/btp352.

22. Miles A, Iqbal Z, Vauterin P, Pearson R, Campino S, Theron M, Gould K, Mead D, Drury E, O’Brien J, Rubio VR,
MacInnis B, Mwangi J, Samarakoon U, Ranford-Cartwright L, Ferdig M, Hayton K, Su X.-z., Wellems T, Rayner J,
McVean G, Kwiatkowski D. Indels, structural variation, and recombination drive genomic diversity in Plasmodium
falciparum. Genome Res. 2016;26(9):1288–99. https://doi.org/10.1101/gr.203711.115.

23. Richards JS, Beeson JG. The future for blood-stage vaccines against malaria. Immunol Cell Biol. 2009;87(5):377–90.
https://doi.org/10.1038/icb.2009.27.

24. Barry AE, Arnott A. Strategies for designing and monitoring malaria vaccines targeting diverse antigens. Front
Immunol. 2014;5:359. https://doi.org/10.3389/fimmu.2014.00359.

25. Otto TD, Böhme U, Sanders M, Reid A, Bruske EI, Duffy CW, Bull PC, Pearson RD, Abdi A, Dimonte S, Stewart LB,
Campino S, Kekre M, Hamilton WL, Claessens A, Volkman SK, Ndiaye D, Amambua-Ngwa A, Diakite M, Fairhurst
RM, Conway DJ, Franck M, Newbold CI, Berriman M. Long read assemblies of geographically dispersed
Plasmodium falciparum isolates reveal highly structured subtelomeres. Wellcome Open Research. 2018;3:52. https://
doi.org/10.12688/wellcomeopenres.14571.1.

26. Borrell S, Trauner A, Brites D, Rigouts L, Loiseau C, Coscolla M, Niemann S, De Jong B, Yeboah-Manu D,
Kato-Maeda M, Feldmann J, Reinhard M, Beisel C, Gagneux S. Reference set of Mycobacterium tuberculosis clinical
strains: a tool for research and product development. PLoS ONE. 2019;14(3):1–12. https://doi.org/10.1371/journal.
pone.0214088.

27. Chiner-Oms A, Berney M, Boinett C, González-Candelas F, Young DB, Gagneux S, Jacobs WR, Parkhill J, Cortes T,
Comas I. Genome-wide mutational biases fuel transcriptional diversity in the Mycobacterium tuberculosis complex.
Nat Commun. 2019;10(1):3994. https://doi.org/10.1038/s41467-019-11948-6.

28. Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, Tekaia F,
Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N,
Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, Quail MA,

https://doi.org/10.1038/ng.1028
https://doi.org/10.1038/ng.3964
https://doi.org/10.1038/ng.3964
https://doi.org/10.1038/s41588-018-0145-5
https://doi.org/10.1101/2020.12.04.412486
https://doi.org/10.1038/s41467-019-13341-9
https://doi.org/10.1093/bioinformatics/btr330
https://doi.org/10.1093/bioinformatics/btr330
https://doi.org/10.1038/ng.237
https://doi.org/10.1038/ng.237
https://doi.org/10.1186/s12864-018-4465-8
https://doi.org/10.1109/SFCS.2000.892127
https://doi.org/10.1109/SFCS.2000.892127
http://ieeexplore.ieee.org/document/892127/
https://doi.org/10.1101/2020.11.12.380378
https://doi.org/10.1038/nbt.3519
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://doi.org/10.1093/molbev/msq119
https://doi.org/10.1371/journal.pgen.1002992
http://www.malariagen.net/data/pf3k-3
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1093/bioinformatics/btp352
https://doi.org/10.1101/gr.203711.115
https://doi.org/10.1038/icb.2009.27
https://doi.org/10.3389/fimmu.2014.00359
https://doi.org/10.12688/wellcomeopenres.14571.1
https://doi.org/10.12688/wellcomeopenres.14571.1
https://doi.org/10.1371/journal.pone.0214088
https://doi.org/10.1371/journal.pone.0214088
https://doi.org/10.1038/s41467-019-11948-6

Letcher et al. Genome Biology (2021) 22:259 Page 27 of 27

Rajandream M-A, Rogers J, Rutter S, Seeger K, Skelton J, Squares R, Squares S, Sulston JE, Taylor K, Whitehead S,
Barrell BG. Deciphering the biology of mycobacterium tuberculosis from the complete genome sequence. Nature.
1998;393(6685):537–44. https://doi.org/10.1038/31159.

29. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094–100. https://doi.org/
10.1093/bioinformatics/bty191. Publisher: Oxford Academic.

30. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9(4):357–9. https://doi.
org/10.1038/nmeth.1923.

31. Büchler T, Ohlebusch E. An improved encoding of genetic variation in a Burrows–Wheeler transform.
Bioinformatics. 2020;36(5):1413–9. https://doi.org/10.1093/bioinformatics/btz782. Publisher: Oxford Academic.

32. Crosnier C, Iqbal Z, Knuepfer E, Maciuca S, Perrin AJ, Kamuyu G, Goulding D, Bustamante LY, Miles A, Moore SC,
Dougan G, Holder AA, Kwiatkowski DP, Rayner JC, Pleass RJ, Wright GJ. Binding of Plasmodium falciparum
merozoite surface proteins DBLMSP and DBLMSP2 to human immunoglobulin M is conserved among Broadly
diverged sequence variants. J Biol Chem. 2016;291(27):14285–99. https://doi.org/10.1074/jbc.M116.722074.

33. Gagie T, Manzini G, Sirén J. Wheeler graphs: a framework for BWT-based data structures. 698:67–78. https://doi.org/
10.1016/j.tcs.2017.06.016. Accessed 04-08-2019.

34. The CRyPTIC consortium. A data compendium forM. tuberculosis antibiotic resistance (in preparation).
35. Li H, Feng X, Chu C. The design and construction of reference pangenome graphs with minigraph. Genome Biol.

2020;21(1):265. https://doi.org/10.1186/s13059-020-02168-z.
36. Paten B, Eizenga JM, Rosen YM, Novak AM, Garrison E, Hickey G. Superbubbles, ultrabubbles, and cacti. J Comput

Biol. 2018;25(7):649–63. https://doi.org/10.1089/cmb.2017.0251. Publisher: Mary Ann Liebert, Inc., publishers.
37. Pritt J, Chen N-C, Langmead B. FORGe: prioritizing variants for graph genomes. Genome Biol. 2018;19(1):220.

https://doi.org/10.1186/s13059-018-1595-x.
38. Church DM, Schneider VA, Steinberg KM, Schatz MC, Quinlan AR, Chin C-S, Kitts PA, Aken B, Marth GT, Hoffman

MM, Herrero J, Mendoza MLZ, Durbin R, Flicek P. Extending reference assembly models. Genome Biol. 2015;16(1):
13. https://doi.org/10.1186/s13059-015-0587-3.

39. Siren J, Välimäki N, Mäkinen V. [GCSA]indexing graphs for path queries with applications in Genome Research.
IEEE/ACM Trans Comput Biol Bioinform. 2014;11(2):375–88. https://doi.org/10.1109/TCBB.2013.2297101.

40. Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast
Fourier transform. Nucleic Acids Res. 2002;30(14):3059–66. https://doi.org/10.1093/nar/gkf436.

41. Huang W, Li L, Myers JR, Marth GT. ART: a next-generation sequencing read simulator. Bioinformatics. 2011;28(4):
593–4. https://doi.org/10.1093/bioinformatics/btr708.

42. Wick RR, Judd LM, Gorrie CL, Holt KE. Unicycler: resolving bacterial genome assemblies from short and long
sequencing reads. PLoS Comput Biol. 2017;13(6):1005595. https://doi.org/10.1371/journal.pcbi.1005595. Publisher:
Public Library of Science.

43. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly
via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27(5):722–36. https://doi.org/10.1101/gr.
215087.116. Company: Cold Spring Harbor Laboratory Press Distributor: Cold Spring Harbor Laboratory Press
Institution: Cold Spring Harbor Laboratory Press Label: Cold Spring Harbor Laboratory Press Publisher: Cold Spring
Harbor Lab.

44. Hunt M, Silva ND, Otto TD, Parkhill J, Keane JA, Harris SR. Circlator: automated circularization of genome
assemblies using long sequencing reads. Genome Biol. 2015;16(1):294. https://doi.org/10.1186/s13059-015-0849-0.

45. Kolmogorov M, Yuan J, Lin Y, Pevzner PA. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol.
2019;1:540–6. https://doi.org/10.1038/s41587-019-0072-8.

46. Carver TJ, Rutherford KM, Berriman M, Rajandream M-A, Barrell BG, Parkhill J. ACT: the Artemis comparison tool.
Bioinformatics. 2005;21(16):3422–3. https://doi.org/10.1093/bioinformatics/bti553. https://academic.oup.com/
bioinformatics/article-pdf/21/16/3422/573752/bti553.pdf.

47. Walker BJ, Abeel T, Shea T, Priest M, Abouelliel A, Sakthikumar S, Cuomo CA, Zeng Q, Wortman J, Young SK, Earl
AM. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement.
PLoS ONE. 2014;9(11):112963. https://doi.org/10.1371/journal.pone.0112963. Publisher: Public Library of Science.

48. Li H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. 2013. http://arxiv.org/abs/
1303.3997.

49. Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL. Versatile and open software for
comparing large genomes. Genome Biol. 2004;5(2):12. https://doi.org/10.1186/gb-2004-5-2-r12.

50. Šošić M, Šikić M. Edlib: a C/C ++ library for fast, exact sequence alignment using edit distance. Bioinformatics.
2017;33(9):1394–5. https://doi.org/10.1093/bioinformatics/btw753. Publisher: Oxford Academic.

51. Hunt MH, Letcher B, Malone KM, Nguyen G, Hall MB, Colquhoun RM, Lima L, Schatz M, Ramakrishnan S, CRyPTIC
consortium, Iqbal Z. Minos: graph adjudication and joint genotyping of cohorts of bacterial genomes (in
preparation).

52. Letcher B, Hunt MH, Iqbal Z. Gramtools Github Software Repository. https://github.com/iqbal-lab-org/
gramtools. Accessed 10 August 2021.

53. Letcher B, Hunt MH, Iqbal Z. Gramtools: Genome Graph Genotyper. https://doi.org/10.5281/zenodo.
5176372. Accessed 10 August 2021.

54. Köster J, Rahmann S. Snakemake’a scalable bioinformatics workflow engine. Bioinformatics. 2012;28(19):2520–2.
https://doi.org/10.1093/bioinformatics/bts480. Publisher: Oxford Academic.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1038/31159
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1038/nmeth.1923
https://doi.org/10.1093/bioinformatics/btz782
https://doi.org/10.1074/jbc.M116.722074
https://doi.org/10.1016/j.tcs.2017.06.016
https://doi.org/10.1016/j.tcs.2017.06.016
https://doi.org/10.1186/s13059-020-02168-z
https://doi.org/10.1089/cmb.2017.0251
https://doi.org/10.1186/s13059-018-1595-x
https://doi.org/10.1186/s13059-015-0587-3
https://doi.org/10.1109/TCBB.2013.2297101
https://doi.org/10.1093/nar/gkf436
https://doi.org/10.1093/bioinformatics/btr708
https://doi.org/10.1371/journal.pcbi.1005595
https://doi.org/10.1101/gr.215087.116
https://doi.org/10.1101/gr.215087.116
https://doi.org/10.1186/s13059-015-0849-0
https://doi.org/10.1038/s41587-019-0072-8
https://doi.org/10.1093/bioinformatics/bti553
https://academic.oup.com/bioinformatics/article-pdf/21/16/3422/573752/bti553.pdf
https://academic.oup.com/bioinformatics/article-pdf/21/16/3422/573752/bti553.pdf
https://doi.org/10.1371/journal.pone.0112963
http://arxiv.org/abs/1303.3997
http://arxiv.org/abs/1303.3997
https://doi.org/10.1186/gb-2004-5-2-r12
https://doi.org/10.1093/bioinformatics/btw753
https://github.com/iqbal-lab-org/gramtools
https://github.com/iqbal-lab-org/gramtools
https://doi.org/10.5281/zenodo.5176372
https://doi.org/10.5281/zenodo.5176372
https://doi.org/10.1093/bioinformatics/bts480

	Abstract
	Keywords

	Background
	Results
	Graph constraints and genotyping with the vBWT
	Genotyping nested genome graphs
	jVCF output format
	Validation of nested genotyping with simulated data
	Benchmarking gramtools genotyping against single-reference variant callers at surface antigens
	Application: unified SNP and large deletion analysis in M. tuberculosis
	Application: charting SNPs on top of alternate haplotypes

	Discussion
	Conclusions
	Methods
	Graph definitions
	Genome graph construction and make_prg
	vBWT data structure in gramtools
	Genotyping model
	Nested genotyping
	P. falciparum surface antigen graphs and genotyping validation
	Graph construction
	Path and read simulation
	Comparison with reference-based callers

	M. tuberculosis SNP and large deletion analysis
	Hybrid assembly of the 17 evaluated samples
	Variant discovery
	gramtools genome graph construction
	vg and GraphtTyper2 genome graph construction
	Covered positions and number of variants
	Mapping evaluated regions to truth assemblies
	Evaluating variant calls using varifier

	P. falciparum dimorphic variation analysis

	Supplementary InformationThe online version contains supplementary material available at https://doi.org/10.1186/s13059-021-02474-0.
	Additional file 1
	Additional file 2

	Acknowledgements
	Peer review information
	Review history
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Competing interests
	Author details
	References
	Publisher's Note

