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Abstract

Background: Drought threatens the food supply of the world population. Dissecting
the dynamic responses of plants to drought will be beneficial for breeding drought-
tolerant crops, as the genetic controls of these responses remain largely unknown.

Results: Here we develop a high-throughput multiple optical phenotyping system
to noninvasively phenotype 368 maize genotypes with or without drought stress
over a course of 98 days, and collected multiple optical images, including color
camera scanning, hyperspectral imaging, and X-ray computed tomography images.
We develop high-throughput analysis pipelines to extract image-based traits (i-traits).
Of these i-traits, 10,080 were effective and heritable indicators of maize external and
internal drought responses. An i-trait-based genome-wide association study reveals
4322 significant locus-trait associations, representing 1529 quantitative trait loci
(QTLs) and 2318 candidate genes, many that co-localize with previously reported
maize drought responsive QTLs. Expression QTL (eQTL) analysis uncovers many local
and distant regulatory variants that control the expression of the candidate genes.
We use genetic mutation analysis to validate two new genes, ZmcPGM2 and
ZmFAB1A, which regulate i-traits and drought tolerance. Moreover, the value of the
candidate genes as drought-tolerant genetic markers is revealed by genome
selection analysis, and 15 i-traits are identified as potential markers for maize drought
tolerance breeding.

Conclusion: Our study demonstrates that combining high-throughput multiple
optical phenotyping and GWAS is a novel and effective approach to dissect the
genetic architecture of complex traits and clone drought-tolerance associated genes.
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Introduction
Maize (Zea mays), with more than one billion tons annual production (http://www.fao.

org/wsfs/world-summit/en) [1], is a world major crop and an important resource for

human food, animal feed, and bioenergy. However, drought, which has increased with

global climate warming and increased world population (more demands for fresh

water), poses serious threats to maize production worldwide [2–5]. Therefore, there are

urgent demands and great interest in generating drought-tolerant maize cultivars

through biotechnological approaches to ensure global food security and for sustainable

development of agriculture.

Plant drought tolerance is a complex trait that is controlled by multiple quantitative

trait loci (QTLs) with small effects [6, 7]. So far, hundreds of QTLs linked to maize

plant height, biomass, and anthesis-silk intervals have been detected in drought experi-

ments [8, 9]. Based on 368 natural inbred lines, several drought-tolerant genes that

control seedling survival rates after drought stress have been cloned through associ-

ation mapping [10–13]. Most of the phenotypes in these drought studies have been

measured at particular maize developmental stages or given times. There are numerous

dynamic molecular and physiological responses of plants under lasting drought. How

these responses are genetically controlled remains elusive.

The major challenge for dynamic drought study is the “phenotyping bottleneck,”

owing to the lower-throughput, costly, and labor-intensive process of conventional crop

phenotyping [14, 15]. In recent years, high-throughput non-destructive plant phenotyp-

ing techniques are developing rapidly [16] and have been popularized in various crop

populations to dissect the genetic basis of complex quantitative traits under abiotic

stresses, such as phosphate deficiency tolerance of Brassica napus [17], drought re-

sponse of wheat [18], salinity tolerance of rice [19], and drought resistance of rice [20].

Most of these studies have been focused on the external responses, for example, the

morphology, biomass, and greenness-related traits. The internal responses of plant to

drought are largely unknown. Genome-wide association studies (GWAS), which are

based on linkage disequilibrium (LD), have been widely applied in genetic dissection of

various agronomic traits of crops [21–24]. So far, combining both high-throughput

phenotyping and GWAS has not been applied to reveal the genetic architecture of

maize drought response.

In this study, we applied drought stresses to a maize association panel consisting of

368 genotypes over a course of 98 days. Many dynamic multiple optical image-based

traits (hereafter referred as i-traits) were detected via a high-throughput multiple op-

tical phenotyping system and the high-throughput image analysis pipelines we devel-

oped. These i-traits were collected non-destructively by multiple optical imaging,

including RGB imaging, hyperspectral imaging (HSI), and X-ray computed tomog-

raphy (CT), thus reflected the broad external (RGB i-traits) and internal (HSI and CT

i-traits) responses of plant to drought. I-trait-based GWAS resulted in the identifica-

tion of thousands of candidate genes. Gene-trait network indicated that there were

distinct genetic controls of different types of i-traits. Many previously identified

drought-tolerant genes were included in the candidate genes, and dozens of hotspot

genes associated with multiple i-traits were identified. We further revealed the regula-

tory variants that control the candidate gene expression via eQTL analysis. In

addition, we validated the roles of two new genes in the regulation of i-traits and
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maize drought tolerance through genetic mutation analyses. Furthermore, several i-

traits associated well with survival rate and known drought-related spectral index

were selected as potential markers for drought tolerance maize cultivar screening and

breeding. The huge amounts of “genetic treasures” detected in our study indicate that

combining high-throughput multiple optical phenotyping and GWAS is a powerful

and promising approach to dissect the genetic architecture of complex crop traits and

clone causal genes.

Results
Capture of large-scale i-traits in maize drought response

To gain insights into how maize plants respond to drought, we cultivated a maize asso-

ciation mapping population (AMP), which consists of 368 inbred lines and has 1M

SNPs among the population [25], in a greenhouse under well-watered (WW) and

drought-stressed (DS) conditions (Additional file 1: Table S1; see “Methods”). By using

an automatic platform for crop phenotyping developed based on our previous work

(RAP [20, 26, 27]), the dynamic responses of each individual plant were captured in a

noninvasive way via three types of scanners, RGB imaging, HSI, and CT, over a course

of 98 days (Fig. 1a; Additional file 2: Video S1), which generated ~ 14 TB of images. To

process the huge numbers of images, we further developed specific image analysis pipe-

lines (Fig. 1b; Additional file 3: Video S2; Additional file 4: Video S3; Additional file 5:

Video S4), with which a total of 26,910 i-traits (2010 RGB, 24,000 HSI, and 900 CT

image-based traits) were extracted. After i-traits selection procedures (Fig. 1c), includ-

ing filtering outliers, determination of drought-related i-traits using T-tests of WW/DS

and multilayer perceptron (MLP), and heritability tests (Additional file 6: Video S5;

Additional file 7: Video S6; Additional file 8: Video S7), 10,080 drought-related i-traits

(37.46% of the rough i-traits, including 1503 RGB-derived, 7902 HSI-derived, and 675

CT-derived i-traits) were selected for further genetic study. The definitions of these i-

traits are shown in Additional file 1: Table S2 and Additional file 9: Note S1. All the se-

lected RGB, HSI, and CT i-traits are listed in Additional file 1: Table S3-5. All these

images and related i-traits are open access to the public at https://doi.org/10.6084/m9.

figshare.14429003.v1.

Effective and inheritable i-traits to reflect maize drought response

Many i-traits changed dynamically during the drought treatments and growth stages

(Additional file 10: Figure S1a-c). For example, the RGB-derived i-trait TPA (total pro-

jected area), which has been reported as a good indicator of rice growth under drought

stress [20], was indicative of different growth situations of maize plants under various

drought stresses (Fig. 2a). The HSI-derived i-trait dT233, which is the first-order

derivative of the total reflectance under 959 nm, has been reported to reflect internal

water content [28]. We observed that dT233 increased under WW conditions and

decreased under DS conditions, suggesting that it was an effective indicator of drought

responses (Fig. 2b). The CT-derived i-trait hollow_area_700 reflected culm wall size

also effectively indicated different levels of drought stress (Fig. 2c).

To further explore the potential of i-traits to reflect drought responses, principal

components analysis (PCA) was performed to capture the phenotypic variations in the
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entire maize population. For the RGB- and HSI-derived i-traits, at D52 with more

severe stress, PC1 alone explained more than 50% of the phenotypic variation, which

clearly separated the WW plants from those undergoing DS (Fig. 2d, e). Interestingly,

compared with RGB-derived and CT-derived traits, HSI-derived traits had better distin-

guishing ability even in early stress stages (Fig. 2d, e, Additional file 10: Figure S1d-f).

Next, we calculated the broad-sense heritability (H2) of each individual i-trait over

Fig. 1 Combining high-throughput phenotyping and GWAS to study maize drought tolerance. a The
phenotyping platform and experimental design. Left, the growth of the maize population under WW and
DS conditions at D52 in greenhouse; middle and right, the capture of images with RGB, hyperspectral (HSI)
and CT scanners under WW and DS conditions at different time point (D25-D98). b HSI, CT, and RGB image
analyses and i-traits calculation with pipelines developed in this study. The details of these pipelines are
shown in Additional file 9: Note S2 and Additional file 3: Video S2; Additional file 4: Video S3; Additional
file 5: Video S4. All the images, phenotypic data, and genotype data are publicly available for reuse with the
link: https://doi.org/10.6084/m9.figshare.14429003.v1. c A procedure showing the drought-related i-traits
filtering and determining, GWAS, and candidate gene identification / validation
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the growth period with or without drought stress, and the middle number of H2 of

these i-traits was 0.4 (Fig. 2f, Additional file 10: Figure S2).

Genetic basis of i-traits in maize drought response

We performed GWAS of 10,080 i-traits with a mixed linear model (MLM) to detect

significant SNP-trait associations. More than 2989 (29.6% of 10,080) i-traits had at least

one significant associated SNP (P ≤ 1.8 × 10−6). We identified a total of 4322 distinct

significant SNPs associated with 2989 i-traits (Additional file 1: Table S6 and 7). More

significant SNPs (2378, ~ 55%) were detected with ratio i-traits as compared to those

with i-traits from WW (972, ~ 22.5%) or DS (849, ~ 19.6%) conditions alone

Fig. 2 General analyses of i-traits. a–c Examples showing the levels of RGB-derived (TPA, a), HSI-derived
(dT233, b), and CT-derived (Hollow_area_700, c) i-traits, which effectively indicated the levels of drought
stress at different time points. PCA of RGB-derived (d) and HSI-derived (e) i-traits collected at time points
D34, D40, D46, and D52. f Broad heritability (H2) of all RGB-derived and top 60 HSI-derived i-traits. More
detailed H2 information is shown in Additional file 10: Figure S2. WW, well-watered; DS, drought-stressed; D,
days after sowing
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(Additional file 10: Figure S3a, Additional file 1: Table S7). Each SNP explained 5.3–

22.6% of the observed phenotypic variance of the i-traits. The SNPs associated with

CT-derived i-traits explained more phenotypic variance on average as compared to

those with RGB and HSI-derived i-traits (Additional file 10: Figure S3b and c), suggest-

ing either less complex genetic architecture or highly enriched diversity, both quantita-

tively and qualitatively, of CT-derived i-traits. We mapped the significant SNPs onto

the maize chromosomes at 200-kb intervals (100 kb upstream and downstream of the

significant SNP), and the mapped intervals were defined as QTLs controlling maize

drought tolerance. In total, 1529 QTLs were identified (Additional file 1: Table S8). Of

these, 71.4% (1092/1529) were co-localized with previously reported QTLs (Additional

file 1: Table S9) [9, 29–31].

We extracted the candidate genes based on the significant SNPs, whose average

LD decay in AMP used in this study have been reported to be 0.5 kb, reaching

single-gene resolution [25]. In total, 2318 unique candidate genes related to 4322

significant associations were identified and annotated (Additional file 1: Table S7).

Of which, only 95 genes (~ 4.1%) were consistently detected in two or more types

of i-traits (Additional file 10: Figure S4a). Based on the genes and i-traits, we built

a gene-trait network, in which the genes that involved in the same biological path-

way were gathered in a group (Fig. 3a). This network would facilitate candidate

gene identification and its function elucidation. We found that very few pathways

were shared by genes associated with three types of i-traits, and many unique path-

ways were detected for genes associated with HSI-derived or RGB-derived i-traits

(Fig. 3a, Additional file 1: Table S10 and Additional file 10: Figure S4a). For in-

stance, although MAPK (mitogen-activated protein kinase) signaling and BR (Bras-

sinolide) signaling pathways were shared by genes from HSI and RGB i-traits,

several pathways, such as one carbon pool by folate, RNA degradation, and trypo-

phan metabolism were unique to genes detected with RGB i-traits, and many other

pathways, such as ABA signaling pathway, sugar metabolic pathway, and inositol

phosphate metabolic pathway, were specific to genes associated with HSI-derived i-

traits (Fig. 3b, c, Additional file 10: Figure S4b-d). These results indicated different

genetic controls of these i-traits in drought responses. Further example of insights

based on the data integration are shown below with case studies to ZmcPGM2 and

ZmFAB1A in regulation of i-traits and drought tolerance.

The candidate genes were significantly enriched in GO terms response to different

stimuli or stresses, suggesting the importance of these candidate genes in maize

drought/stress responses (Additional file 10: Figure S5, Additional file 1: Table S11).

GWAS showed that many genes were significantly associated with previously published

drought-tolerant phenotype survival rates (SR) of AMP [12] (MLM, Additional file 1:

Table S1, Additional file 1: Table S12). Permutation assay showed that there were

enriched most significant P values of these candidate genes as compared to those from

randomly selected genes (Pt.test = 9.11e-287, Ppermutation < 0.0001, Fig. 3d), suggesting

that these associations are not false positive but real associations. Moreover, 25 previ-

ously identified drought-tolerant genes were detected in our candidate gene set

(Additional file 1: Table S13). Taken together, these results indicated that the candidate

genes were reliable and that the i-trait-based GWAS was powerful in mapping

drought-responsive QTLs and causal genes.
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Fig. 3 Associations from I-trait-based GWAS and analysis of the candidate genes. a Gene-trait network
showing the distribution of candidate genes and the clustering of genes enriched in the same pathways. I-
traits and their related network were shown in the bottom layer. Genes and their enriched pathways are
shown in the upper layer. ZmcPGM2 and ZmFAB1A were highlighted. b Genes enriched in the sugar
metabolic pathway. ZmcPGM2 that catalyzes the invertible step of Gluc-6P to Gluc-1P was highlighted. c
Genes enriched in inositol phosphate metabolic pathway. ZmFAB1A that catalyzes the step of PtdIns3P to
PtdIns(3,5)P2 was highlighted. d Density plot showing the P value distribution of most significant SNPs of
the candidate genes and randomly selected genes. Ten thousand times of permutation tests with randomly
selected genes were performed and compared to the candidate genes. e Number of i-traits associated with
candidate genes
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Transcription factors (TFs) play key roles in plant drought tolerance [32]. In our GWAS

results, there are 165 genes (7.1% or 165/2318) encoding TFs of 41 families, of which the

NAC (14 genes) and AP2/EREB ERF (12 genes) TF families, which are well-known to

control plant drought tolerance [32], were the families with the most members

(Additional file 1: Table S14). The well-studied TF genes ZmNAC111

(GRMZM2G127379), Zmhdz10 (GRMZM2G041127), ZmDREB2A (GRMZM2G006745),

and ZmDREB2.7 (GRMZM2G028386) [10, 11, 33, 34] were all detected by GWAS in this

study. For example, ZmNAC111 positively regulates maize drought tolerance [11]. The

most significant SNP chr10.S_2681198 of ZmNAC111 was significantly associated with

the HSI-derived ratio i-trait ddT136_D46_R (the ratio of second-order derivative of the

725 nm total reflectance under drought stress to second-order derivative of the 725 nm

total reflectance under well-water condition at 46 days after sowing) (P = 1.5 × 10−6,

MLM) (Additional file 10: Figure S6a-d). There were two alleles of chr10.S_2681198.

Plants with allele T had lower ddT136_D46_R levels (P = 1.39 × 10−6, t-test) but much

higher (P = 2.65 × 10−4, t-test) ZmNAC111 expression under DS (Additional file 10:

Figure S6e and f), implying that allele T of chr10.S_2681198 could be a favorable allele in

AMP for regulating maize drought tolerance by enhancing ZmNAC111 expression. These

analyses further suggested the reliability of the candidate drought-tolerant genes.

Functional interpretation of hotspot candidate genes

Next, we identified hotspot candidate genes that associated with no less than 10 i-traits.

In total, 34 hotspot genes were detected (Fig. 3e, Additional file 1: Table S15), of which

29 were associated with HSI-derived i-traits (85% or 29/34). The gene

GRMZM2G028386 (ZmDREB2.7) was associated with 13 HSI-derived i-traits and

encoded AP2/EREBP ERF TFs. ZmDREB2.7 belongs to the AP2 DREB subfamily and

positively regulates maize drought tolerance [10]. The most significant SNP chr1.s_

201957847 in ZmDREB2.7 was significantly associated with HSI-derived i-trait lgA15_

D34_WW (the logarithm of the 434 nm average reflectance under well-water condition

at 34 days after sowing) (P = 7.5 × 10−7, MLM) and 12 other i-traits (Additional file 1:

Table S15, Additional file 10: Figure S7a-d). This most significant SNP showed high

linkage (R2 > 0.93) with two other SNPs in the coding region and the reported

drought-tolerant causal allele, five polymorphic sites in the promoter region (R2 = 1)

[10] (Additional file 10: Figure S7d). Based on the A/T alleles of the most significant

SNP, plants with allele T had higher levels of i-trait lgA15_D34_WW (P = 4.27 × 10−8,

t-test) and higher survival rates (P = 8.10 × 10−11, t-test) after drought stress

(Additional file 10: Figure S7e and f), suggesting that allele T is a favorable allele in

regulation of lgA15_D34_WW levels and maize drought tolerance.

Reactive oxygen species (ROS) are important signaling molecules in stress responses [35].

The membrane protein respiratory burst oxidase homolog D (RbohD) triggers ROS signal-

ing at the very early stage of dehydration (e.g., in ~ 20min) and plays positive roles in sto-

matal closure and ABA signaling [36, 37]. HSP proteins play key roles in maintaining ROS

homeostasis and further in plant drought tolerance [38, 39]. GRMZM2G098167 (HSP20-

like protein) was associated with 258 HSI-derived ratio i-traits and GRMZM2G300965

(ZmRbohD) was associated with 241 HSI-derived ratio i-traits, and both genes shared 34 as-

sociated i-traits (Fig. 3e, Additional file 1: Table S4, Additional file 1: Table S15).
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Intriguingly, all of these i-traits were calculated from the HSI images captured at D34 (the

first time point for HSI imaging) with SM = ~ 20% (Fig. 1a), which was at the early drought

stress stage. Based on these data, we deduced that ZmRbohD could play a key role in initiat-

ing ZmRbohD-dependent ROS signaling initiation, and HSP20-like could function to main-

tain ROS signaling homeostasis in maize drought tolerance.

Identification of the regulatory variants that control the candidate gene expression

The difference in gene expression could originate from changes in local and/or dis-

tant regulation [40]. We next investigated the expression QTLs (eQTLs) that asso-

ciated with the expression of the 2318 candidate genes based on the transcriptome

of 197 lines from 540 association mapping population treated with or without

drought (M. Dai and L. Li unpublished RNA-seq data) [41]. Totally, 54.2% (1257/

2318) of the candidate genes were controlled by 22,546 significant eQTLs (P ≤ 4.2

× 10−8, MLM, Additional file 1: Table S16-18). When the most significant SNP of

an eQTL was located in a 20-kb region (upstream of downstream) of the expres-

sion trait (etrait) gene, this eQTL was defined as a local eQTL; otherwise, it was a

distant eQTL. We found that distant eQTLs were identified for most (~ 63%) can-

didate genes under both WW and DS conditions (Additional file 1: Table S18);

however, the local eQTLs had much larger effects on the expression of the etrait

genes under both WW and DS conditions (Fig. 4a, b), indicating that local varia-

tions have great effect on gene expression regulation.

Among the total eQTLs, the majority (69%, or 15,668/22,546) were dynamic (de-

tected under WW or DS condition), only 31% of the eQTLs were static (detected

under both WW and DS conditions). Similar ratios of dynamic (74%) and static

(26%) eQTLs were observed in distant (17,088) eQTLs (Fig. 4c), indicating vast and

dynamic gene regulatory networks in maize i-trait formation. We took closer look

at the local eQTLs as they averagely have greater effects on gene expression regula-

tion than distant eQTLs (Fig. 4a, b). Totally, 2383 static and 3075 dynamic local

eQTLs were detected based on the gene expression under WW and DS conditions

(Fig. 4c, Additional file 1: Table S18). For instance, very specific and significant

eQTL peaks were constantly detected under WW and DS conditions for genes in-

volved in IAA biosynthesis: GRMZM2G048295 (myb15), GRMZM2G163848 (iap3),

GRMZM2G045404 (ibr5), sugar metabolism: GRMZM2G111324 (ogh17),

GRMZM2G318780 (scs3), GRMZM2G171373 (hk1) and peroxide metabolism:

GRMZM2G162688 (sip), GRMZM5G872256 (gs1). In addition, many significant

peaks were repeatedly detected for genes encoding TFs that regulate multiple bio-

logical processes or stress responses (Fig. 4d). These data strongly indicated that the

local regulatory variations have significant effects on the expression of its own. Dy-

namic significant peaks were detected under DS conditions for genes regulate BR

biosynthesis: GRMZM2G472625 (pk), GRMZM2G012391 (p450), protein phosphor-

ylation: GRMZM2G002100 (mapk6), GRMZM2G146553 (cipk3), heat stress re-

sponse: GRMZM2G428391 (hsp70). Some significant peaks or enhanced

significance of the peaks were detected for TF genes under DS conditions (Fig. 4e).

Therefore, the local regulatory variants of these genes could be more specific for

stress-responsive gene expression regulation in AMP.
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ZmcPGM2 contributed to the diversity of HSI i-trait ddT200_R and maize drought

tolerance via regulating the changes of sugar contents

To further interpret the findings from GWAS, we tested two genes ZmcPGM2 (cyto-

solic phosphoglucomutase) and ZmFAB1A (1-phosphatidylinositol-4-phosphate 5-

kinase or forms aploid and binucleate cells 1) which are annotated in sugar metabolic

pathway and inositol phosphate metabolic pathway, respectively (Fig. 3b,c, Additional

file 10: Figure S8a and b). In Arabidopsis, cPGM proteins regulate starch-dependent

protein synthesis balance and are required for male and female gametophyte function

[42, 43], but they have not been reported in regulation of plant drought tolerance.

The ZmcPGM2 locus (GRMZM2G109383) showed significant (P = 2.57 × 10−7,

MLM) association with i-trait ddT200_D40_R (the ratio of second-order derivative of

the 880 nm total reflectance under drought stress to second-order derivative of the 880

Fig. 4 eQTLs that were associated with the expression of candidate genes. a, b Density plots showing the
explained expression variance by significant local or distant eQTLs under WW (a) or DS (b) conditions. c The
amounts and their percentages of static and dynamic eQTLs from total, distant, or local eQTL groups. d The
local TF eQTLs that constantly detected under both WW and DS conditions. e The local TF eQTLs that
specifically detected or enhanced significance under DS conditions
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Fig. 5 Roles of candidate gene ZmcPGM2 in regulation of i-traits and sugar biosynthesis. a Zoom in on the
view of Manhattan plot of chromosomal 5 region 9.4~12.4 Mb, where there were significant associations of
SNPs with i-trait ddT200_D40_R. b–d Distribution of SNPs (b) in gene model ZmPGM2 (c) and their LD to
each other (d). The most significant SNP chr5.S_10856121 is highlighted with red dots in b. In panel c, filled
black boxes indicate exons and black lines indicate introns of ZmcPGM2. e Plants with the T allele of
chr5.S_10856121 showed significantly higher levels of i-trait ddT200_D40_R than those with the G allele in
the AMP. f ZmcPGM2 gene structure and position of the EMS mutation. g Growth of B73 wild type and
Zmcpgm2 mutant plants under WW and DS conditions. The soil moisture (SM) is shown on the top of the
panels. Bar = 20 cm for all plants shown in this panel. h The levels of i-trait ddT200 in B73 wild type and
Zmcpgm2 mutant plants under WW, DS and ratio (DS/WW) conditions. The arrows and numbers show the
fold decrease or increase in this trait in Zmcpgm2 mutants as compared to those in B73 wild type plants. i
cPGM2 is responsible for reversibly converting glucose-1p to glucose-6p in sugar biosynthesis. Adapted and
edited based on the KEGG database. Enzymes and their abbreviations: phosphoglucomutase (PGM), UTP-
glucose-1-phosphate uridylyltransferase (UGP), UDP-glucose 4-epimerase (UGE), inositol 3-α-
galactosyltransferase (IGT), galactinol-sucrose galactosyltransferase (GSGT), α-galactosidase (GTD), sucrose
synthase (SUS), sucrose phosphorylase (SPP), glucose-1-phosphate phosphodismutase (GPPD), Hexokinase
(HXK), glucose-6-phosphatase (GPP), glucose-6-phosphate isomerase (GPI), invertase (IVT). Arrows indicate
the direction of the reaction. Sugars identified with GC-MS in this study are highlighted in red. j Sugar
contents of B73 wild type and Zmcpgm2 mutant plants grown under WW and DS conditions. k Fold
increase in sugar contents (DS/WW) in B73 wild type and Zmcpgm2 mutant plants. Statistical significance
was determined by Student’s t-test: *P < 0.05; **P < 0.01; ***P < 0.001
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nm total reflectance under well-water condition at 40 days after sowing) (Fig. 5a). The

most significant SNP chr5.S_10856121, which explained 8.4% of the phenotypic vari-

ance (Additional file 1: Table S7), was located in the coding region of ZmcPGM2 and

had strong LD (R2 > 0.76) with four other less significant SNPs (P < 10−4) (Fig. 5b–d).

There are two alleles of SNP chr5.S_10856121 and plants in the maize population with

T allele had higher levels of ddT200_D40_R than plants with the G allele (Fig. 5e). A

mutant Zmcpgm2, which had a stop mutation at Trp(504) of ZmcPGM2 (Fig. 5f), was

obtained from a maize EMS mutant bank [8]. Zmcpgm2 plants were grown under WW

and DS conditions and the HSI i-traits ddT200 were captured and calculated (Fig. 5g).

We observed that the levels of ratio i-traits ddT200_R were lower in Zmcpgm2

than those in B73 wild type (WT) plants when there was no stress, but the levels

of this i-trait were higher in Zmcpgm2 than those in WT plants when the stress

was more severe (SM ≤ 15%) (Fig. 5 h), demonstrating a role of ZmcPGM2 in

regulation of i-trait ddT200_R.

cPGM reversibly converts glucose-1P to glucose-6P and plays important roles in

regulation of sugar biosynthesis [42] (Fig. 5i). Previous studies showed that ddT200 re-

flects the cellular sugar contents [44]. We investigated the sugar contents of Zmcpgm2

and WT plants treated with or without drought (Additional file 1: Table S19). Under

WW conditions, the main sugars showed lower levels in Zmcpgm2 than in WT plants,

and drought promoted the levels of all these sugars in both Zmcpgm2 and WT plants,

but the changes in all these sugars (ratios of sugar contents under DS/WW conditions)

were much higher in Zmcpgm2 than in WT plants (Fig. 5j, k). These results demon-

strated important roles of ZmcPGM2 in regulation of maize sugar contents and sug-

gested the consistence of ddT200_R with the changes in sugar contents during maize

drought responses.

ZmcPGM2 was also significantly associated with CT i-trait Culm_diameter_700_

D98_R (the ratio of stem thickness under DS/WW conditions), and the most significant

SNPs were chr5.S_10857363 and chr5.S_10858751 (P = 3.46 × 10−7, MLM), which were

completely linked to each other (R2 = 1) and highly linked with Chr5.S_10856121 (R2 =

0.81) (Additional file 10: Figure S8c-f). Plants with allele C had higher levels of Culm_

diameter_700_D98_R than those of plants with allele A (from chr5.S_10857363)

(Additional file 10: Figure S8g). Under WW conditions, the levels of i-trait Culm_diam-

eter_700_D98_R in WT plants were higher than those in Zmcpgm2 mutants, but after

severe stress (SM = 15% or 10%), the levels of this i-trait in Zmcpgm2 mutants were

higher than those in WT plants (Additional file 10: Figure S8h-j). The ratios of these i-

traits were larger in Zmcpgm2 mutants than in WT plants under both WW and DS

conditions (Additional file 10: Figure S8k). These results suggested a role ZmcPGM2 in

regulation of relatively higher (~ 10%) maize stem thickness.

ZmcPGM2 expression was inhibited by severe drought stress [45] (Fig. 6a). The SNP

chr5.S_10857363 of ZmcPGM2 was significant associated with maize SR (P = 5.6 ×

10−3, GLM plus 3PCs), and plants with the A allele showed higher survival rates than

those with the C allele [13] (Fig. 6b). These results indicated a role of ZmcPGM2 in

regulation of maize drought tolerance. SNP Chr5.S_10856121 had strong LD (R2 > 0.8)

with four other less significant SNPs (chr5.S_10855874, chr5.S_10855875, chr5.S_

10857363, and chr5.S_10858751). Re-sequencing to the genomic DNA of ZmcPGM2 in

the maize populations did not detect more significant genomic variations. Further
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analyses showed that SNPs Chr5.S_10856121, chr5.S_10857363 and chr5.S_10858751

are synonymous variations, while chr5.S_10855874 and chr5.S_10855875 are located in

ZmcPGM2 3′-untranslated region, and showed significant associations with i-trait

ddT200_D40_R and SR (Additional file 10: Figure S9a-e), indicating that SNPs chr5.S_

Fig. 6 Roles of ZmcPGM2 in regulation of maize drought tolerance. a Expression of ZmcPGM2 in maize
plants grown under WW or DS conditions. DS2-4 indicates different stress levels. b Plants with different
alleles (A/C) of chr5.S_10857363, which showed high LD with chr5.S_10856121 (R2 = 0.81), showed
significantly different survival rates in the maize population. c Comparison of water loss rate between
detached leaves of B73 wild type and Zmcpgm2 mutants. d Growth of B73 wild type and Zmcpgm2 mutant
plants under well-watered (WW) and drought-stressed (DS) conditions followed by re-watering. Bar = 20 cm
for all plants shown in this panel. e Comparison of the survival rates of B73 wild type and Zmcpgm2 mutant
plants after drought stress. f–i Comparison of the photosynthetic rates (f), stomatal conductances (g),
transpiration rates (h), and water use efficiencies (WUE, i) of B73 wild type and Zmcpgm2 mutant plants
after ceasing watering at different time points. Days indicate the time after irrigation ceased. The
embedded graph in (f) indicates the soil moistures (SM) at each time point without irrigation. Statistical
significance was determined by Student’s t-test: *P < 0.05; **P < 0.01; ***P < 0.001. j, k Anthesis-silking
intervals (ASI) of B73 and Zmcpgm2 mutant plants grown under WW (j) and DS (k) conditions. Means with
letters a and b show significantly different by t test (P < 0.05)
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10855874 and chr5.S_10855875 could be the potential causal variants that regulate i-

traits and drought tolerance. We next used Zmcpgm2 mutants to test a possible role of

ZmcPGM2 in maize drought tolerance. Detached leaves from Zmcpgm2 mutants lost

water more slowly than WT leaves under dehydration conditions (Fig. 6c). More

Zmcpgm2 mutants than WT survived after drought stress (Fig. 6d, e), indicating that

Zmcpgm2 mutants were more tolerant to drought and that ZmcPGM2 had a negative

role in maize drought tolerance. Although the photosynthetic rate, stomatal conduct-

ance, transpiration rate, and water use efficiency (WUE) showed slightly higher levels

in WT plants under WW conditions, these indices were significantly higher in

Zmcpgm2 mutants after severe drought stress (SM < 15%) (Fig. 6f–i). We deduced that

the weaker role of ZmcPGM2 promoted higher WUE and photosynthetic rates under

DS conditions, which benefitted maize drought tolerance. The anthesis-silking interval

(ASI) is an important maize flowering trait, the shorter the ASI, the better for pollen

and silk to meet with each other to produce seeds. We observed that the ASIs of

Zmcpgm2 mutants were significantly shorter than those in WT plants under both WW

and DS conditions in the field, indicating that ZmcPGM2 could also play important

roles in flowering regulation.

ZmFAB1A was a key regulator of i-trait dT233_R and maize drought tolerance

The Arabidopsis FAB1A/B regulates the endomembrane homeostasis of pleiotropic

developmental processes and is required for pollen development [46, 47], but their

roles in crop stress responses remain elusive. There were 11 SNPs in the

ZmFAB1A locus (GRMZM2G132373) that showed significant association with i-

trait dT233_D40_R (the ratio of first-order derivative of the 959 nm total reflect-

ance under drought stress to first-order derivative of the 959 nm total reflectance

under well-water condition at 40 days after sowing under DS/WW conditions)

(Additional file 10: Figure S10a-c, Additional file 1: Table S7). The most significant

SNP chr6.S_117795068 (P = 1.51 × 10−6, MLM) explained 7.2% of the phenotypic

variance and had high linkage with 10 other significant SNPs (R2 = 0.9) (Additional

file 10: Figure S10d). Plants with the allele G of the most significant SNP had

higher levels of dT233_D40_R than those with the allele C (Additional file 10:

Figure S10e). A premature stop mutant Zmfab1a, which had a stop mutation at

Gln (409) (Additional file 10: Figure S10f), was obtained to further verify the func-

tion of ZmFAB1A. We grew B73 WT and ZmFAB1A mutant plants under WW

and DS conditions and investigated the i-traits dT233 and dT233_R at different

growth/stress stages (Additional file 10: Figure S10g). The results showed that the

levels of dT233_R were higher in Zmfab1a than in WT plants after slight or severe

drought stress (Additional file 10: Figure S10h-j) and demonstrated that ZmFAB1A

had a role in regulation of i-trait dT233_R.

The expression of ZmFAB1A was increased under severe drought stress (Additional

file 10: Figure S10k). Plants with the G allele had higher survival rates after drought

stress than those with the C allele (Additional file 10: Figure S10l), which suggested a

role of ZmFAB1A in maize drought tolerance. Re-sequencing the genomic DNA of

ZmFAB1A in the maize populations did not detect new significant genomic variations.

Analyses to the 11 significant SNPs (tightly linked to each other, R2 = 0.9) showed that
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4 were synonymous variations and 7 were missense variations, including chr6.S_

117795068 (46Asp/Glu), chr6.S_117795706 (231Asp/Asn), chr6.S_117795706 (592Glu/Val),

chr6.S_117795706 (665Ala/Val), chr6.S_117795706 (1020Pro/Arg), chr6.S_117795706

(1072Met/Thr), chr6.S_117795706 (1112Gln/Pro), which could be potential causative varia-

tions. We further verified the function of ZmFAB1A in drought tolerance and the re-

sults showed that Zmfab1a mutants had higher survival rates than those of WT plants

after drought stress (Additional file 10: Figure S10m and n). Moreover, as compared to

WT plants, Zmfab1a mutants had higher photosynthetic rates, stomatal conductance,

and transpiration rates after drought stress with SM < 20% (Additional file 10: Figure

S10o-q), and higher WUE after severe drought stress (SM = 12%) (Additional file 10:

Figure S10r). Together, these data demonstrated an important role of ZmFAB1A in

regulation of maize photosynthesis, WUE and drought tolerance.

Potential utilization of the candidate genes and i-traits

Genomic selection (GS) is helpful in rapid selection of the superior genetic components

that associated with given phenotypes. Because GS utilizes all genetic makers to predict

the performance of certain candidates in selection, it is therefore a very useful and ef-

fective approach to predict the values of certain genetic makers in breeding [48]. Based

on the i-traits collected in this study, we identified more than two thousands of candi-

date drought-tolerant genes. We performed GS with ridge regression best linear un-

biased predictor (RR-BLUP) [49] and Bayes A (Method) to the candidate genes to see

the accuracy of their certain combinations in selection of AMP drought-tolerant

phenotype survival rates. The randomly selected same amount genes from maize gen-

ome (excluded candidate genes) were used in the control analysis. The results showed

that the selection accuracies of maize drought tolerance by the candidate genes were

significantly higher than those by random genes (Fig. 7a), indicating that these candi-

date genes could be potential genetic markers in drought-tolerant maize selection and

breeding.

To know if the i-traits could be potential biomarkers, we evaluated 1311 ratio i-traits

(DS/WW, with significant trait loci associations) in explaining the phenotypic variance

of survival rates using a linear stepwise regression model. The results showed that up

to 60% of the phenotypic variance in survival rates could be explained by combining 15

i-traits across the 4 time points (Fig. 7b; Additional file 1: Table S20), indicating that

these i-traits could be used as markers to select drought-tolerant maize germplasm.

Interestingly, 53% of these marker i-traits, including the i-trait ddT200 that was associ-

ated with new drought-tolerant gene ZmcPGM2, had wavelengths of 780–1000 nm

(Fig. 5; Additional file 1: Table S20). These 15 marker i-traits were further compared

with four known spectral indexes including red valley reflectance, green peak reflect-

ance, green peak area, and red edge area, which are widely used in agricultural remote

sensing to indicate the chlorophyll or water content, and crop health [50, 51]. The re-

sults showed good correlation of these marker i-traits with the four indexes (Fig. 7c–f).

For example, 58% of the phenotypic variance of red edge area was explained using two

markers A248, ddT200 (Fig. 7f), indicating that these markers reflected the change in

chlorophyll or water content and could be used to dynamically monitor drought re-

sponses and screen for maize accessions with higher drought resistance. The cross-
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validation of the observation for survival rates and four spectral indexes are shown in

Additional file 1: Table S20.

Discussion
The genetic architecture of drought tolerance is complex and controlled by multiple

quantitative trait loci (QTLs) with small effects, and the traditional phenotyping of

drought tolerance is still a bottleneck of genetic studies [15, 52]. In this study, we used

HSI, CT, and RGB imaging systems to obtain high-dimensional i-traits of a big maize

population. Most of these i-traits effectively reflected the dynamic responses of maize

to drought. PCA analyses indicated that HSI-derived i-traits were better than RGB or

CT-derived i-traits at reflecting the drought responses in the seedling stage (Fig. 2,

Additional file 10: Figure S1d-f). It has been reported that metabolites, especially sec-

ondary metabolites, are extremely tissue-specific and drought-sensitive [53–55]. The

HSI-derived i-traits might largely reflect the maize metabolite levels during drought re-

sponses. As proof of concept, the HSI-derived i-trait ddT200_D40_R (the ratio of

second-order derivative of the 880 nm total reflectance under drought stress to second-

order derivative of the 880 nm total reflectance under well-water at 40 days after sow-

ing) was mainly associated with sugar content (Fig. 5), and a previous study has indi-

cated the associations between metabolites and hyperspectral signatures [56].

Combining metabolite profiling and HSI-derived i-traits analyses would be helpful to

further reveal the biochemical and biological roles of these i-traits in plant drought

tolerance.

Previously, the RGB-derived i-traits have been used to reveal the genetic basis of

drought responses in rice [20]. According to our analyses in maize, very few candidate

Fig. 7 Prediction of maize drought tolerance by candidate genes and i-traits. a Drought tolerance selection
accuracies by different amounts of candidate and random genes with RR-BLUP and Bayes A models (see
“Materials and methods”). The significances were determined by t test: ***, P < 0.001. b Survival rate
predicted by combining 15 i-traits across the 4 time points. c–f Prediction of four known spectral indexes:
red valley reflectance (c), green peak reflectance (d), green peak area (e), and red edge area (f), respectively
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genes (~ 4.1%) were simultaneously detected with GWAS in RGB-derived, HSI-derived,

or CT-derived i-traits (Fig. 3a). In addition, there were distinct pathways where the can-

didate genes associated with different i-traits were enriched in (Fig. 3a–c, Additional

file 10: Figure S4). These data indicated tremendous difference in genetic control of

these three types of i-traits. Moreover, the genes that were associated with HSI-derived

i-traits represented the majority of the candidate gene sets detected in this study. These

observations together suggested the necessity and importance of using different optical

imaging methods and pipelines to extract dynamic i-traits in order to get broader and

deeper insights into crop drought responses. To our knowledge, this is the first study

using HSI and CT-derived i-traits to track plant internal drought responses in a large

crop population. Our data thus represent the comprehensive data sets reflecting both

internal (HSI, CT i-traits) and external (RGB i-traits) drought responses of big crop

populations. In this study, the majority of the candidate genes were identified with ratio

i-traits, including some genes with known roles and two novel drought-tolerant genes

ZmcPGM2 and ZmFAB1A (Figs. 5 and 6, Additional file 10: Figure S10), indicating the

strong power of these i-traits in mapping drought-tolerant genes via GWAS. The pos-

sible reason is that these ratio i-traits are enriched with more phenotypic variance, both

qualitatively and quantitatively, in response to drought. The data of our study demon-

strate that multiple imaging (i-trait)-based GWAS is a powerful and promising

approach to dissect the genetic architecture of drought-tolerant traits. This approach

could be also suitable for studying the complex traits of other crops. However, it is

worthy to note that rare alleles have been reported to play important roles in regulation

crop agronomic traits, including grain yield and disease resistance [57, 58]. We used

the SNP markers with minor allele frequency no less than 0.05 for GWAS to lower the

noise effect; therefore, some rare alleles important for maize drought response might

not be detected based on the current maize panel. New populations and statistical

approaches need to be developed to study these rare alleles in crop drought responses.

Sugars are very sensitive to drought and ensure the carbohydrate supply from source

to sink tissues during the stress [59]. Many sugars respond to drought at very early

stage and function as signal molecules, thus have important roles in plant drought tol-

erance [59–61]. Enhanced expression of some sugar synthetic genes, or application of

exogenous sugars promoted plant drought tolerance in terms of growth and yield [62],

suggesting that absolute sugar contents of plants play positive roles in drought toler-

ance. Our study of ZmcPGM2 demonstrated another scenario of sugar role in plant

drought responses, that is, the relatively elevated sugar contents (increased ratio of

sugar contents, DS/WW) were also important for the fitness of maize to drought

(Figs. 5 and 6). Therefore, this index (relatively elevated sugar contents) could be used

as potential and new physiological marker to identify drought-tolerant maize germ-

plasms. This notion was further evidenced by the involvement of i-trait ddT200_D40_R

(reflecting ratio change of sugar contents), together with few other i-traits, in prediction

of maize drought tolerance (Fig. 7). EMS mutagenesis has been widely used to generate

plant materials not only for functional studies but also for plant breeding [8]. Previous

studies have suggested a breeding strategy for crop drought tolerance: breeding for

higher drought tolerance could simultaneously select shorter plants [15]. The EMS mu-

tant Zmcpgm2 could be useful in maize breeding due to (1) its relative dwarfism but

stronger stems under drought stress (Additional file 10: Figure S8), indicating its
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lodging-resistance; (2) its higher water use efficiency and survival rates under drought

stress, demonstrating its tolerance to drought; (3) its shorter ASI. Zmfab1a mutants

showed similar phenomena (Additional file 10: Figure S10), which could also be useful

genetic materials for maize drought tolerance breeding.

Maize was domesticated from its ancestor teosinte 9000 years ago [63]. The

modern maize cultivars have been further improved with many agronomic traits

based on the domesticated landraces [64]. There have been thousands of genes

that play roles in maize domestication and improvement [64, 65]. In this study,

we identified thousands of candidate drought-tolerant genes based on a large-

scale of i-traits, which, to our knowledge, are the biggest amount of maize

dynamic responses to drought detected so far. It has been reported that the sen-

sitivity of modern maize to drought has steadily and significantly increased during

the past decades [66], which could be due to the possible depletion of drought-

tolerant genes in the processes of maize domestication and improvement

(Additional file 10: Figure S11). With the global climate change, the maize yield

loss from drought could be more severe than model predictions [67]. To meet

the environmental sustainability and high yield demands, it has been argued that

taking back the “lost” genes or alleles (the so-called re-domestication), coupled

with precise de novo genetic design, is necessarily required to develop new

varieties with both stress tolerance and high yield potential [68]. The genes and

their natural variations identified in this study could provide invaluable genetic

resources and targets for this purpose.

Materials and methods
Plant materials, growth conditions, and experiment design

As shown in Fig. 1a, an association mapping panel (AMP) composed of 368 diverse

inbred lines [69, 70], with 2 treatments: DS and WW was planted in the RAP [27]

with updated HSI and CT scanners in 2 replicates. Seeds were sown directly in

pots with 4.5 kg soil on March 27, 2017, and the WW group was sown 1 day earl-

ier than the DS group. After sowing, all the plants were watered and then covered

with film which was removed when seedlings emerged. Fertilizing was carried out

at sowing, 3-leaf stage and 10-leaf seedling stage (60 kg of water + 370.68 g of car-

bamide + 330.76 g of potassium dihydrogen phosphate + 94.24 g of potassium

chloride, to be fully dissolved with 150 mL of liquid fertilizer). From the 4-leaf

stage (D25), the DS group was stopped irrigation, the WW group was watering

normally, and the soil moisture (SM) was measured by a DELTA-T Soil moisture

Kit (Delta-T Devices Ltd., UK). As shown in Fig. 1a, the DS conditions are relative

to the WW conditions in this study, with the soil moistures of DS conditions

dropping from 50 to ~ 10%, while with the soil moistures of WW conditions keep-

ing at ~ 50%. At the seedling stage, all the maize accessions were screened at 10

time points for RGB imaging (once every 3 d starting from D25 to D52), and 4

time points for HSI imaging (once every 6 days starting from D34 to D52).

In order to phenotype the dynamic drought response of the AMP during the flower-

ing stage, two replicates of the WW group in the seedling experiment were divided into

one DS group and one WW group, and the drought treatment was the same as for the
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seedling stage. At the flowering stage, the AMP was screened with 3 time points using CT

(once every 7 days starting from D84 to D98). The entire experimental design, inspection

dates, weather conditions, and SM are provided in Additional file 1: Table S21.

Image analysis and trait extraction

After a binary data stream of HSI imaging was acquired for one plant, the binary data

stream was reorganized to 250 hyperspectral images. After image segmentation and

trait calculation, 2000 hyperspectral i-traits, which included total reflectance related

traits, average reflectance related traits, and logarithm related traits, were calculated

(Additional file 1: Table S2, Additional file 9: Note S1 and 2). For each accession, 3 dif-

ferent treatments (DS, WW, DS/WW) were inspected at 4 time points, which resulted

in 24,000 i-traits.

For each RGB scanning of one maize plant, 20 side-view RGB images from 360 angles

were obtained. After image determination with calculation of maximum plant width,

image segmentation, and traits, 67 RGB i-traits were extracted (Additional file 1: Table

S2, Additional file 9: Note S1 and 2). For each accession, 3 different treatments (DS,

WW, DS/WW) were inspected at 10 time points, which resulted in 2010 i-traits.

For each CT scan of one maize plant, one series of 360 X-ray-projected images (step

1°, total angle 1° × 360, ~ 360°) was collected by the high-throughput micro-CT-RGB

system (HCR) [71]. The power of the X-ray source was set to 40 KV and 400 μA, and

the spatial resolution of the HCR was set as ~ 36 μm. After sinogram extracting, image

reconstruction, image segmentation, and calculation of traits, 100 CT traits were ob-

tained (Additional file 1: Table S2, Additional file 9: Note S1 and 2). For each accession,

3 different treatments (DS, WW, DS/WW) were inspected at 3 time points, which re-

sulted in 900 CT i-traits. The HSI, RGB, and CT image analyses were developed using

LabVIEW 2015 (National Instruments, USA) and dynamic link library generated using

Visual Studio 2013 (Microsoft, USA).

Selection of drought-responsive i-traits

After a total of 26910 i-traits were obtained, the drought-related i-traits were selected

using the following steps: (1) First, a 3σ criterion was used to eliminate abnormal data,

which were defined as values greater than the mean value± 3σ. The basic concept of 3σ

or PauTa criterion is to take the given confidence probability 99.7% as the standard

and the triple standard deviation limit as the basis. Any error exceeding this limit is

considered not belonging to the category of random error, but to the gross error. The

measurement value with gross error is called abnormal value, which is eliminated from

the measurement data. (2) After filtering outliers, an independent-samples t-test was

used to select i-traits with significant differences between the DS group and the WW

group, using a 95% confidence interval. (3) Multilayer perceptron (MLP) was used to

sort the i-traits depending on their importance for classification of the DS group and

the WW group. In order to reduce the error due to random results, the multilayer per-

ceptron operation was repeated five times. If the average value of importance of an i-

trait was less than 50%, it would be deleted. (4) Finally, we also checked the heritability

(H2) of the i-traits, which was calculated for each i-trait as follows:
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H2 ¼ σ2G= σ2
Gþσ2e=r

� �

where σ2G is the genotypic variance, σ2e is the error variance, and r is the number of

replications. The i-traits with higher heritability (H2 ≥ 0.2) were retained for further

analysis. The outlier filtering was performed using LabVIEW 2015 (National Instru-

ments, USA). The multilayer perceptron and independent-samples t-tests were per-

formed with SPSS software version 25.0 (IBM, USA). The heritability was calculated

using the lmer function in the lme4 package in the R environment [26] (http://www.r-

project.org/) [72], and heritability screening was implemented with LabVIEW 2015

(National Instruments, USA). The selected RGB, HSI, and CT i-traits are listed in

Additional file 1, Table S3-S5.

Genome-wide association studies

In this study, a genome-wide association study (GWAS) for i-traits was conducted to

test the statistical associations between genotype and phenotype (i-traits) using a mixed

linear model [25, 73, 74] (MLM, Q + K). SNPs with a minor allele frequency (MAF ≥

0.05) in the 368 lines were employed in the association analysis. GWAS was performed

with TASEEL5.0 software [75] using the uncompressed P3D model. In order to control

the type I error rate, the p value of each SNP was calculated and significance was de-

fined at a uniform threshold of p ≤ 1.8 × 10−6 (p = 1/n; n = 558,650, total markers

used) [25]. For each significant i-trait locus, the significantly associated SNP and its cor-

responding candidate gene are reported in Additional file 1, Table S7. Only genes that

had significantly associated SNPs within range of the gene were selected as candidate

genes. If other significant SNPs were identified within 100 kb upstream or downstream

of a significant SNP, these adjacent SNPs were merged. This merging operation was re-

peated until no more SNPs could be merged. The merged area was then designated a

target QTL.

eQTL mapping

In order to determine whether the candidate genes were regulated at the transcriptional

level, GWAS was used to analyze the relationship between the whole genome SNPs

and the expression levels of i-trait-associated candidate genes. In this study, we used

the expression data from 197 diverse inbred lines (from a previous published 540 in-

bred lines for association mapping) under DS and WW conditions, combined with 1.25

million SNPs [41] for GWAS. There are 135 inbred lines of these 197 lines also in-

volved in the 368 inbred lines used in this study. The SNPs used in this analysis have

minor allele frequencies (MAF) ≥ 0.05. The p value of each SNP was calculated and sig-

nificance was defined at a uniform threshold of p ≤ 8.4 × 10−7 (p = 1/n; n = total

markers used). Then, we extended the 10-kb interval between significant SNPs up-

stream and downstream as an eQTL interval. If the candidate gene was within this

interval, it was considered to be cis-regulated; otherwise, it was trans-regulated.

Gene Ontology analysis

GO enrichment analysis was conducted using agriGO [76] (http://bioinfo.cau.edu.cn/

agriGO/index.php [77]. A false discovery rate (FDR ≤ 0.05) was used to identify signifi-

cant GO terms.
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KEGG analysis

The KEGG pathway enrichment analysis was completed in two steps. First, the maize

candidate gene IDs were converted and filtered into Entrez Gene IDs by customized

scripts using gene information (Zea_mays.gene info) from GenBank. Then, the Entrez

IDs were called by the Gene-list Enrichment tool in KOBAS3.0 (http://kobas.cbi.pku.

edu.cn/kobas3) [78] to do KEGG pathway enrichment with the default parameters [79].

The cut-off for significance was P < 0.05. Gene-trait network (Fig. 3a) was implemented

using Gephi [80] (version 0.9.2).

Genome selection analysis

The genome selection analysis was divided into three steps: First, the whole maize gen-

ome genes were divided into two gene pools: the candidate gene pool and the random

gene pool (excluded candidate genes), and the SNP with the most significant associ-

ation with survival rate was selected to represent this gene. Second, different number of

the most significant SNPs (top1, top10, top20, top30, top40, top50, top100, all genome)

were selected for candidate genes. For random genes, SNPs corresponding to the num-

ber of candidate genes were randomly selected each time, and the process was repeated

50 times. Finally, after obtaining all SNPs of the selected genes (MAF ≥ 0.05), the R

package RR-BLUP (http://www.r-project.org/) [72] and BGLR (Bayes A) [81] was used

to predict the survival rates of AMP, 50% of which were used as training and 50% as

testing. In this process, candidate genes were repeated 500 times and random genes

were repeated 10 times. The final results in comparison were based on 500 repeats of

GS analyses for each given number of gene sets. The correlation coefficient r between

the predicted value and the observed value is used to evaluate the accuracy of the

prediction.

Metabolomic study using GC-MS

Leaves of WW and DS B73 wild type and Zmcpgm2 mutant plants were used for the

metabolomic experiments with three biological replicates of each. Leaf samples frozen

in liquid nitrogen were ground in a Mixer/mill (MM400; Retsch) with a steel ball for

30 s at 30 HZ. Fifty milligrams of each sample was extracted with 3:1 methyl tert-butyl:

ether: methanol, v:v, in which 10 μL of 1 mg/mL 13C ribitol was added as an internal

standard [82]. In total, 200 μL of the polar phase for each sample was dried in a Speed-

Vac concentrator without heating. The sample was re-dissolved in 50 μL 20mg/mL O-

methylhydroxylamin hydrochloride (Sigma, Steinheim, Switzerland) in pyridine, vor-

texed, and incubated at 37 °C for 120 min. Then, 70 μLN-methylN-trimethylsily tri-

fluoroacetamide (Sigma, Steinheim, Switzerland) was added to the mixture, vortexed,

and incubated at 37 °C on a shaker for 30 min. The silyl-derivatized samples were ana-

lyzed by GC-MS (7890A-5975C, Agilent, USA).

One microliter was taken from each sample and injected into the GC-MS at 270 °C

in a split mode (50: 1) with helium carrier gas (> 99.999% purity) flow set to 1 mL/min

and separated by a DB-35MS UI (30 m × 0.25 mm, 0.25 μm) capillary column. The

temperature was isothermal for 4 min at 90 °C, followed by an 8 °C per min ramp up to

205 °C, then held for 2 min, and finally ramped up at a rate of 15 °C per min to 310 °C,

held for 2 min. The transfer line temperature was set to 300 °C, and the ion source
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temperature was set to 230 °C. The mass range analyzed was from m/z 85 to 700. Agi-

lent MassHunter Qualitative Analysis (version B06.00) software and Agilent MassHun-

ter Quantitative Analysis (version B.07.01) were jointly used for GC-MS data analyses.

NIST library and in-house database established using authentic standards were used to-

gether for metabolite identification.

Verify the drought resistance of Zmcpgm2 and Zmfab1a

In order to verify the candidate genes’ functions in drought resistance, we ordered EMS

mutants of Zmcpgm2 and Zmfab1a and identified their genotypes by the KASP method

(LGC, UK). The putative target EMS sites of the genes were then sequenced to confirm

the mutation (Additional file 1, Table S22). Homozygous mutants were purified by

backcrossing and were then amplified in Hainan (18° 25′ N, 109° 51′ E).

From late March to early July 2019, we planted Zmcpgm2, Zmfab1a and B73 (wild

type) for i-trait (RGB, HSI, CT) detection. Each genotype was divided into two treat-

ments: DS and WW, with at least 10 pots per treatment. The maize plants were trans-

ferred into the RAP at the 2-leaf stage. Drought treatments and planting methods were

as described above. All the maize seedlings were subjected to RGB and HSI imaging at

4 time points (the average SM under drought stress was 41%, 19%, 15%, and 10% at the

successive time points). At the flowering stage, all maize plants were screened by CT

imaging at 4 time points with at least 5 pots per treatment (the average SM under

drought stress was 45%, 20%, 15%, and 10%, respectively). The inspection dates, wea-

ther conditions, and SM data are provided in Additional file 1: Table S21.

For the survival rate experiment, we planted Zmcpgm2, Zmfab1a, and B73 in autumn

2019. Each genotype was divided into two treatments: DS and WW, with at least 10

pots per treatment in 3 replicates. Irrigation was stopped at the 4-leaf stage, and the

drought treatment was the same as described previously. When the SM reached 10%,

the plants were re-watered, and the survival rate was determined 3 days after re-

watering.

The photosynthesis experiment was conducted in autumn of 2019. After Zmcpgm2,

Zmfab1a, and B73 seeds germinated on a petri dish, they were transplanted into plastic

pots (length × width × height = 42 cm × 32 cm × 15 cm). Each pot was filled with 12.5

kg soil. Fertilizing was performed before transplanting and the 3-leaf stage. The

mutants and B73 were grown in the pots side-by-side, with a total of 18 plants for each

genotype, and there were 3 replicates of each experiment. Before the maize 4-leaf stage,

the pots were planted outdoors. The temperature of the growth chamber was 28 °C and

the light cycle was 12 h light/12 h dark. Drought stress was initiated by ceasing irriga-

tion at the 4-leaf stage. During the drought stress, we used a LI-COR6800 (LI-COR,

USA) to measure the photosynthesis parameters. Every other day, 6 leaves of the

mutant and B73 in each pot were measured starting at 8:30 a.m. After the daily

measurement, we used a DELTA-T Soil moisture Kit (Delta-T Devices Ltd., UK) to

measure SM.

For water loss measurements, leaves were detached from Zmcpgm2, Zmfab1a, and

B73 at the 6-leaf stage and were exposed to air at room temperature. These leaves were

weighed at various time intervals, and the loss of fresh weight (percentage) was used to

calculate water loss rate.
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Data availability

The selected RGB, HSI, and CT i-traits are listed in Additional file 1: Table S3-S5. In

total, 4322 significant SNPs and 2318 candidate genes associated with i-traits are listed

in Additional file 1: Table S7. All the images, phenotypic data, and genotype data are

publicly available for reuse with the link: https://doi.org/10.6084/m9.figshare.14429003.

v1 [83]. The code of CT, HSI, and RGB image analysis pipelines could be downloaded

via the link: https://github.com/fenghuifh2006/Maize-RGB-CT-HSI-program and

https://doi.org/10.5281/zenodo.4690730 [84, 85]. All the figures and supplemental files

could be downloaded via the link: https://doi.org/10.6084/m9.figshare.14412572.v1 [86].

All other reasonable requests for data and research materials are available by contacting

the corresponding authors.
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