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Abstract

Background: Millions of nucleotide variants are identified through cancer genome
sequencing and it is clinically important to identify the pathogenic variants among
them. By introducing base substitutions at guide RNA target regions in the genome,
CRISPR-Cas9-based base editors provide the possibility for evaluating a large number
of variants in their genomic context. However, the variability in editing efficiency and
the complexity of outcome mapping are two existing problems for assigning guide
RNA effects to variants in base editing screens.

Results: To improve the identification of pathogenic variants, we develop a framework
to combine base editing screens with sgRNA efficiency and outcome mapping. We
apply the method to evaluate more than 9000 variants across all the exons of BRCA1
and BRCA2 genes. Our efficiency-corrected scoring model identifies 910 loss-of-function
variants for BRCA1/2, including 151 variants in the noncoding part of the genes such as
the 5′ untranslated regions. Many of them are identified in cancer patients and are
reported as “benign/likely benign” or “variants of uncertain significance” by clinicians.
Our data suggest a need to re-evaluate their clinical significance, which may be helpful
for risk assessment and treatment of breast and ovarian cancer.

Conclusions: Our results suggest that base editing screens with efficiency correction is
a powerful strategy to identify pathogenic variants in a high-throughput manner.
Applying this strategy to assess variants in both coding and noncoding regions of the
genome could have a direct impact on the interpretation of cancer variants.

Introduction
Millions of sequence variants have been identified through genome sequencing of can-

cer samples over the past decades [1]. The ability for us to interpret the functional im-

pacts of these variants on cancer development remains poor. Pathogenic variants were

mostly identified by the association of the variant with disease status, either in families

or in a large cohort of people [2]. However, such information on the carriers of the

variants is often difficult to collect. As a result, many of the genetic variants are classi-

fied as “variants of uncertain significance (VUS)” even though they are in well-known
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cancer genes. For example, for BRCA1 and BRCA2, two genes that are targets for pre-

vention and therapy of several types of cancers [3], more than half of the 5095 and

8010 single nucleotide variants were classified as VUS or “conflicting interpretations” in

the ClinVar database as of January 2020 [4].

In vitro functional assays have been used as important supporting evidence for deter-

mining the pathogenicity of variants [2], yet the method to introduce mutations into

cells has limited their scalability. Most methods utilized exogenous vectors to carry

cDNAs with mutations as transgenes while inhibiting or deleting the endogenous copy

of the target gene [5–7]. These strategies could only assay mutations in coding regions

and the mutations are not tested in their native genomic context. The newly developed

CRISPR-Cas9 system is a way to directly introduce mutations in both coding and non-

coding regions in the genome [8, 9]. Cas9-sgRNA complex could induce DNA double-

strand breaks at target sites, which can be repaired to desired genotype in the presence

of a repair template [10]. Saturated mutagenesis using CRISPR-Cas9 system with

massive synthetic repair templates has been successfully applied for the functional as-

sessment of all the nucleotide variations in 13 of the 23 exons of BRCA1 [11]. However,

this method requires generation of DNA double-strand breaks, which could induce

p53-mediated growth arrest in some cell types [12]. Also, the low ratio of base substitu-

tions to insertion or deletion after the repair [13], and the requirement of synthesis of a

large amount of templates make the saturated genome editing only feasible for rela-

tively small loci.

Base editors, which are usually built by fusing a deoxynucleotide deaminase to a

nuclease-deficient or nickase Cas protein [14, 15], is an efficient way to generate direct

base substitutions throughout the genome without inducing DNA double-strand breaks

[16–20]. Applying cytosine base editors in genetic screens has allowed functional as-

sessment of C→T or C→G mutations in human cells and yeast [21, 22]. In these stud-

ies, the requirement of a protospacer adjacent motif (PAM) limited the targeting scope

of base editing screens. For the canonical SpCas9-based base editors, a PAM sequence

of “NGG” 13 to 17 nucleotides downstream the target site is required for efficient base

editing. Recent development of the SpCas9 variants has relaxed the PAM requirement

to “NGN”, making it possible to evaluate a much larger group of sequence variants in

base editing screens.

However, the variability in editing efficiencies poses a challenge for quantitative func-

tional assessment of variants in base editing screens. In a pooled screen, the change of

sgRNA abundance between two conditions is often used to evaluate the effects of

sgRNAs [23]. Because the activities of sgRNAs to induce an editing event at a target site

are highly variable [24, 25], the functional effect of a mutation could be masked by the

low editing efficiency of its targeting sgRNA. In addition, several bases could be edited

simultaneously in the editing window, but at different frequencies [24, 25], making the

interpretation of sgRNA effects difficult.

In order to account for the variability in editing activities, we developed a framework

to incorporate editing efficiency correction in base editing screens. We demonstrated

that our efficiency correction framework improved the identification of loss-of-function

variants from base editing screens. Applying base editing screens with efficiency correc-

tion, we assessed functional impacts of C·G→T·A or A·T→G·C conversions for about

9000 sites in BRCA1 and BRCA2 genes, and identified 910 variants that have negative
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effects on BRCA1/2 function. These variants include 185 variants that were marked as

VUS or “benign/likely benign” in ClinVar, suggesting the power of the method for de-

termining the functional significance for previously unknown variants.

Results
Base editing screens for loss-of-function variants in BRCA1 and BRCA2 in eHAP human

haploid cells

To test the feasibility for identifying functional variants using CRISPR-Cas9 base edit-

ing screens, we performed a proof-of-concept screen with sgRNAs targeting 927 bases

in BRCA1 and 981 bases in BRCA2 in eHAP cells (Fig. 1a). We chose the eHAP cells

because they are haploid human cells that could facilitate analysis of loss-of-function al-

leles. Reducing the expression levels of BRCA1 or BRCA2 by RNAi in eHAP cells inhib-

ited the cell growth (Additional file 1: Figure S1a-d; Additional file 2: Table S1),

confirming that these two genes are essential in haploid human cells [11, 26].

We selected the cytosine base editor AncBE4max and adenine base editor ABEmax

to generate C·G→T·A or A·T→G·C substitutions, respectively. To confirm their abil-

ities in generating nucleotide variants in eHAP cells, three sgRNAs targeting BRCA1

were used. The sgRNAs were delivered to eHAP cells in lentiviral packaged vectors,

followed by transfection of the EGFP-tagged base editors. After 48 h, we performed

fluorescence-activated cell sorting (FACS) to enrich EGFP-positive cell populations. We

found that all the three sgRNAs generated desired mutations in the endogenous BRCA1

locus in eHAP cells (Additional file 1: Figure S1e). The sgRNA that could generate a

premature stop codon in exon 10 (Q1200*) of BRCA1 reduced cell viability, while the

sgRNA generating only a synonymous variant (Y1509Y) had no impact on cell growth

(Fig. 1b). The sgRNA resulting in a mutation in the BRCA1 C terminal (BRCT) domain

(Y1703C) also had a negative effect on cell viability (Fig. 1b). Consistent with the effects

on cell viability, the relative proportions of the Q1200* and Y1703C variants decreased

after 10 days of cell growth, while that of the synonymous mutation did not change

(Fig. 1c). These results confirmed the feasibility of the base editing assay and set the

basis for high-throughput screens.

For the screen, 1908 sgRNAs targeting BRCA1/2 were designed and divided in four

pools, named BRCA1-CG-NGG and BRCA2-CG-NGG for cytosine base editing, and

BRCA1-AT-NGG and BRCA2-AT-NGG for adenine base editing (Additional file 3:

Table S2). Each library contained about 10% non-targeting sgRNAs as negative con-

trols. For BRCA1-CG-NGG and BRCA2-CG-NGG libraries, we also included 230

sgRNAs that could generate stop codon in essential genes other than BRCA1/2 as add-

itional controls for cell lethality in the screen (hereafter referred as “essential gene con-

trols”). To perform the screen, eHAP haploid cells were infected with each of the four

lentiviral sgRNA libraries at a multiplicity of infection of 0.3 and transfected with the

corresponding base editors (Fig. 1a). We sequenced the sgRNAs on day 10 and day 0 at

a median depth over 2000 and calculated the natural logarithm (ln) ratio of their rela-

tive abundance on these 2 days (Fig. 1a). We performed each screen twice and we

found significant correlations of the ln ratio between replicates (Additional file 1: Figure

S2a-d). As expected, the essential gene controls in the C->T library had an average ln

ratio of less than 0, indicating that they were more likely to be depleted at day 10
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Fig. 1 (See legend on next page.)
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compared to day 0 (Additional file 1: Figure S2e-f). With the adjusted p value less than

0.05, 58 sgRNAs for BRCA1 and 58 sgRNA for BRCA2 were significantly depleted at

day 10 (Fig. 1d–g). Among them, we found 47 sgRNAs that were targeting the SINE/

Alu repeats in the 3′ UTR region of BRCA1/2 [27]. It was reported that base editing on

endogenous transposable elements (TEs) could induce cellular toxicity [28]. Therefore,

all the sgRNAs targeting more than one site in the genome were excluded from further

analysis.

Mapping editing efficiencies and outcomes of sgRNAs

For one sgRNA, base editors may edit more than one nucleotide in its targeting win-

dow, resulting in complex editing outcomes. To associate the effects of sgRNAs to the

functional effects of nucleotide variants, we adapted a high-throughput method to

measure the editing outcomes for the sgRNAs in our library [29, 30] (Fig. 2a, Add-

itional file 1: Figure S3a, b). In this assay, thousands of sgRNAs and their targeted se-

quences including the PAM sequences were paired in plasmids and integrated into the

genomes of HEK293T cells, and the plasmids containing the base editors were trans-

fected subsequently (Additional file 1: Figure S3a, b; Additional file 5: Table S4). We

determined the editing outcomes by sequencing each integrated target sequence at a

median depth of more than 4000. For AncBE4max and ABEmax, the median fractions

of edited reads were 9.6% and 4.6% (Fig. 2b), respectively. The sgRNAs had high vari-

ability on the abilities to modify their targeted sequences, for AncBE4max, the 25%

quantile fraction of edited reads was 2.8% and the 75% quantile fraction was 25.4%

(Fig. 2b). We also observed various levels of co-editing of nucleotides in the editing

window of 4–8 bp for AncBE4max and ABEmax (Additional file 1: Figure S3c, d). For

two consecutively Cs, the fraction of reads with both C edited compared to the reads

with at least one C-edited were between 22 and 82% (Additional file 1: Figure S3c). For

two consecutively As, the fraction of reads with both A edited compared to the reads

with at least one A-edited were between 8 and 18% (Additional file 1: Figure S3d). As a

result, 41.7% of sgRNAs generated more than one editing products with AncBE4max

and 49.7% with ABEmax in the assay (Fig. 2c, d; Additional file 5: Table S4). We then

merged the editing outcome at amino acid level, i.e., all the edited reads leading to the

same amino acid change were counted as the same outcome (Fig. 2a). After merging,

(See figure on previous page.)
Fig. 1 A proof-of-concept screen for pathogenic variants in BRCA1 and BRCA2 using cytosine and adenine
base editors. a Schematic workflow of the base editing screen. sgRNAs targeting all the possible C/G or A/T
bases across the exon regions of BRCA1 and BRCA2 were cloned and delivered into eHAP cells through
lentivirus. After puromycin selection, cells were transfected with base editors and selected by EGFP signals
through fluorescence-activated cell sorting. sgRNA cassettes were PCR amplified from cells at day 0 and day
10 and sequenced. b Cell viability analysis of eHAP cells after base editing with different sgRNAs using CCK-
8 assay. The control group was infected with the sgRNA targeting wild type GFP gene. The three sgRNAs
were expected to generate Q1200*, Y1509Y, and Y1703C mutations, respectively. Error bars represent SEMs
from three independent experiments. c The relative frequency of the substitution variants induced by three
sgRNAs, measured at day 0, day 4, and day 8 after base editing. The frequency was normalized to 100% at
day 0. d–g The essentiality scores (β scores) and their P values reported by the MAGeCK-MLE algorithm for
the four base editing screens: BRCA1-AT-NGG (d), BRCA1-CG-NGG (e), BRCA2-AT-NGG (f), and BRCA2-CG-
NGG (g). The dashed lines indicate P = 0.05. The black dots indicate the sgRNAs targeting the SINE/Alu
repeats. The red dots indicate the sgRNAs that were significantly depleted after base editing (fold change
< 0.8, P < 0.05)
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Fig. 2 (See legend on next page.)
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the fraction of sgRNAs associated with only one or two outcomes increased from 60.2

to 88.8% for AncBE4max and from 64.4 to 83.2% for ABEmax (Fig. 2c,d; Additional file

5: Table S4). We also found that more than 75% sgRNAs had a major outcome that

was supported by over 80% of the editing products (Fig. 2e). Therefore, we defined the

editing result with the highest frequency as the variant associated with an sgRNA (Add-

itional file 6: Table S5). For each sgRNA, we then calculated the editing efficiency as

the fraction of reads with the variant we defined. We observed good correlation be-

tween biological replicates for the editing efficiencies of the sgRNAs (Additional file 1:

Figure S3e, f, Pearson’s r = 0.946 for AncBE4max and r = 0.886 for ABEmax).

To demonstrate that the strategy of introducing the exogenous vectors in HEK293T

could reveal the endogenous editing outcomes, we used a targeted amplicon sequen-

cing assay to directly measure the editing outcomes and efficiencies in the genomes of

eHAP cells. We found a statistically significant correlation between the endogenous

editing efficiencies and the ones on the integrated target sequences (Fig. 2f, g, Pearson’s

r = 0.445 and 0.531 for AncBE4max and ABEmax, respectively). The consistency with

endogenous editing efficiencies may be improved by performing the integrated target

site assay in eHAP cells. The editing efficiencies were also in agreement with the pre-

dicted editing activities of sgRNAs using the recently published editing outcome and ef-

ficiency predictor BE-Hive [25] (Additional file 1: Figure S4a, b, Pearson’s r = 0.455 and

0.454 for AncBE4max and ABEmax, respectively).

Modeling functional scores with sgRNA editing activity correction

To precisely determine the functional effects of variants, we proposed a model to cor-

rect the effects of sgRNA editing activity in our base editing screen (Fig. 3a). For each

variant that is the most frequent product after a sgRNA editing, we assumed that the

observed depletion of the sgRNA is linearly correlated with the editing efficiency for

generating the variant. Specifically, for each sgRNA i in the screen experiment j, the

functional score for the most frequent variant generated by sgRNA i (variant i) in ex-

periment j, βij, can be modeled as:

βij ¼ dij=qi

here dij is the ln fold change of sgRNA i in experiment j, relative to the median ln fold

change of negative control sgRNAs in that experiment. qi is the relative editing activity

for sgRNA i to generate variant i, which can be measured experimentally or predicted

computationally. We also showed that the linear relationship could be approximated

(See figure on previous page.)
Fig. 2 Base editing outcome and efficiency mapping for sgRNAs using genome-integrated target site library
assay. a Schematic of the outcome and efficiency mapping from edited reads in integrated target sites. For
coding regions, the outcome for an sgRNA was determined as the amino acid change with the highest fraction
of reads. For noncoding regions, outcome was defined as the single base change of variants with the highest
fraction of reads. b Editing frequencies at the integrated target sites in cells edited with AncBE4max or ABEmax,
respectively. The orange line represents the median of the fraction of edited reads for all sgRNAs in the library.
c, d Fraction of sgRNAs associated with different number of outcomes before and after merging outcomes at
amino acid level after editing with AncBE4max (c) or ABEmax (d). e Distribution of the major outcome fraction
after editing with AncBE4max and ABEmax. f, g Correlations of editing efficiencies at integrated target sites
measured from the genome-integrated target site library assay and those at endogenous sites determined
from amplicon sequencing for cells edited with AncBE4max (f) or ABEmax (g). Pearson’s correlation coefficients
are shown
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from a simple exponential cell growth model at certain conditions (See “Methods,”

“Modeling functional scores of variants with editing efficiency”).

Consistent with the model, for the sgRNAs that could generate premature stop co-

dons in BRCA1, which may be equivalent to a group of nonsense variants that having

the same β score, we observed an inverse linear relationship between ln fold change

and the relative efficiency of nonsense variant production (Fig. 3b, Pearson’s r = − 0.507,

p = 0.019). Similar trend was also observed for sgRNAs that could generate nonsense

variants in BRCA2 (Fig. 3c, Pearson’s r = − 0.554, p = 0.003).

Using the efficiency correction model, for each sgRNA, we calculated the functional

score for the major outcome generated by that sgRNA (Fig. 3a; Additional file 7: Table

S6). To identify loss-of-function variants, we chose the mixture model of four Gaussian

components to fit the score distributions for each screen (Additional file 13: Supple-

mentary Note 1). For each library, the majority of scores followed a normal distribution

with a mean at about zero, consistent with our assumption that majority of variants

have no impact on BRCA1/2 function. The two subpopulations following distributions

with negative means were likely corresponding to the variants that having deleterious

effects on gene function (Additional file 1: Figure S5a-d). We classified the variants as

“loss-of-function” if their probability belonging to any of the two negative-mean

Fig. 3 Modeling the dependence of sgRNA fold changes on sgRNA activity in base editing screens. a Schematic of
the efficiency correction model for calculating the functional scores. b, c Experimental validation of the negatively
correlated relationship between ln fold change and sgRNA editing activity (the relative editing efficiency for
generating the variant), using a group of sgRNAs that could generate nonsense mutations in BRCA1 (b) or BRCA2 (c).
Pearson’s correlation coefficients are shown
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distributions were more than 0.8 (See “Methods,” “Identification of loss-of-function

variants using Gaussian mixture model” and Additional file 13: Supplementary Note 1).

The equivalent β score cutoffs were − 0.55, − 0.45, − 0.37, and − 0.4 for BRCA1_AT_

NGG, BRCA1_CG_NGG, BRCA2_AT_NGG. and BRCA2_CG_NGG libraries, respect-

ively. In total, 121 and 290 variants were identified as loss-of-function mutations for

BRCA1 and BRCA2, respectively (Fig. 4a–d). We estimated that the FDR for LOF vari-

ants was at a level of 0.2 (Additional file 13: Supplementary Note 1).

As expected, the fraction of loss-of-function mutations in BRCA1/2 was higher in the

“stop gain” group comparing to other groups (52.2% compared to 23.1% in other

groups; Fisher’s exact test, p = 4.9 × 10− 6) (Fig. 4e). Enrichment of deleterious mutations

was also observed in the “splicing” group, which referred to variants within 2 bp of the

exon-intron junction (Fig. 4e). Comparing to the classifications in the ClinVar database,

46.9% of the 49 “pathogenic/likely pathogenic” variants were classified as “loss-of-func-

tion” in our screen [4] (Fig. 4f). The proportions of loss-of-function variants were lower

in the “benign/likely benign” and “variants of uncertain significance” groups, counted as

18.3% and 22.8%, respectively. Our loss-of-function variants overlapped significantly

with previously reports (Additional file 8: Table S7, Fisher’s exact test, p < 0.005). Ten

of our BRCA1 LOF variants were also classified as deleterious variants in a saturated

genome editing [11]. And we identified 8 of the 17 LOF variants in a base editing

screen targeting BRCA1 [21].

To evaluate the performance of our efficiency-corrected model on distinguishing true

loss-of-function variants from other variants, we calculated the sensitivity and specifi-

city of our classification using “pathogenic/likely pathogenic” variants in the ClinVar

database as true positives and “benign/likely benign” variants in ClinVar as true nega-

tives. Compared to MAGeCK, the area under the receiver operator characteristic curve

(ROC-AUC) was higher in our method (0.66 vs. 0.63, Fig. 4g). At a specificity ranging

from 0.8 to 0.9, our sensitivity is about 1.5- to 1.8-fold higher than MAGeCK (Fig. 4g).

These results demonstrated our efficiency correction strategy improved the accuracy

for identification of loss-of-function variants. Filtering out the sgRNAs that had lower

editing activity further increased the sensitivity from 46.9 to 51.4% in our model

(Fig. 4g), suggesting that increasing editing efficiency of base editing may improve the

sensitivity of the screen.

To validate the newly identified loss-of-function variants, we performed cell viability

assays on 10 randomly selected LOF variants, including three nonsense variants (Add-

itional file 2: Table S1, Fig. 4h). For 7 of the 10 LOF sites, treating cells with sgRNAs

resulted in the delayed growth of eHAP cells compared with non-targeting controls

(Additional file 2: Table S1, Fig. 4h). And the level of delayed growth correlated with

the degree of sgRNA deletion in the screen (Fig. 4h, Pearson’s correlation coefficient

r = 0.907, p = 0.0003).

Functional assessment of variants in BRCA1/2 using NG base editors

Having fully established the assay, we next applied the method to assess 7450 bases in

BRCA1/2. We modified seven amino acids in the AncBE4max and ABEmax to generate

base editors AncBE4max-NG and ABEmax_NG that recognizing “NGN” as the PAM

sequence for the screen [18]. We performed the base editing screen experiments in four

Huang et al. Genome Biology           (2021) 22:80 Page 9 of 25



separate pools and measured the editing activities of sgRNAs with genome-integrated

target site library assay (Fig. 5a; Additional files 3 and 6: Table S2, S5). In general,

“NGN” recognizing base editors AncBE4max-NG and ABEmax_NG had lower

Fig. 4 Classification of loss-of-function variants using efficiency-corrected scores. a–d Histograms of score
distributions for variants tested in four screens: BRCA1-AT-NGG (a), BRCA1-CG-NGG (b), BRCA2-AT-NGG (c),
BRCA2-CG-NGG (d). Blue bars represent variants that are classified as loss-of-function variants using
thresholds determined by Gaussian mixture modeling. e Ratio of loss-of-function variants in different
mutational categories. f Ratio of loss-of-function variants within different ClinVar interpretation categories. g
ROC curves for loss-of-function variant classification using our efficiency correction model and MAGeCK. The
orange and light blue lines used 49 “pathogenic/likely pathogenic” variants in ClinVar as true positives and
190 “benign/likely benign” variants as true negatives. The red and blue lines used 37 “pathogenic/likely
pathogenic” variants and 146 “benign/likely benign” variants, after filtering the sgRNAs that had editing
activity lower than 0.2. h Fold change of sgRNAs for 7 loss-of-function variants in the screens, as well as the
fold change of three control variants in Fig. 1b, is plotted against the fold change of cell growth in the cell
growth assays. Pearson’s correlation coefficient is shown. Detailed data for the figure is presented in
Table S1
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efficiencies than “NGG” recognizing base editors AncBE4max and ABEmax, with the

median fraction of edited reads ranging from 1.0 to 3.8% (Fig. 5b; Additional file 1: Fig-

ure S6a,b). Therefore, sgRNAs with low editing activities may not be able to generate a

measurable fold change in this system. After filtering for the sgRNAs that have low

editing activities (scaled activity less than 0.2), we associated 567 variants with negative

effects on the function of BRCA1/2 (Fig. 5c–f), the estimated FDR for these variants

were under 0.1 (Additional file 13: Supplementary Note 1). Among the 713 variants

Fig. 5 Functional screens of 4088 variants in BRCA1/2 using base editors recognizing “NGN” PAM sequence.
a Schematic overview of the base editing screens with “NGN” base editors and efficiency correction. b
Editing efficiencies for AncBE4max-NG and ABEmax-NG base editors measured by the genome-integrated
target site library assay. The orange line represents median of the fraction of edited reads for all sgRNAs in
the library. c–f Histograms of score distributions for variants tested in four screens: BRCA1-AT-NGG (c),
BRCA1-CG-NGG (d), BRCA2-AT-NGG (e), BRCA2-CG-NGG (f). g Fraction of loss-of-function variants among all
the tested variants in different mutational categories
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that were shared between screens using “NGG” recognizing base editors and screens

using “NGN” recognizing base editors, about 74% of them were concordant in func-

tional classification, including 32 loss-of-function variants (Additional file 9: Table S8,

Fisher’s exact test, p = 0.004). As expected, deleterious mutations were enriched in the

“stop gain” and “splicing” group, compared to the synonymous group (Fig. 5g). Among

the 558 loss-of-function variants, 14 of them were reported as “pathogenic/likely patho-

genic” in the ClinVar database, and 101 of them were labeled as VUS or “benign/likely

benign” (Fig. 5h). The sensitivity for identifying “pathogenic/likely pathogenic” variants

was 2.2-fold lower for screens with NG base editors compared to screens with NGG

base editors, likely due to the low efficiency of NG base editors.

Deleterious variants reveal different mechanisms for functional loss of BRCA1/2

Altogether, excluding nonsense mutations, 343 BRCA1 variants and 530 BRCA2 vari-

ants were identified as loss-of-function variants through our base editing screens. The

identified deleterious variants were distributed unevenly across the exons (Fig. 6a,b).

For BRCA1, the fraction of deleterious variants among all the tested variants was as

high as 0.4 in exon 17, which encodes part of the conserved BRCT domain. A group of

variants were clustered in residues constituting the BRCT–BRCT interface, such as

Y1703C, L1705P, and G1706K (Fig. 6c). And mutations such as S1722P and W1837R

may disrupt WXXXS motif in helix α3 domain in the BRCT domain [31] (Fig. 6c). The

clustering of deleterious variants in known functional domain was also observed for

BRCA2. For example, a cluster of them were in the DNA-binding domain (DBD) of

BRCA2, which is responsible for binding both single-stranded and double-stranded

DNA [3]. In structure of the BRCA2 DBD domain, H2623 (mouse H2544) and Y2511

(mouse Y2432) are residues of the helical domain, A2671 (mouse A2592) is a residue

in the OB1 fold, G3076 (mouse G2995) is located on the OB2-OB3 interface. These

four residues are well conserved in more than 5 orthologs [32], and mutations at these

sites may disrupt the interaction of BRCA2 and DNA (Fig. 6d). For example, G3076E

has been confirmed to be a deleterious mutation that could change the homologous re-

combination function in HDR assay [33].

Other loss-of-function variants include the mutations within the canonical splicing

sites that may affect BRCA1/2 function at mRNA level. As shown in Fig. 6e, BRCA2_

G_32971034_NGG induced a G to A mutation that may destroy the acceptor splice site

in exon 26 for BRCA2 (Fig. 6e). These variants may cause aberrant splicing of the

genes.

We also identified many mutations in the untranslated regions of the gene. We found

a high ratio of loss-of-function variants in the first exon of BRCA1, which encode the

5′ UTR region of the gene (Fig. 6a). Variants generated by 32 of the 86 sgRNAs target-

ing the 232 bp 5′ UTR region were classified as loss-of-function for BRCA1. Similarly,

29 of the 87 sgRNAs targeting the 228 bp 5′ UTR region in BRCA2 were identified to

induce functional loss after base editing. Many strong base pairings were predicted by

RNAfold [34] in both 5′ UTRs, which may be responsible for forming secondary RNA

structures for translation regulation and mRNA stability [35] (Fig. 6f,g). For 6 sgRNAs

that inhibited the growth of eHAP cells in a cell viability assay (Additional file 1: Figure

S7), we found that four of them reduced the mRNA levels of BRCA1 or BRCA2
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Fig. 6 Identified loss-of-function variants were in both coding and noncoding regions of BRCA1/2 genes. a,
b Fraction of identified loss-of-function variants among all the tested variants across the exons of BRCA1 (a)
or BRCA2 (b). c Identified loss-of-function variants in the BRCT domains of BRCA1 (PDB code: 1 T29). Variant
positions are shown in green. d Four loss-of-function variants viewed on the mouse BRCA2-DSS1-ssDNA
(PDB code: 1MJE). Residues corresponding to positions of five variants in human are shown in green. e
Schematic of the c.9502-1G>A variant disrupting the splicing acceptor site in exon 26. f, g Secondary RNA
structures predicted by RNAfold for the 232 nucleotide in the 5′ UTR of BRCA1 (f) and the 228 nucleotides
in the 5′ UTR region of BRCA2 (g). The structure is colored by base-pairing probabilities. For unpaired
regions the color represents the probability of being unpaired. Variants identified as “loss-of-function” in our
screen were indicated by arrows. h, i Gene expression analysis after base editing for 6 sites in 5′ UTR
regions of BRCA1 (h) or BRCA2 (i). Expression levels of BRCA1 or BRCA2 in treated group were normalized to
non-targeting control groups. Error bars represent SEMs from 3 independent quantitative PCR experiments
and two-tailed Student’s t tests were used to determine P values. Detailed data for the figure is shown in
Table S1
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(Fig. 6h), suggesting that their associated variants had direct impacts on BRCA1/2 func-

tion through regulation at the mRNA level. One of the four sgRNAs is associated with

a single nucleotide variant in BRCA2 (c.-796C>T), which has been previously reported

in patients with familiar breast and ovarian cancer, yet were classified as VUS in Clin-

Var (Additional file 7: Table S6). Our results suggested that the variant may need to be

re-evaluated for their clinical significance.

Discussion
Identification of pathogenic nucleotide variants in cancer genes have direct impact on

medical management decisions, including cancer risk assessment and personalized

treatment. Here we demonstrated the feasibility of base editing screens in assessing

pathogenicity of variants by assaying 4861 mutations in BRCA1 and BRCA2 genes. We

were able to identify 31 known pathogenic mutations as well as 377 unreported mis-

sense mutations that could negatively impact BRCA1/2 function. These deleterious mu-

tations distributed in both coding and noncoding regions of BRCA1/2.

Due to the large size of BRCA1/2 genes, previous functional assays for variants were

limited to SNVs in a few known functional domains, such as the RING and BRCT do-

mains of BRCA1 [11]. Here we showed that base editing screens could systematically

identify functional variants in all regions by assaying mutations in their native genomic

context. For example, we identified a group of variants clustered in the 5′ UTR of

BRCA1/2. The 5′ UTR region contains key elements for multiple levels of post-

transcriptional regulation [36]. The LOF variants in the 5′ UTR regions may comprom-

ise BRCA1/2 function through different mechanisms. We identified a cluster of BRCA1

LOF variants located in a predicted internal ribosome entry site (IRES), which is a regu-

latory secondary structure that could initiate cap-independent translation. We also

found that several variants in the 5′ UTR regions resulted in reduced mRNA levels of

BRCA1/2. A recent study showed that some variations in the 5′ UTR sequences in-

creased mRNA decay using a high-throughput synthetic reporter assay [35]. It is pos-

sible that these variants we found also altered the stability of BRCA1/2 mRNAs. With

further investigations on these variants, our findings may impact future classification of

variants in 5′ UTRs during genetic testing.

One obstacle in applying high-throughput base editing screens for functional map-

ping of variants was the complex outcomes and variable editing efficiencies of sgRNAs.

Here we addressed the problem by experimentally determining the editing outcome

and efficiency and incorporated them into a model for calculating functional scores.

We have shown that outcome mapping has allowed the association of sgRNA effects

with the correct mutations. We have also shown that the sgRNA depletion readout in-

versely correlated with sgRNA activity and a model with editing efficiency correction

could significantly improve the quantitative scoring of variant effects. With outcome

mapping and efficiency correction, we were able to achieve an over 1.5-fold increase in

sensitivity for identification of loss-of-function variants at a specificity of 80%.

Our efficiency-correction framework is readily applied to identification of LOF vari-

ants in other cancer genes. Genes that are essential in eHAP cells include cancer risk

genes such as PALB2, BARD1, RAD51C, and RAD51D, which have thousands of vari-

ants recorded in ClinVar [4]. About two-thirds of the variants in these genes could be

directly assessed using the same approach presented in this study. For genes that are
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not essential in eHAP cells, base editing screens with the efficiency correction is still

applicable if a proper functional assay is developed to enrich or deplete the LOF vari-

ants. To simplify the workflow, in the future, instead of using empirically determined

editing efficiencies, the in silico-predicted sgRNA activities may be used for editing effi-

ciency correction. It has been shown that the relative activity of sgRNA on editing was

mostly dependent on the sequence of the sgRNA and the interplay with base editors

[25], and machine learning models have been developed to predict the editing activities

and outcomes [25, 37]. It is noted that although efficiency correction is needed for bet-

ter identification of loss-of-function variants in all BE screen experiments, the linear re-

lationship between ln fold change and editing efficiency may not directly apply for

other base editing screens. Other efficiency correction models may be developed under

our framework to improve variant classification.

Although our approach has addressed the problem of variability in guide RNA

editing efficiency, several problems with current versions of base editors set the

limitations for functional assessment of variants using BE screens. First, the target-

ing scopes of base editors are constrained. Only four types of transition point mu-

tations are available for current CBE or ABE base editors. And current versions of

base editors based on Cas proteins still require a PAM sequence, which further

limits the number of sites that could be edited [38]. Second, base editors can mod-

ify more than one nucleotide in the editing activity window, preventing the assess-

ment of some single nucleotide variants. Further, only one sgRNA was used for

each variant, which could lead to low sensitivity for identifying LOF variants. For

the CRISPRi screens, when only one sgRNA was used, it has been estimated that

the sensitivity for identifying essential genes to be less than 0.2 [39]. Moreover, the

low editing efficiency for some of the base editors reduced the sensitivity for iden-

tifying known pathogenic variants, as we have observed for the “NGN” recognizing

base editors in comparison to “NGG” recognizing base editors. In addition, the off-

target effects of base editors are also a potential concern [40–42]. Therefore, base

editors with broader targeting scope, more precision, and higher editing efficiencies

are needed. Recently developed “prime” editor, which uses a reverse transcriptase

and a template RNA sequence in sgRNA to introduce mutations in the genome,

are more precise and less restrained by a PAM sequence [43]. The prime editors

can generate all 12 possible types of point mutations, making it possible for assay-

ing genetic changes at any position of the genome. These developments could

greatly facilitate the high-throughput analysis of variants, which could benefit inter-

pretation of variants in cancer samples for better risk assessment and therapeutic

applications.

Conclusions
In summary, we developed a framework to combine base editing screens with sgRNA effi-

ciency mapping for better functional assessment of variants. Our results demonstrated the

potential of base editing screens for functional mapping of variants, especially for noncod-

ing variants assayed in their native genomic context. The application of the method to

other cancer genes will help the clinical evaluation of variants in cancer.
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Methods
Plasmid construction

PCR primers used in this study are listed in the Additional file 10: Table S9. PCRs were

performed using 2 X TransStart FastPfu PCR SuperMix (TransGen). The digestion en-

zymes were all purchased from Thermo Fisher Scientific. Plasmids were constructed by

Gibson Assembly (NEB) unless specified. The plasmid sequences were all confirmed by

Sanger sequencing.

The four base editor constructs were generated with DNA fragments amplified from three

vectors: pCMV_AncBE4max (Addgene 112094), pCMV_ABEmax (Addgene 112095), and

pLenti-BE3RA-P2A-GFP-PGK-Puro (Addgene 110,868). Specifically, mutations in the SpCas9

protein were introduced using overlap extension PCR to generate NG_SpCas9 base editor

fragments AncBE4max_NG and ABEmax_NG. AncBE4max_NG was then inserted with

EcoRV-digested pCMV_AncBE4max to generate pCMV_AncBE4max_NG. ABEmax_NG

was inserted into pCMV_ ABEmax at EcoRI and EcoRV sites to generate pCMV_ ABEmax_

NG. In order to introduce a selection marker in the base editor constructs, P2A_EGFP were

PCR amplified from pLenti-BE3RA-P2A-GFP-PGK-Puro and assembled with BshTI-

linearized pCMV_AncBE4max, pCMV_ABEmax, pCMV_AncBE4max_NG, or pCMV_ABE-

max_NG to generate AncBE4max_P2A_EGFP, ABEmax_P2A_EGFP, AncBE4max_NG_

P2A_EGFP, and ABEmax_NG_P2A_EGFP respectively.

All CRISPR gRNAs used in this project were cloned into lentiGuide-Puro (Addgene

52963) as described previously [44].

To generate the constructs for measuring editing efficiency using the integrated-

genome target site assay, lentiGuide-Puro was digested by restriction enzymes Esp3I

and SmaI. An insert segment

(ATCTTGTGGAAAGGACGAAACACCGGAGACGGTTGTAAAGCTTGGCGTAA

CTAGATCTTGAGACAAATGGCAGTATTCATCCACAATTTTAAAAGAAAAGGG

GGGATTGGGGGGTACAGTGCAGGGGAAAGAATAGTAGACATAATAGCAACA

GACATACAAACTAAAGAATTACAAAAACAAATTACAAAAATTCAAAATTTTC

GGGTTTATTACAGGGACAGCAGAGATCCACTTTGGCGCCGGCTCGAGGGGG

CCCGGGTGCAAAGATGGATAAAGT) was synthesized using GenPart DNA Synthe-

sis service from the GenScript company. The segment was then assembled with the lin-

earized lentiGuide-puro vector.

Oligonucleotide library design and synthesis

The exon sequences of BRCA1 and BRCA2 were downloaded from NCBI genebank (hg

19) and searched for targetable sites (C or A) within the 13–17-bp window upstream of

an NGG or NG PAM sequence using a custom python script. If multiple sgRNAs were

available for one site, the one farthest to the 5′ of the PAM sequence was selected. In

total, 4034 sgRNAs targeting BRCA1 and 5324 sgRNAs targeting BRCA2 were de-

signed. The off-target sites for each sgRNA were predicted using Cas-OFFinder [45],

without mismatch in protospacer.

Two oligonucleotide libraries containing 4946 and 6149 oligos were designed for the

base editing screen. sgRNAs were divided into 8 subpools according to their targeting

genes and the base editor type for their target sites. A 20-bp barcode sequence desig-

nating the subpool information were arranged at both the 5′ and 3′ end of each sgRNA
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sequence. Each oligonucleotide also consisted of two 20-bp primer sequences at either

end of the barcoded sgRNA sequence for PCR amplification. Five percent and 10%

non-targeting sgRNAs were included as negative control sgRNAs for NG and NGG

pools respectively. In total, 230 sgRNAs that may generate new stop codons in known

essential genes were included in the four pools targeting C bases as additional controls

for the screen.

An oligonucleotide library with 7589 sequences were designed for evaluating the

sgRNA activities using the integrated-genome target site assay. For this pool, each

sgRNA in the base editing screen library was paired with its target sequence and ar-

ranged in one oligonucleotide with the following elements: a 20-bp sgRNA sequence,

an 82-bp sgRNA scaffold, and a 26-bp targeting sequence with a PAM (NGN or NGG)

and 3 bp upstream of protospacer.

The three oligo pools were synthesized on 12 K arrays and purchased from GenScript

company. All the sgRNA sequences and their corresponding oligos are listed in Supple-

mentary information (Additional files 3 and 4: Table S2, S3).

Library construction

The eight libraries for performing the base editing screen was amplified following a

two-step PCR protocol using NEBNext High-Fidelity 2X PCR Master Mix (NEB). The

first PCR step was performed with specific primers for each subpool to amplify oligo

sequences, using 1 ng template for 18 cycles. In the second PCR amplification step, ex-

tension primers were used to remove specific primer regions and amplify protospacer

with assembly homologous arms, using 2 μl first step PCR products for 12 cycles. PCR

products were purified with Zymoclean Gel DNA Recovery kit (ZYMO) for the follow-

ing assembly reactions. The lentiGuide-puro vector was first linearized via Esp3I

(Thermo Scientific), then assembled with purified second step PCR products using

NEBuilder HiFi DNA assembly master mix (NEB).

To generate the library for evaluating the sgRNA activities, 50 ng synthesized oligos

(GenScript) were PCR amplified for 25 cycles using NEBNext High-Fidelity 2× PCR

Master Mix (NEB). The library PCR products were purified using Zymoclean Gel DNA

Recovery kit (ZYMO) and assembled with the editing efficiency constructs linearized

by Esp3I using NEBuilder HiFi DNA assembly master mix (NEB).

The Gibson Assembly products were purified with DNA Clean & Concentrator-5 kit

(ZYMO) and electroporated into MegaX DH10B T1 Electrocomp competent cells

(Thermo Scientific). After growing at 32 °C for 14 h, the colonies were scraped for sub-

sequent plasmid preparation using ZymoPURE II Plasmid Midiprep Kit (ZYMO) ac-

cording to the manufacturer’s instructions.

Cell culture

HEK293T cells were cultured in Dulbecco’s modified of Eagle’s medium (Corning) sup-

plemented with 10% fetal bovine serum (Thermo Fisher Scientific) and 1% penicillin-

streptomycin (Thermo Fisher Scientific), and cells were grown at 37 °C with 5% CO2.

Human eHAP cells (Horizon discovery, #C669) were purchased and maintained in

Iscove’s modified Dulbecco’s medium (IMDM) with L-glutamine and 25mM HEPES

(Thermo Fisher Scientific), also supplemented with 10% fetal bovine serum and 1%

Huang et al. Genome Biology           (2021) 22:80 Page 17 of 25



penicillin-streptomycin. eHAP cells are haploid cells that may revert to diploid states

during cell culture. To sort 1 N-enriched eHAP cell population, cells were stained with

Hoechst 33342 (Merck) at a concentration of 5 μg/ml at 37 °C for 20 min. Fluorescent-

activated cell sorting (FACS) was performed to sort 1 N ploidy according to the lowest

Hoechst peak using a MA900 cell sorter (Sony Biotechnology).

Lentivirus production

HEK293T cells were grown on 150-mm dishes (CORNING) coated with poly-L-lysine

(Sigma) until 90% confluency. For each 150-mm dish, 21 μg of the library plasmids, and

15 μg of psPAX2 (Addgene 12,260) and 6 μg of pMD2.G (Addgene 12,259) were trans-

fected into HEK293T cells using 63 μl of Neofect DNA transfection reagent (Neo Bio-

tech). At 16 h post transfection, the culture medium was changed with viral production

medium (Lonza). Virus supernatant was collected 40 h post transfection, filtered with a

0.45-μm Sterile Filter Unit with Durapore PVDF Membrane (Millipore), aliquoted, and

stored at − 80 °C before use.

Base editing screens

For every library, 12 million eHAP cells were transduced at an MOI of 0.3 in a 150-

mm dish. After 48 h, cells were split into four dishes with puromycin-supplemented

medium (1 μg/ml) for 48 h. Following antibiotic selection, eHAP cells were allowed to

recover for 24 h. One tenth of the cells were collected to use as cells at T0, and the

remaining cells were placed in culture to proliferate 90% confluency. The cells were

transfected with 40 μg base editing vectors using 160 μl FuGENE HD Transfection Re-

agent (Promega). After 48 h, cells were sorted on a SH800S cell sorter (Sony Biotech-

nology) to enrich cells with enhanced EGFP expression. After 10 days, cells were

harvested for genomic DNA sequencing.

Genomic DNA sequencing for sgRNAs in base editing screen

Cells in − 80 °C were thawed and genomic DNA were extracted using DNeasy Blood

and Tissue kit (Qiagen). Sequences of sgRNAs were amplified by a two-step PCR reac-

tion. For each sample, in the first PCR, four separate reactions were performed with a

total of 8 μg genomic DNA as the template. The following primer sequences were used

to amplify sgRNAs:

CriV2-firstround_F: AATGGACTATCATATGCTTACCGTAACTTGAAAGTATT

TCG;

CriV2-first round_R1:

GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTACTGACGGGCACCGGA

GCCAATTCC.

In the second PCR, two separate reactions were performed using 2 μl first reaction

product as the template. The following primers were used to add sequencing adaptor

and index sequences:
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Cri_library_F: AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACAC

GACGCTCTTCCGATCTTCTTGTGGAAAGGACGAAACACCG;

HiSeq_Index: CAAGCAGAAGACGGCATACGAGATNNNNNNGTGACTGGAGTT

CAGACGTG (NNNNNN represents a 6 bp index).

Amplification was performed with 20 cycles for the first step PCR and 10 cycles for

the second PCR using NEBNext High-Fidelity 2× PCR Master Mix (NEB). The PCR

products were purified with Zymoclean Gel DNA Recovery Kit (ZYMO) and quantified

by Qubit dsDNA High Sensitivity kit (Life Technologies). Sequencing was performed

on an Illumina Hiseq X Ten.

Integrated-genome target site library assay for outcome and efficiency mapping

HEK293T cells were transduced with lentivirus from the sgRNA activity library at an

MOI of 0.5. At 48 h post-infection, cells were selected with 1.5 μg/ml puromycin for 2

days to enrich the transduced cells, which were then transfected with the four base edi-

tors, AncBE4max_P2A_EGFP, ABEmax_P2A_EGFP, AncBE4max_NG_P2A_EGFP, or

ABEmax_NG_P2A_EGFP, respectively. EGFP-positive cells were collected using FACS

and the genomic DNA (gDNA) was isolated using the Blood & Cell Culture DNA Midi

Kit (Qiagen). To identify the sgRNA inserts and the matched integrated-genome target

sites, we performed 22 separate PCR reactions (3 μg gDNA/ 50 μl reaction volume) for

each sample with NEBNext High-Fidelity 2× PCR Master Mix (NEB) and combined the

amplicons. The amplicons were gel purified with Zymoclean Gel DNA Recovery Kit

(ZYMO) and sequenced on a Hiseq Xten platform. Primers containing both Illumina

adaptor and barcode sequences are listed in Additional file 10: Table S9.

Targeted amplicon sequencing for endogenous editing efficiency mapping

eHAP cells were placed in 10-cm dishes to proliferate to 80% confluency and then

transfected with the 10 μg sgRNA libraries and 20 μg base editors using 120 μl FuGENE

HD Transfection Reagent. After 48 h, cells were sorted on Sony SH800S to enrich cells

with EGFP expression. Genomic DNA was extracted and amplified using a custom

panel targeting all exons in BRCA1/2 (Genetronhealth), and sequenced on X Ten with

a median average depth of 50,000. After removing low-quality bases and sequencing

adapters by Trimmomatic (0.33) [46] with parameters: “TRAILING:3 SLIDINGW

INDOW:4:15 MINLEN:36,” clean sequencing reads were aligned to reference sequences

consisting of the full length of BRCA1 and BRCA2 genes (hg19), by using BWA mem

(0.7.10) [47]. Variant detection was performed according to the pileup format file gen-

erated by Samtools mpileup (1.3.1). The endogenous editing frequency was calculated

using the same formula as that for “fk” in “Editing outcome and efficiency mapping

using data from integrated-genome target library assay.” Sites with significantly higher

mutation frequency in the edited samples than in the control samples were retained.

BRCA 1/2 essentiality test with RNAi in eHAP cells

Sequences of two BRCA1 targeting siRNAs and two BRCA2 targeting siRNAs are as

follows: BRCA1–2: CCACACGATTTGACGGAAA, BRCA1–3: CTACTCATGTTGTT

ATGAA. BRCA2–1: TAAATTTGGACATAAGGAGTCCTCC, and BRCA2–2:
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GAAGAACAATATCCTACTA. On day 1, 5 × 105 eHAP cells were plated on 6-well

dishes until 60% confluency, and 3 μl siRNAs (20 μM) were transfected into cells using

Liopofectamine RNAimax Reagent (Invitrogen).

Twenty-four hours after transfection, 1000 cells were plated on a 96-well plate, and

the remaining cells were harvested to extract total RNA. First-strand cDNA synthesis

was performed with SuperScript® III First-Strand Synthesis SuperMix (Thermo Fisher

Scientific) with 2 μg total RNA as template. Quantitative Real-time PCR was performed

on RocheLightCycler480 with 1 μl reverse transcription products. GAPDH was used as

the internal control. The primer sequences used were as follows:

BRCA1-qPCR_F: GTCCCATCTGTCTGGAGTTGA;

BRCA1-qPCR_R: AAAGGACACTGTGAAGGCCC.

BRCA2-qPCR_F: AAGCACTCCAGATGGCACAAT;

BRCA2-qPCR_R: TCTTGACCAGGTGCGGTAAAA.

For cell viability assay, 1000 eHAP cells were plated into 96-well plates and then cul-

tured for 4 days at 37 °C with 5% CO2. Each well was added 100 μl medium of CCK-8

solution (Dojindo) and IMDM, mixed at 1:10 ratio. The absorbance value was mea-

sured in a microplate reader FlexStation 3 (Molecular Devices) at 450 nm.

Cell viability assays for validating sgRNA functional effects

eHAP cells were infected with lentivirus containing sgRNAs targeting BRCA1/2 and se-

lected by puromycin for 2 days. For each sgRNA functional validation experiment, 4 ×

106 eHAP cells were transfected with the Neon Electroporation System for four times.

For each electroporation, a mixture containing 1 × 106 eHAP cells resuspended in Buf-

fer R and 4 μg base editor expressing vectors were electroporated at 1350 V with 4

pulses of 10 ms. All the electroporated cells were combined and plated in a 10-cm dish.

Twenty-four hours after electroporation, cells were sorted by Sony SH800S to enrich

EGFP expressing population and cultured for another 24 h. Then 1000 cells were plated

into 96-well plates for CCK-8 assay. Each assay was performed in triplicate and each

experiment was repeated 3 times. For Sanger sequencing, targeting site flanking se-

quence was amplified, and the substitution frequency was analyzed by BEAT [48].

Base editing screen fold change analysis

The sequencing reads were mapped and the read count for each sgRNA was calculated

by MAGeCK (0.5.9.2) [49]. The sgRNA counts were then normalized through a

median-of-ratio method using a normalization constant wj, which was estimated as the

geometric mean of the read counts for all the negative control sgRNAs in the screen j.

The fold change of sgRNA i was then calculated as normalized read count for sgRNA

at day 10 (Cij) divided by the normalized read count at day 0 (Sij).

Editing outcome and efficiency mapping using data from integrated-genome target

library assay

Illumina sequencing raw reads R1 and R2 were first merged by SeqPrep with the fol-

lowing parameters: “-M 0.1 -m 0.001 -q 20 -o 20.” The reads were then aligned to the
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scaffold sequence (gttttagagctagaaatagcaagttaaaataaggctagtc-cgttatcaacttgaaaaagtggcacc-

gagtcggtgctttttt) using bwa mem (0.7.10) with the parameters -k 4 and -M. Reads con-

taining the scaffold sequence were extracted using pysam package with the following

criteria: the number of mismatch bases less than or equal to 3, mapping quality score is

equal to 60, and the flag value is equal to 0. The sgRNA and its targeting sequence was

extracted as the 20 bases upstream and downstream of the scaffold sequence, respect-

ively. To eliminate reads with unmatched guide RNA and target sequence, the string

similarity was calculated between the guide RNA and target sequence in each read. The

reads with Jaro Distance less than 0.75 were considered as result of recombination dur-

ing library preparation and were removed from the library data. The remaining se-

quences were clustered with the designed sgRNA library using CD-HIT (4.6.8) [50] at a

threshold of 0.85. Each clustered read group was assigned to one designed guide RNA

based on the number of mismatch bases and the consistency of PAM sequence using

an in-house Python script. For each group, a read was counted as an edit event if a pos-

sible base transition was observed at any of the nucleotide in the editing window of the

target sequence. The possible base transitions include AT to GC for ABE and CG to

TA for CBE. For each possible editing result k, the fraction of k (fk) was calculated

using the following formula:

f k ¼ mean
Rkj −Djhc
Dj −Djhc

� �

Here, Rkj is the number of reads with the editing result k in edited sample j, Dj is the

total number of reads in sample j, and hc is the background error frequency for editing

result k. hc is calculated as the mean fraction of reads with mutations as in editing re-

sult k in the control samples.

The editing results were annotated by ANNOVAR [51] using transcripts NM_

007294.3 and NM_000059.3 for BRCA1 and BRCA2, respectively. The editing results

with the same amino acid changes were merged, and the editing outcome was defined

as the editing result with the highest fraction of reads. sgRNAs having editing outcome

with coverage less than 30 reads or frequency below 0.005 in both replicates of the

genome-integrated target site assay were removed for further analysis. For the conveni-

ence of comparison, each sgRNA was assigned to a specific mutational type according

to their annotation, including UTR, splicing, stop gain, nonsynonymous, and synonym-

ous. If multiple amino acid changes were induced in one editing outcome, we selected

the mutational type in the following order: stop gain > splicing > nonsynonymous >

synonymous.

Modeling functional scores of variants with editing efficiency

For N base editing screens, for each of the M sgRNAs in one screen, Cij, the normalized

read count of sgRNA i at the end of experiment j, comes from two populations of cells,

the edited cells with the most frequent variant generated by sgRNA i (denoted as vari-

ant i), and the cells without the variant i. Suppose the cell growth is exponential, Cij

can be described in the following formula;
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Cij ¼ Sijpije
b jþ f ijð Þ þ Sij 1 − pij

� �
eb j ð1Þ

Here Sij refers to the sequencing depth normalized initial read count of sgRNA i in

sample j, pij refers to the percentage of cells with the variant i in experiment j. bj is the

growth factor for experiment j, and fij refers to the functional impact of variant i have

on cell growth in experiment j. From (1) we have:

ln Cij=Sij
� � ¼ bj þ ln 1þ pij e

f ij − 1
� �� �

Here bj can be estimated from all the negative controls in the experiment j:bbj ¼ median ð lnðCkj=SkjÞ) for k = 1, …, K in K negative control sgRNAs.

With dij = lnðCij=SijÞ − bbj, we have

dij ¼ ln 1þ pij e
f ij − 1

� �� �
ð2Þ

here 0 < pij < 1, when pijðe f ij − 1Þ is small, lnð1þ pijðe f ij − 1ÞÞ is approximately equal to

pijðe f ij − 1Þ: Thus we have:

dij ¼ pij e
f ij − 1

� � ð3Þ

Here the percentage of cells with the variant i pij can be described by

pij ¼ qil j

where qi is the relative activity of sgRNA i for generating the variant i, which can be

measured separately from our editing efficiency experiment j. lj is the efficiency term

determined by factors other than sgRNA target site sequence in the experiments, such

as the base editor expression level and base editor activity. For the same screen, lj is

equal for all the sgRNAs used in the screen. For our analysis, lj is typically not esti-

mated and denotes an experiment-specific constant.

Then we define the functional score βij for variant i as βij ¼ l jðe f ij − 1Þ. We have the

following formula for calculating the functional score βij:

dij ¼ qiβij ð4Þ

This linear relationship implies that dij is also proportional to e f ij , which in turn de-

pends on the approximation in (3). Our data is largely consistent with the linear rela-

tionship and not sensitive to departure from the approximation in (3) (see “Results”).

Calculating functional scores for variants with editing efficiency correction

To perform editing efficiency correction with the model, the following steps were

taken: First, sgRNAs having editing outcome with coverage less than 30 reads or

frequency below 0.005 in both replicates of the genome-integrated target site assay

were removed. Second, the average efficiency of the two replicates for each editing

outcome was calculated as the measured efficiency. Third, the outcome and corre-

sponding efficiency of all sgRNAs were predicted with BE-Hive [25]. Fourth, the

BE-Hive predicted and measured efficiency of editing outcomes were then quantile

normalized to each other, and the corrected measured efficiency value was assigned

to each editing outcome. For the outcome with no measured efficiency, the BE-
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Hive predicted efficiency value was assigned. Fifth, the efficiency values for all the

editing outcome were linearly scaled to the range of 0 to 1. Finally, the β score

was calculated according to formula (4).

Identification of loss-of-function variants using Gaussian mixture model

A four-component Gaussian mixture model was used to fit the distribution of func-

tional scores for classification of loss-of-function variants. The mixture.GaussianMix-

ture function in the Python package “sklearn” was used to train the model, and the

parameter “n_components” was set to 4. The fitted model consisted of four Gaussian

nuclei, one of which had a mean value near 0, two of which had negative mean values,

and one had positive mean value. The summed probability of a variant i with the score

βi been classified to any of the two distributions that having negative mean value was

calculated as Pi.

The Wald test was used to calculate the significance of β scores, by comparing the

value of mean of β score
standard error of β score to a standard Normal distribution. The p values were cor-

rected with the Benjamini & Hochberg method [52].
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