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Abstract

Background: Deregulated gene expression is a hallmark of cancer; however, most
studies to date have analyzed short-read RNA sequencing data with inherent
limitations. Here, we combine PacBio long-read isoform sequencing (Iso-Seq) and
Illumina paired-end short-read RNA sequencing to comprehensively survey the
transcriptome of gastric cancer (GC), a leading cause of global cancer mortality.

Results: We performed full-length transcriptome analysis across 10 GC cell lines
covering four major GC molecular subtypes (chromosomal unstable, Epstein-Barr
positive, genome stable and microsatellite unstable). We identify 60,239 non-
redundant full-length transcripts, of which > 66% are novel compared to current
transcriptome databases. Novel isoforms are more likely to be cell line and subtype
specific, expressed at lower levels with larger number of exons, with longer isoform/
coding sequence lengths. Most novel isoforms utilize an alternate first exon, and
compared to other alternative splicing categories, are expressed at higher levels and
exhibit higher variability. Collectively, we observe alternate promoter usage in 25% of
detected genes, with the majority (84.2%) of known/novel promoter pairs exhibiting
potential changes in their coding sequences. Mapping these alternate promoters to
TCGA GC samples, we identify several cancer-associated isoforms, including novel
variants of oncogenes. Tumor-specific transcript isoforms tend to alter protein coding
sequences to a larger extent than other isoforms. Analysis of outcome data suggests
that novel isoforms may impart additional prognostic information.

Conclusions: Our results provide a rich resource of full-length transcriptome data for
deeper studies of GC and other gastrointestinal malignancies.

Keywords: Gastric cancer, Alternative splicing, Alternative promoter, Iso-seq

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless
otherwise stated in a credit line to the data.

Huang et al. Genome Biology           (2021) 22:44 
https://doi.org/10.1186/s13059-021-02261-x

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-021-02261-x&domain=pdf
http://orcid.org/0000-0002-0179-8048
mailto:gmstanp@duke-nus.edu.sg
mailto:gmstanp@duke-nus.edu.sg
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Gastric cancer (GC) is the fifth leading type of cancer and third leading cause of cancer

death, with more than 1.03 million new cases and 780,000 deaths reported annually [1].

Traditional classification systems based on tumor morphology such as the Lauren (dif-

fuse and intestinal) [2] and the World Health Organization systems (papillary, tubular,

mucinous and poorly cohesive) [3] have limited clinical utility in guiding the treatment

of GC patients. This has led to attempts to apply high-throughput molecular methods

to classify GC into molecular subtypes that can convey more detailed information com-

pared to histological methods.

Among different molecular platforms, conventional short-read RNA sequencing has

been widely used to identify transcripts and gene expression changes in GC [4–6].

While this method has been effective in quantifying transcript abundance, short reads

(usually 100 to 250 base pair) rarely span full-length transcripts, which can often be

several kilobases long, making it difficult to directly infer full-length transcript struc-

ture. These limitations are particularly pronounced in complex human transcriptomes

such as GC, which may express many distinct but very similar isoforms resulting from

different alternative promoters, exons, and 3′ untranslated regions (UTRs) [7, 8]. As a

result, the full-length transcriptome of GC has remained under-explored, despite the

potential importance of this information to understand the biological roles of alterna-

tive isoforms.

Recently, single-molecule long-read sequencing technology enabling long sequencing

reads (up to 60 kb) have been developed for use in transcriptome sequencing [9]. The

use of such long-read isoform sequencing (Iso-Seq) offers a more

complete characterization of full-length transcriptomes, due to Iso-seq's ability to com-

pletely sequence both 5′ and 3′ UTRs and the polyA tails of cDNA molecules [10].

Nevertheless, long-read sequencing has its own limitations such as inability to accur-

ately quantify gene expression, due to the relatively lower throughput of long-read plat-

forms compared to short-read methods.

Long-read sequencing has been previously used to study the full-length transcrip-

tomes of other caner types. Analysis of SK-BR-3 breast cancer cells by genome and

PacBio transcriptome sequencing led to the characterization of previously undiscovered

fusion transcripts, copy-number amplifications, and structural variants [11]. Another

study used long-read Iso-seq and short-read RNA-seq in wild-type and paclitaxel-

resistant MDA-MBA-231 sublines (another breast cancer cell line) to identify novel tar-

gets of chemotherapy resistance [12]. Full-length transcriptomes can also be studied

with Oxford Nanopore sequencing, and full-length transcripts have been sequenced

from lung cancer cell lines to identify transcript variants and mutations using the Min-

ION sequencer (Oxford Nanopore Technologies) [13].

In this study, we combined the Iso-Seq technology with short-read RNA-seq methods

to survey the full-length GC transcriptome landscape. We selected cell lines from dif-

ferent GC subtypes for RNA sequencing using Iso-seq protocols to systematically

characterize the complexity of GC isoforms. We then quantified the expression levels

of these isoforms using conventional short-read data in GC cell lines and primary sam-

ples. Our results provide the first full-length GC transcriptome database, which will

likely prove useful to further understand the molecular basis of GC tumorigenesis and

for identifying novel biomarkers and drug targets.

Huang et al. Genome Biology           (2021) 22:44 Page 2 of 24



Results
Landscape of long-read full-length isoforms in GC cell lines

To obtain a representative overview of full-length transcripts in GC, we performed Pac-

Bio long-read RNA sequencing on ten GC cell lines. The GC lines were selected to rep-

resent four TCGA GC subtypes (CIN—chromosomal unstable, EBV—Epstein-Barr

virus positive, GS—genome stable, and MSI—microsatellite unstable) based on previous

literature and in-house molecular analysis [5] (Additional file 2, Table S1). For each

line, we generated ~ 26 Gb of raw sequencing data, and used the circular consensus se-

quence module of the IsoSeq3 program (https://github.com/PacificBiosciences/IsoSeq3)

to generate consensus reads (Fig. 1a). The consensus reads were filtered for full-length

non-chimeric (FLNC) reads. To identify unique isoforms, the FLNC reads were sub-

jected to de novo clustering using the IsoSeq3cluster module. All isoforms were

mapped to the human genome (version hg38) using GMAP [14], and only high-quality

isoforms (supported by at least two FLNC reads) were considered for further analysis.

On average, we identified ~ 37,700 non-redundant full-length isoforms per cell line.

Further quality control and isoform annotations were performed using SQANTI2

(https://github.com/Magdoll/SQANTI2), yielding an average of ~ 27,000 annotated iso-

forms per line. These outputs are comparable with previously reported human cell line

Iso-seq data [12, 15].

Fig. 1 Landscape of long-read transcriptome in gastric cancer cell lines. a Isoform calling algorithm for Iso-
seq data. b Types and illustration of identified isoforms. c Breakdown of isoforms identified. d Quality
control metric for the predicted isoforms. Compared to high-confidence FSM transcripts, NIC and NNC have
similar quality metric. ISM has low percentage of transcripts with CAGE support, suggesting some of these
transcripts are due to 5′ degradation. e Number of isoforms per gene. f Number of cell lines per isoforms. g
Number of isoforms detected vs number of cell lines profiled. Known FSM transcripts (red) are reaching
saturation, while novel transcripts are continually discovered
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In total, we identified 60,239 non-redundant transcript isoforms across the ten GC

lines and classified the isoforms into four groups based on the Gencode v32 human ref-

erence transcriptome database (Fig. 1b provides an illustrative cartoon). Among the iso-

forms, 31% (18442) were full-splice matches (FSM) matching perfectly to known

transcripts, and 37% (21874), 29% (17333), and 3% (1709) were novel in catalog (NIC;

corresponding to isoforms with at least one unannotated splice site), novel not in cata-

log (NNC; corresponding to isoforms with known splice sites but novel splice junc-

tions), and incomplete-splice matches (ISM; corresponding to isoforms that match to a

subsection of a known transcript) (Fig. 1c). We used various quality features provided

by SQANTI2 to assess the reliability of the full-length isoforms, including non-

canonical junction usage, intrinsic sequencing properties (i.e., number of predicted re-

verse transcriptase template switching artifacts), and functional genomic evidence such

as overlap of 5′ transcript ends with independently published Cap Analysis of Gene Ex-

pression (CAGE) data [16] (CAGE comprises tag sequencing data directly measuring

the 5′ end of transcripts), and 3′ ends with polyA tails (Fig. 1d). Benchmarking the

novel isoforms against high-quality known isoforms (FSMs), we found that NIC and

NNC novel isoforms exhibited comparable quality to known isoforms, while ISMs ex-

hibited a lower proportion of overlap with CAGE peaks. It is possible that some ISM

isoforms may comprise partial fragments resulting from incomplete retro-transcription

or mRNA decay artifacts [17]. Due to this concern, we therefore excluded the ISM iso-

forms (3%) from downstream analysis.

Besides the FSM, NNC, NIC, and ISM isoform categories, SQANTI2 also generates

small numbers of transcripts classified as antisense (n = 261; 0.4%), genic (n = 304; 0.5%;

isoforms that overlap with intron), and intergenic (n = 316; 0.5%; isoform in intergenic

regions) (see Additional File 2; Table S2). Previous studies have indicated that these iso-

forms tend to be single-exonic with higher percentages of non-canonical splice junc-

tions, which may be caused by experimental or technical artifacts [17]. Due to these

reasons and the small numbers of isoforms in these categories (< 1%), we did not con-

sider these categories (antisense, genic, intergenic) and our study only focuses on alter-

native splicing events found in the FSM, NIC, and NNC categories (n = 57,649).

The transcript isoforms (n = 57,649) mapped to more than 14 K genes (n = 14,203),

with 67% of genes associated with > 1 isoform (9462 genes). Each gene was associated

with a median of 2 isoforms (Fig. 1e). The majority of isoforms (33,271, 58%) were

expressed in only one cell line, and 3513 isoforms (6%) were found in all cell lines

(Fig. 1f). Interestingly, rarefaction curve analysis revealed that while discovery of known

isoforms experienced saturation, discovery of novel isoforms remained unsaturated

(Fig. 1g). To assess the discovery of isoforms as a function of sequencing depth, we also

performed rarefaction analysis in each individual cell line by subsampling the number

of full-length reads. As shown in Additional File 1; Figure S1, we found that for each

cell line, at a sequencing depth of 26 Gb, the discovery of isoforms reached saturation.

Thus, the increase in novel isoforms across cell lines is more likely attributable to cell

line-specific transcriptomes rather than a lack of coverage in the individual cell lines.

These analyses suggest that interrogating the transcriptomic landscape of novel iso-

forms remains a rich area of untapped biological diversity.

To explore relationships between alternative splicing events and somatic alterations,

we integrated the alternative splicing data with somatic mutations identified by whole
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exome sequencing of the 10 lines. Somatic mutations were identified using Mutect2

[18] on tumor-only mode, with germline subtraction using the gnomAD database [19]

and a panel of 36 normal exome samples. Somatic changes were further annotated

using Funcotator, and all variants classified as Splice Site were inspected. This analysis

identified a total of 335 splice site mutations in the 10 lines. Manual inspection of these

mutations in IGV highlighted 49 of these mutations which may lead to changes in spli-

cing at the mutated exons, as detected from the Iso-seq data. This suggests that the

vast majority of the splicing alterations identified (NIC and NNC isoforms; n = 39,207

compared to 49) are due to transcriptional deregulation rather than somatic alterations.

Characteristics of long-read novel isoforms

We proceeded to characterize the novel transcript isoforms. Of 39,207 novel isoforms,

17,333 (44%) were classified as NNC and the remaining novel isoforms were NIC. We

observed NNC and NIC isoforms involving cancer-associated genes such as ERBB2 and

CD44 and confirmed previously known FSM isoforms associated with these two genes

(Fig. 2a). For example, we identified an NNC ERBB2 isoform with an alternative 3′

exon splice site in exon 26. This splicing event is predicted to cause the loss of 14

amino acids partially deleting the ERBB2 tyrosine kinase domain. As another example,

we identified a CD44 NIC isoform resembling the known CD44-209 variant isoform

but with an additional exon 6a, resulting in gain of a Herpes_BLLF1-like domain (CD-

search, e-value = 2.3 × 10− 3).

Compared to known isoforms, novel transcript isoforms (both NNC and NIC) pos-

sessed larger numbers of exons (median 13 vs 8, Wilcoxon test, p value < 2.2 × 10− 16),

longer transcript lengths (median 3593 vs 2986.5 bp, Wilcoxon test, p value < 2.2 × 10− 16),

and protein coding sequences (median 1593 vs 1260 bp, Wilcoxon test, p value < 2.2 ×

10− 16) (Fig. 2b). Novel isoforms were also more likely acquire new transcription start sites

(TSSs) (11% isoforms more than 1 kb away from known TSSs vs 1%; Fisher test p value <

2.2 × 10− 16) and termination sites (TTSs) (14% isoforms more than 1 kb away from known

TTSs vs 8%; Fisher test p value < 2.2 × 10− 16). Use of new termination sites was also asso-

ciated with a higher likelihood of premature stop codons associated with nonsense-

mediated mRNA decay (NMD) (22% vs 7%; Fisher test p value < 2.2 × 10− 16). We then

used Kallisto [20] to infer the expression levels of the full-length isoform from short-read

RNA-seq data and netMHCpan [21] to identify potential antigenic peptides from the an-

notated isoforms. Novel isoforms were also expressed at lower levels compared to known

isoforms (median TPM 0.54 vs 3.08; Wilcoxon test, p value < 2.2 × 10− 16) and contained a

higher proportion of major histocompatibility complex (MHC) binding sites (median 5.6

binding site per kb vs 5.4; Wilcoxon test, p value 9.8 × 10− 7) (Fig. 2c). Further studies are

required to determine if these predicted MHC binding affinity differences are associated

with biologically relevant patterns of immunogenicity and T cell responses.

We next compared transcriptome and expression profile levels generated using either

long-read Iso-seq or short-read RNA-seq methods. We performed isoform discovery

on Illumina short-read RNA-seq using Stringtie (reference-guided and allowing for

novel isoforms) in the same ten cell lines profiled by Iso-seq. Similar to the Iso-seq ana-

lysis, identified isoforms were annotated using SQANTI2 and grouped according to

FSM, NIC, and NNC categories. Using gffcompare, we compared the long-read and
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short-read methods and found that most isoforms identified from long reads (66.8%)

could not be readily recovered from short-read data alone (Additional File 1; Figure

S2A). Moreover, although the short-read-only analysis identified larger numbers of iso-

forms, further examination revealed that compared to the long-read analysis, the short-

read data had much shorter isoform lengths (2182 bp vs 3564 bp, t-test p value < 2.2 ×

10− 16), contained less exons (7.2 vs 13.1, t-test p value < 2.2 × 10− 16), and were less

strongly supported by CAGE (38.3% vs 70.3%, Fisher test p value < 2.2 × 10− 16) and

polyA data (45.0% vs 81.3%, Fisher test p value < 2.2 × 10− 16). These results suggest that

many predicted short-read isoforms are incomplete fragments of full-length isoforms,

rather than true isoforms (see Additional File 1; Figure S2B, C).

We then compared the use of Iso-seq and RNA-seq data to estimate isoform expres-

sion, focusing on the subset of isoforms identified using both methods (n = 19,094). We

calculated isoform expression levels (tpm) using

1) Iso-seq data only (FL-TPM; full-length read transcript per million)

2) RNA-seq data using Iso-seq-defined transcriptomes (TPM; kallisto)

3) RNA-seq data using short-read-defined transcriptomes (TPM; kallisto)

Fig. 2 Characteristics of Iso-seq transcripts. a Examples of alternative splicing (CD44) and alternative promoter
(ERBB2) events identified in the Iso-seq data. Exon orders are labeled at the bottom, and overlapping exons are
indicated by alphabets. For ERBB2, only overlapping exons are labeled. Novel exons (relative to Gencode
annotation) were indicated in black. Protein domain annotation for selected isoforms was shown in the lower
panel. b Characteristics of novel (NIC and NNC) and known (FSM) transcripts. NIC and NNC have more exons
and longer isoforms and CDS. Novel transcripts can generate novel TSS and TTS. c Novel isoforms are more
likely to be target of NMD, expressed at lower level and contain more MHC binding sites than known isoforms
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This analysis revealed that Iso-seq-derived expression level are only weakly correlated

to the RNA-seq-derived expression levels (Pearson r = 0.27, Spearman r = 0.5), which is

likely due to the relatively lower depth of sequencing in Iso-seq. However, transcript

expression levels using RNA-seq reads mapped onto Iso-seq or short-read transcrip-

tomes were highly correlated (Pearson r = 0.92, Spearman r = 0.87) (see Additional File

1; Figure S2D). Taken together, these analyses demonstrate that Iso-seq and RNA-seq

data are complementary—the use of Iso-seq allows identification of full-length cell line-

specific isoforms and GC transcriptomes minimizing assembly errors and artifacts due

to incomplete fragments, while the use of high-coverage short-read RNA-seq enables a

more accurate assessment of gene expression levels.

To further characterize the long-read transcripts, we compared both the known and

novel isoforms across different types of splicing events. Using the SUPPA2 tool [22],

we quantified levels of intron retention (RI), exon skipping (SE), alternative 3′-acceptor

(A3), alternative 5′-donor (A5), alternative first exon (AF), alternative last exon (AL),

and mutually exclusive exon (MX) splicing events (Fig. 3a). In total, 63,786 alternative

splicing events were identified (Fig. 3b), to which AF events contributed to the greatest

degree (22,399, 35.1%). AF events were more likely to be found in novel isoforms

Fig. 3 Types of alternative splicing alterations. a Classification of alternative splicing (AS) events using SUPPA.
A3—Alternative 3′ Splice Site; A5—Alternative 5′ Splice Site; AF—Alternative First Exon; AL—Alternative Last
Exon; MX—Mutually Exclusive Exon; RI—Retained Intron; SE—Skipping Exon. b Alternative promoter sites (AF)
is the most common type of splicing events detected and most AF events are found in novel isoforms (NIC or
NNC). c Alternative splicing events in novel isoforms are expressed at lower level. Novel AF, AL, and MX show
relatively higher expression. d Variability of SE event percent spliced in (PSI) observed across SE types. The
highest variation is observed in the AF of novel isoforms. e Gene ontology analysis of the top 500 most variable
SE events—genes involved in commonly dysregulated pathways in gastric cancer are also target of alternative
splicing/promoter (such as cell adhesion and developmental processes). p value has been adjusted for gene
length bias. f Heatmap showing the 50 most variable AS events—most of the most variable AS are AF
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compared to known isoforms (Fisher test, p value < 2.2 × 10–16, odds ratio = 2.4), sug-

gesting that the use of alternative first exons may have been significantly underesti-

mated in previous studies using short-read RNA-sequence data. These data also

support previous reports that alternative promoter usage is a major source of transcrip-

tomic and functional diversity in cancer [8].

We also used SUPPA2 to calculate relative expression levels (represented by “percent

spliced in”; PSI) and variation in expression for the different splicing classes. Across the

GC lines, novel isoforms of every splicing class exhibited lower expression levels com-

pared to known isoforms (average PSI 0.38 vs 0.69 In known isoforms; paired t-test p

value 6.4 × 10− 4). However, among the splicing classes, novel AF, AL, and MX (average

PSI 0.46–0.47) events exhibited relatively higher expression than other splicing event

types (average PSI 0.31–0.37; t-test p value 1.4 × 10− 3) (Fig. 3c). Novel isoforms tended

to be expressed more variably (average standard deviation 0.15 vs 0.12; paired t-test p

value 1.5 × 10− 3), with AF, AL, and MX events showing the highest variance across

lines (average standard deviation 0.20 vs 0.11; t-test p value 0.01) (Fig. 3d). Hierarchical

clustering across the lines revealed that the most highly variable isoforms are often

novel isoforms associated with AF events. These findings were robust even when the

top 500–1000 most variable splicing events were analyzed (data not shown). Gene

ontology analysis of isoforms exhibiting the top 1000 splice events with the highest

variance revealed that these isoforms are enriched for pathways known to be deregu-

lated in GC, such as developmental processes and cell adhesion (gene length bias-

adjusted p values 4.9 × 10− 8 and 8.6 × 10− 6) (Fig. 3e), including several known cancer

genes such as MADD, PTK2, and NUMA1 (Fig. 3f).

Long-read transcriptomes inform analysis of primary GC RNA-seq profiles

Given the enrichment of alternate promoters in novel isoforms and their high inter-

sample variability, we focused in depth on this specific splicing sub-class. Here, we ap-

plied proActiv [8], an R package that estimates promoter activity from aligned RNA-seq

data applied onto a reference transcriptome. Briefly, proActiv quantifies promoter ex-

pression using a set of unique junction reads, and we have previously shown that pro-

moter activity predicted by proActiv shows higher consistency with CAGE and

H3K4me3 histone data when benchmarked to other methods. To evaluate the accuracy

of the proActiv promoter predictions, we correlated predicted promoter activities from

standard RNA-seq with the predicted transcriptomes derived from Iso-seq at different

ranges of isoform lengths (Additional file 2, Table S3). We observed stronger correla-

tions for shorter isoforms compared to longer isoforms. Importantly however, at all iso-

form length categories, we observed significantly higher correlations between promoter

activities inferred from Iso-seq and proActiv software in the same cell line, compared to

promoter activities inferred from different cell lines, suggesting that promoter activity

inferred using proActiv is most consistent with the Iso-seq data from the same cell line.

For example, for isoforms with gene length less than 2 kb, the average correlation coef-

ficient between the same lines was 0.63, compared to 0.49 when compared between dif-

ferent cell lines (Fig. 4a; t-test p value 1.8 × 10− 12). Similar correlations were observed

when restricting this analysis to either only known or novel isoforms (Additional file 2,

Table S4). The moderate correlation observed between Iso-seq and proActiv from the
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same cell lines is likely due to the relatively lower sequencing depth and gene length

biases in Iso-seq methods. The approach of using the Iso-seq full-length isoforms to

generate a reference transcriptome and subsequently quantifying the isoform expres-

sion using short-read has also been used by others in the field [23–26].

Across the GC lines, we identified 18,293 active promoters mapping to 13,143 genes

(Fig. 4b). Twenty-five percent of genes (3257) were associated with at least 2 distinct

promoters. We classified the active promoters as major and minor depending on their

average promoter activity in the 10 cell lines, and also classified them as known or

novel promoters (Fig. 4c). We found that promoters associated with novel isoforms are

often minor promoters (Fisher test, p value < 2.2 × 10− 16) which are expressed at lower

levels (Fig. 4d). However, 21% of novel isoforms were predicted to be the major pro-

moter in the GC lines (e.g., MIB2, see Fig. 4c). To understand the consequence of

Fig. 4 Landscape of alternative promoter usage in the Iso-seq data. a Correlation matrix between the detected
isoforms from Iso-seq data with the promoter activity estimated from Illumina short-read RNA-seq for isoforms
with length less than 2 kb. The highest correlation coefficients are always observed between the predicted
promoter activity from the Iso-seq and Illumina data from the same cell line. b Number of identified Iso-seq
genes and promoters. Twenty-five percent of all genes have multiple promoters. c Example of known and
novel promoters. Promoters are considered known if at least one FSM transcript is initiated from the promoter
site, and novel if no FSM transcript is initiated from the promoter site. Gene promoter with the higher average
activity is additionally assigned as major promoter and all other promoters for the same gene are assigned as
minor promoters. d Assignment of major and minor promoter from short-read RNA-seq data. Novel promoters
are often minor promoters. e Schematic representation of the relationship between 5′ UTR, CDs, and 3′ UTR
regions. On average, usage of alternative promoters modifies about 22–24% of coding regions. f Example of
how alternative promoter usage can modify CDs (PSMB4) and 5′ UTR (MRPL28)
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alternative promoter usage on downstream functional regions, we calculated the shared

fraction of 5′ untranslated regions (UTRs), coding sequence regions (CDs), and 3′UTRs

between isoforms initiated by distinct promoters. We found that changes in 5′UTR re-

gions are often followed by changes in downstream CDs and 3′UTRs, with the majority

of known/novel promoter pairs exhibiting potential changes in their CD composition

(1734/2059; 84.2%). The average extent of changes observed per promoter pair (major/

minor or known/novel promoters) was 22–24% for CDs and 35% for 3′UTRs (Fig. 4e).

Figure 4f shows examples of alternative promoter usage associated with downstream

usage of distinct CDs and 3′ UTR regions.

To validate expression of the novel isoforms at the protein level, we queried an in-

house mass spectrometry proteomics dataset of the 10 cell lines analyzed by Iso-seq.

Briefly, GeneMarkS-T predicted protein coding sequences for all isoforms were added

to the Gencode v32 protein-coding sequence database to form a reference proteome.

Unique peptides were identified using MaxQuant [27] with the use of this reference

proteome. This proteomic analysis identified 930 unique peptides from 428 Iso-seq

proteins that are not found in the Gencode v32 database (Additional File 2; Table S5).

Importantly, we were able to validate several unique peptide sequences associated with

novel promoter sites (Additional File 1; Figure S3), supporting the idea that many novel

Iso-seq isoforms are indeed expressed at the peptide level. In addition, we also per-

formed 5′ Rapid Amplification of cDNA Ends (RACE) to validate two novel isoforms

(FGFR4, TMEM59; Additional File 1; Figure S4a), and Western blotting validation of

novel ARID1A and TMEM59 isoforms (Additional File 1; Figure S4b). Notably, 5′

RACE and protein expression of the novel MET isoform has been previously reported

[28–30], further validating the ability of our pipeline to identify novel cancer-associated

promoters. These results suggest that alternative promoter usage may contribute to

functional diversification of the proteome by allowing for a single gene to select for

multiple protein-coding sequences.

Using proActiv, we then extended our full-length transcript-informed promoter pre-

dictions to the TCGA GC RNA-seq dataset (282 gastric cancer and 33 normal sam-

ples). We observed that promoter activity is distinct between tumor and normal

samples, and also between different molecular subtypes of GC (Fig. 5a). We then ap-

plied DESeq2 to perform differential promoter usage analysis on the tumor and normal

samples. Comparison between tumor and normal samples revealed 2389 upregulated

and 2049 downregulated isoforms in GC (FDR < 1 × 10− 3; Additional file 2, Tables S6

and S7). Notably, promoters upregulated in GC (n = 2389) were significantly more

likely to have changes in their CDs (average extent of altered CDs per promoter pair,

27.5% vs 20.9%; t-test p value 3.3 × 10− 8) and associated with cancer-related gene ontol-

ogies such as chromosomal organization (gene length-adjusted p value 5.4 × 10− 38) and

cell cycle (gene length-adjusted p value 3.2 × 10− 43) (Fig. 5b). We observed upregulated

isoforms comprising novel promoter isoforms of known oncogenes, such as MET,

FGFR4, and ERBB3 (Fig. 5c, right). Repeating this analysis in a second independent co-

hort of 20 pairs of gastric cancer samples re-identified MET and FGFR4 as upregulated

in GC samples (Fig. 5c, left). Downregulated promoters were not associated with CD

changes (21.8% vs 20.9%; t-test p value 0.42) (Fig. 5d).

The three novel MET, FGFR4, and ERBB3 isoforms were predicted to be initiated

from promoters distinct from their annotated TSSs (51 kb away (MET), 438 bp
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(FGFR4), 248 bp (ERBB3), and upregulated in tumor samples to a greater degree from

their known isoforms (Fig. 5e). Similar to the overall population, promoter activities

and detection frequencies (a surrogate of expression abundance) were lower for these

Fig. 5 Quantification of Iso-seq transcriptome in TCGA gastric cancer dataset. a T-sne plot of promoter activity in 315
TCGA gastric cancer samples (282 tumors and 33 normal). b Gene ontology analysis of the upregulated promoters in
TCGA GC dataset. p value has been adjusted for gene length bias. c Volcano plot showing the log fold change in
promoter activity in tumor samples. Novel promoters of several gastric cancer oncogene (FGFR4, MET, and ERBB3) are
upregulated in the TCGA dataset (right). In an independent dataset (20 T-N pairs), novel promoters of MET and FGFR4
are also found to be upregulated while novel promoter for ERBB3 is not significantly upregulated. d Altered CDs by
promoter activity status. Upregulated promoters have larger CD alteration. e Upper panel shows the gene isoforms
initiated from the known and novel promoters of FGFR4, MET, and ERBB3. Lower panel shows the promoter activity
and detection frequency in normal samples and TCGA subtypes of gastric cancer. Novel promoters are expressed at a
lower level, but exhibited higher upregulation and are expressed in more tumor samples compared to normal
samples. f Upper panel shows the protein domains of isoforms initiated from the known and novel promoters of
FGFR4, MET, and ERBB3. Lower panel shows the signal peptide prediction in transcripts initiated from known and novel
promoter sites, showing loss of signal peptide sequences in the novel isoforms
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novel isoforms compared to known isoforms, and the novel isoforms exhibited greater

between-tumor variability. For example, the novel MET isoform is highly expressed in

the CIN subtype (log2 fold change = 2.1, p value = 5.5 × 10− 16), but depleted in EBV

(log2 fold change = − 4.7, p value = 9.4 × 10− 15) compared to other GC samples. Com-

parisons of CDs revealed that most functionally important protein domains are retained

in the novel isoforms; however, all three novel isoforms showed N-terminal protein

truncations and removal of the Sema domain in the case of MET (Fig. 5f). All three

novel isoforms initiated from the new promoter sites are predicted to disrupt signal

peptide sequences required for localization to the cell membrane. Similar mechanisms

had been reported whereby alternative promoter usage leads to protein localization at

different cellular compartment [31]. Taken together, these observations suggest that

novel promoter sites may allow genes to acquire new functional roles and be regulated

in a subtype-specific manner.

We next queried ReMap [32] to identify TFs enriched at tumor-specific promoters. The

ReMap 2018 atlas contains transcriptional regulator peaks derived from curated ChIP-

seq, ChIP-exo DAP-seq, and ENCODE databases extracted from GEO (Gene Expression

Omnibus) comprising 485 transcription regulators across 346 human cell types from

2829 ChIP-seq datasets. We integrated the 485 TF occupancy profiles against significantly

upregulated alternative promoters (FDR < 0.001; n = 2389) compared to all promoters

identified in this study (n = 18,293) using the ReMapEnrich R package (https://github.

com/remap-cisreg/ReMapEnrich). From 485 TFs available in Remap, 204 TFs were found

to be significantly increased (q < 0.001) at the upregulated promoters in at least one ChIP-

seq experiment. To assess the robustness of our analysis, we also performed the same ana-

lysis using a different TF-DNA direct interaction database (UniBind). UniBind contains

information on 231 TFs from 1983 ChIP-seq datasets. Four of the 10 highest-ranked TFs

by ReMap were also predicted by the UniBind_enrichment tool (https://unibind.uio.no/

enrichment/), including E2F4, E2F1, MYC, and MXI1 (Additional File 1; Figure S5a, S5b).

These may highlight possible TFs regulating the use of alternative promoters in GC.

We also examined the promoters for changes in DNA methylation, using genome-

wide MeDIP-seq (methylation-dependent immunoprecipitation followed by sequen-

cing) for 9/10 cell lines. Briefly, MeDIP reads were aligned to the human genome using

bwa, and duplicates removed using samtools. DNA methylation peaks were called using

MACS2 with input control. In 7/9 cell lines, we observed that non-expressing isoforms

(as measured using Iso-seq data) tended to have higher methylation levels near their

promoter region. In contrast, expressed isoforms tended to have reduced DNA methy-

lation levels—this correlation was observed for both known and novel promoters (Add-

itional File 1; Figure S6), providing further evidence that the novel expressed promoters

are bona-fide promoters as they exhibit similar epigenetic features to known expressed

promoters.

Clinical outcome associated with alternative promoter usage

Because novel promoters are variably expressed, we explored if their usage might high-

light new biomarkers of clinical outcome in GC. To test this possibility, we correlated

the different promoter activity patterns to progression-free survival in the TCGA data-

set (Fig. 6a). Tumor samples were stratified into high and low promoter usage, based
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on optimal cutoffs determined using the surv-cutpoint function, and the length of sur-

vival in the two groups compared using the log-rank test.

In 1783 genes with predicted known and novel promoters, we have identified 871

genes with prognostic promoters (FDR < 0.05). Of these, 202 genes (23%) were prog-

nostic for both known and novel promoters, and as expected for these genes, promoter

activity of the known and novel promoters were highly correlated (average correlation

0.43). In contrast, 435 and 234 genes were prognostic for only either the known or

Fig. 6 Clinical outcome associated with alternative promoter usage. a Scatterplot of adjusted p values for genes with
known and novel promoters. Examples of prognostic gene (in blue), prognostic known promoter (in green), and
prognostic novel promoters (in red) include TFPI, KRT7, and KDM4A, respectively. b Beeswarm plot showing the
average correlation between known and novel promoters. There are more prognostic promoters (known or novel)
than prognostic genes and prognostic promoters have lower correlation than prognostic genes, suggesting distinct
promoters are independently regulated. c Survival plots showing significant association of novel and known
promoters of KDM4A, TFPI, and KRT7 with progression-free survival. d Percentages of known and novel promoters that
are differentially expressed in prognostic genes, prognostic promoters, and non-prognostic genes. Deregulated
expression of genes and isoforms are prognostic of survival. e Boxplots of the shared and private CD percentage in
prognostic genes, prognostic promoters, and non-prognostic genes. Prognostic promoters are enriched with
promoter-specific CD regions. f Gene structure of the known and novel ARID1A promoters at the transcript and
protein level. Survival curve shows the association between the known and novel promoters of ARID1A with
progression-free survival in gastric cancer
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novel promoter respectively, and for these genes, promoter activity of the known and

novel promoters was uncoupled (average correlation 0.28, t-test, p value 1.6 × 10− 11)

(Fig. 6b). Examples of genes with prognostic known promoters (e.g., KRT7), prognostic

genes (e.g., TFPI) and prognostic novel promoters (e.g., KDM4A) are shown in Fig. 6c.

Compared to non-prognostic genes, promoters for prognostic genes and promoters

themselves are more likely to be differentially expressed in GC (Fisher test, p value

1.5 × 10− 13, odds ratio = 1.8) (Fig. 6d). Intriguingly, we found that isoform-specific CD

regions associated with novel promoter-specific CD regions are specifically enriched for

genes with prognostic novel promoters (Kruskal-Wallis test, p value 2.1 × 10− 7) (Fig. 6e),

suggesting that the gain of CDs due to the usage of novel promoter sites may confer

genes with additional roles. In contrast, there was a significantly weaker association for

isoform-specific CD regions associated with known promoters (Kruskal-Wallis test, p

value 0.05). This analysis further supports the hypothesis that novel promoters can be

independently regulated and that they may have distinct roles from the known

counterparts.

As an example, we discovered a novel ARID1A isoform that is significantly associated

with shorter progression-free survival (Fig. 6f). We identified 3 ARID1A transcript iso-

forms and 2 promoters from the catalog of full-length GC isoforms. The detected novel

and known protein isoforms of ARID1A are predicted to truncate the first 384 and 274

N-terminal amino acid respectively from the canonical protein (NP_006006.3). Protein

isoforms corresponding to the canonical ARID1A transcript in Ensembl (the Ensembl

transcript with the longest CDs translation) were not detected in our dataset. Interest-

ingly high expression of the novel promoter is associated with poorer survival (log-rank

p value 2.1 × 10− 7) whereas the known promoter is not significantly associated (log-

rank p value 0.09). The known ARID1A promoter is significantly depleted in the MSI

subtype (log2 fold change = − 0.35, p value = 3.2 × 10− 3). In contrast, the novel ARID1A

is not differentially expressed in MSI (log2 fold change = 0.04, p value = 0.88) but shows

borderline downregulation (log2 fold change = − 0.42, p value 4.2 × 10− 2) in the CIN

subtype. Further study is required to elucidate the functional roles of the different

ARID1A isoforms.

Discussion
GC is a heterogenous disease, with a significant global health burden. Previous tran-

scriptomic studies of GC using short-read RNA sequencing have proved informative in

identifying new prognostic biomarkers and drug targets such as fusion genes [33]. One

limitation, however, is that short-read RNA sequencing often cannot accurately identify

full-length isoforms that are differentially expressed under distinct disease states and

between cancer subtypes. Achieving a full molecular understanding of GC therefore re-

quires a comprehensive analysis of alternative splicing events at the isoform level. For

example, BCL2L1 has an alternative 5′ splice site in intron 2 that produces two distinct

protein isoforms [34]. One isoform, BCL-XS, promotes apoptosis while the other, BCL-

XL, inhibits apoptosis and is preferentially expressed in cancers [35]. Similarly, inclusion

of exon 6 in the FAS receptor TNR6 produces a membrane-bound receptor isoform

that can relay external signal leading to apoptosis [36]. In contrast, TNR6 isoforms that

skip exon 6 do not induce apoptosis and are found in higher concentrations in cancer

patients [37, 38].
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In this study, we have generated to our knowledge, the first full-length transcriptome

database of GC cell lines across different subtypes, employing the PacBio Iso-seq plat-

form. We used this database to study alternative splicing alterations and novel tran-

script isoforms that are differentially expressed in GC. Supporting the richness of the

Iso-seq data, our analysis revealed that the majority of the identified isoforms are novel

not being previously reported in the human Gencode reference transcriptome database.

Interestingly, while known Gencode isoforms tended to be detected in larger numbers

of cell lines, novel isoforms tended to be more cell line-specific. These observations

suggest that many GC tissue-specific isoforms remain unexplored. For example, we

found in this study an ERBB2 isoform that lacks crucial ATP binding sites in the tyro-

sine kinase domain, and a CD44 isoform that gains a protein domain associated with

surface antigens capable of eliciting an immune response.

Recent large-scale studies have studied the importance of alternative splicing in can-

cer. For example, analyses of 8705 tumor samples in 32 cancer types revealed that alter-

native splicing in cancer occurs on average 20% more often than in normal tissues [7].

Interestingly, cancer-associated splicing events were reported to generate thousands of

tumor-specific isoforms not expressed in non-malignant samples. In addition, other

studies have identified alternative splicing as an important mechanism for drug sensi-

tivity or resistance. Specifically, lung cancer patients with MET exon 14 skipping are re-

sponsive to MET inhibitors despite not having other activating alterations [39], while

melanoma patients expressing a BRAF isoform lacking exons 4–8, which encodes for

the RAS binding domain, exhibit resistance to BRAF inhibitors [40].

By analyzing different categories of alternative splicing events, we found that alterna-

tive promoters (represented by alternative first exons; AF) are frequently used in GC,

supporting recent studies reporting the widespread use of alternative promoters in mul-

tiple cancer types [8]. Beside finding that alternate promoters are prevalent in the novel

GC transcript isoforms, our ability to analyze full-length transcript data also revealed

that isoforms initiated from distinct promoter sites often also utilize different down-

stream protein coding sequences and 3′UTR regions. This finding is significant as it

may imply the choice of promoter may also influence downstream RNA splicing events,

as alluded to in other reports [41]. Importantly, promoters associated with larger down-

stream coding sequence alterations were more likely to be upregulated in GC compared

to downregulated or unaltered promoters, supporting the hypothesis that some pro-

moters may initiate protein products that are positively selected for during cancer

evolution.

By applying the promoter prediction algorithm proActiv to our full-length GC tran-

scriptome database, we were the able to further profile the expression level of these

promoters in adjacent normal stomach samples and primary GC samples from different

TCGA subtypes and with different clinical outcomes. Differential expression analysis

reveals promoters upregulated or downregulated in GC compared to normal stomach

tissues. These upregulated promoters encode for novel isoforms of receptor tyrosine ki-

nases that are activated in diverse cancer types, such as MET, FGFR4, and ERBB3.

Interestingly, in all three cases, the choice of alternate promoters abolishes the N-

terminal signal peptide required for targeting to cellular membrane in all three novel

isoforms. In the case of MET, the deletion also encompasses the ligand-binding Sema

domain, indicating that this isoform may be activated via a ligand-independent
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mechanism. Notably, activation of N-terminal truncated isoforms for MET and FGFR4

has been previously reported before in human musculoskeletal [42] and pituitary tu-

mors [43]. These isoforms have distinct transcription start sites from the MET and

FGFR4 isoforms reported in this study. Both reported isoforms also lack the signal pep-

tide and reside mainly in the cytoplasm. In pituitary tumors, membrane-anchored wt-

FGFR4 (wild-type FGFR4) formed a complex with neural cell adhesion molecule

(NCAM) and N-cadherin, imparting sensitivity to FGFR inhibitor treatment. In con-

trast, the truncated ptd-FGFR4 (pituitary tumor-derived FGFR4) did not associate with

NCAM and interfered with N-cadherin signaling to impede cell adhesion [43]. These

reports suggest that alternate promoter-initiated novel isoforms (FGFR4, MET, and

ERBB3) may be expressed in distinct cellular compartments and exhibit distinct bio-

logical properties from the wild-type counterparts.

Clinical outcome analysis of the promoter activity further demonstrates that most al-

ternate promoters are only weakly correlated in expression with other promoters in the

same gene, thereby resulting in distinct and promoter-specific associations with

progression-free survival. From our clinical outcome analysis, we found that promoters

that are prognostic of patient outcome also tended to harbor a larger proportion of

promoter-specific coding regions. One notable finding here is a novel isoform of

ARID1A, whose expression was positively correlated with poorer progression-free sur-

vival. ARID1A is a well-known tumor suppressor frequently mutated in GC [44], and

the loss of its mRNA or protein expression had been suggested to be associated with

poorer prognosis [45, 46] although this association had not been universally accepted.

Interestingly, certain splice isoforms of ARID1A have also been shown to have onco-

genic properties in sarcoma [47]. These findings highlight the need to distinguish and

accurately quantify the various gene isoforms associated with alternative promoter

usage and potentially different biological roles during GC progression.

Our study has several limitations. First, the sequencing depth from Iso-seq method is

likely not yet sufficient to cover the full scope of isoform diversity. Thus, our analysis

may have missed genes or isoforms expressed at low levels. Second, owing to their rela-

tively lower sequencing coverage and gene length biases, long-read sequencing is at

present less reliable in inferring expression levels than short-read RNA-seq. This may

explain the lower than expected correlation of promoter usage from the two methods.

Despite these limitations, our results show that the Iso-seq method provides useful in-

formation that complement conventional short-read RNA-seq methods.

Conclusions
In summary, we have surveyed the landscape of full-length transcriptome expressed in

GC lines. Having observed substantial level splicing events leading to alternative pro-

moters and previously unknown transcript isoforms, our results strongly highlight that

full-length transcriptome profiling represents an under-explored area of research which

may yield novel biological insights, biomarkers, and drug targets. The transcriptome

data described in this study should thus provide useful and invaluable resource to un-

derstanding the importance of transcript isoform expression to the cancer research

community and translational researchers focusing on GC and other gastrointestinal

malignancies.

Huang et al. Genome Biology           (2021) 22:44 Page 16 of 24



Methods
Cell lines and cell culture

Cell lines were purchased from Japan Health Science Research Resource Bank (IM95,

KATOIII, MKN1, NUGC4, and OCUM1) and Korean Cell Line Bank (NCC19, NCC24,

NCC59, SNU719, SNU484, SNU1750, and SNU1967). YCC6 and YCC21 cells were

gifts from Yonsei University College of Medicine, Seoul. Cell lines were authenticated

using Short Tandem Repeat profiling using ANSI/ATCC ASN-0002-2011 guidelines

and tested Mycoplasma negative according to the MycoAlert Mycoplasma Detection

Kit (Lonza). All cell lines used in this study were maintained in a 37 °C incubator, 5%

CO2, and propagated in media containing 10% FBS and 1% NEAA in IM95—DMEM

with 10mg/L insulin, OCUM1—DMEM with 0.5 mM Na-Pyruvate, MKN1, NCC19,

NCC24, NCC59, SNU484, SNU719, SNU1750, and SNU1967—RPMI.

TCGA molecular subtype classification

Molecular subtypes of each cell lines were determined using exome data. Cell lines with

> 10 EBV reads per million sequencing reads were first classified as Epstein-Barr virus

positive (EBV). Next, microsatellite instability (MSI) status was determined with MSI-

sensor [48], with a cutoff score of 3.5 as recommended by the authors. Chromosomal

instability (CIN) was inferred by the presence of whole genome doubling using ABSO-

LUTE [49]. The remaining cell lines were classified as genome stable (GS).

PacBio Iso-Seq library preparation and sequencing

Total RNA was extracted from 10 gastric cell lines using RNeasy Mini Kit (QIAGEN)

according to the manufacturer’s instructions. RNA was quantified by Qubit RNA BR

Assay kit (Molecular Probes) and quality assessed with a 2100 Agilent Bioanalyzer

using RNA Nanochip (Agilent Technologies). Only samples with RIN 8.0 and greater

were selected for library preparation.

First-strand cDNA synthesis was performed using the SMARTer PCR cDNA Synthe-

sis Kit (Clonetech Laboratories) from 4 μg of total RNA input according to the manu-

facturer’s instructions. A total of 12 PCR cycles of amplification was performed for

each sample using PrimeSTAR GXL DNA polymerase (Clonetech laboratories). The

amplified cDNA products were made into SMRTbell template libraries according to

the Iso-Seq protocol by Pacific Biosciences. Sequencing was performed on the PacBio

Sequel System, and 4 SMRTcells were run for each sample with a movie run-time of

600 min for each SMRTcell.

RNA-seq library preparation and sequencing

All 10 gastric cell lines were profiled using a polyA-selected RNA sequencing (mRNA-

seq) protocol. Total RNA was extracted using the Qiagen RNeasy Mini Kit (Qiagen) ac-

cording to the instructions of the manufacturer. Total RNA quality check was done

using the RNA 6000 LabChip Kit on the Agilent Bioanalyzer (Agilent Technologies,

Palo Alto, CA). Two micrograms of total RNA was used to create libraries with Illu-

mina TruSeq RNA Sample Prep Kit v2 (Illumina, San Diego, CA, USA) according to

the manufacturer’s instructions. Samples successfully meeting the size and concentra-

tion criteria were pooled at equimolar concentrations. Two samples with unique index-
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tag adapter sequences were combined for multiplex NGS in each lane on the Illumina

HiSeq 2000 (Illumina, San Diego, California, USA).

Twenty paired tumor-normal GC samples were profiled using a total RNA with ribo-

somal depletion protocol. Total RNA was extracted using the Qiagen RNeasy Mini kit.

RNA-seq libraries were constructed according to the manufacturer’s instructions using

Illumina Stranded Total RNA Sample Prep Kit v2 (Illumina, San Diego, CA) Ribo-Zero

Gold option (Epicenter, Madison, WI) and 1 μg total RNA. Completed libraries were

validated with an Agilent Bioanalyzer (Agilent Technologies, Palo Alto, CA) and ap-

plied to an Illumina flow cell via the Illumina Cluster Station. Sequencing was per-

formed using the paired-end 101-bp read option.

Sequence processing

For each sample, we used CCS module of IsoSeq3 program (https://github.com/

PacificBiosciences/IsoSeq3) to generate circular consensus sequence (CCS) reads from

the sub-reads generated from the sequencing run. Following this, the reads that were

identified as full length were only considered for de novo clustering of reads using clus-

ter module of IsoSeq3 to identify unique isoforms. These isoforms were mapped to hu-

man genome (version hg38) using GMAP [14] and only high-quality isoforms

(supported by at least two FLNC reads) were considered for further analysis. Isoforms

identified across all cell lines were merged into a single non-redundant transcriptome

using gffcompare (https://ccb.jhu.edu/software/stringtie/gffcompare.shtml) and anno-

tated using SQANTI2 (https://github.com/Magdoll/SQANTI2).

SQANTI2 provide annotation on CAGE peak, polyA sites, and NMD prediction.

HLA binding sites were identified using netMHCpan [21], assuming a representative

HLA type (HLA-A*02:01). For each coding isoform, frequency of strong binder sites is

normalized to the length of its coding sequence.

Transcript-level expression in the unit of transcript per million (tpm) were estimated

for each identified isoform using Kallisto [20] applied on short-read sequencing data

and reference transcriptome defined using Iso-seq. For comparison between different

isoform quantification strategies, tpm is also calculated using short-read sequencing

data on short-read defined transcriptome and full-length reads on Iso-seq transcrip-

tome (FL_TPM).

We use GeneMarkS-T (GMST) algorithm [50], as implemented in SQANTI2 to pre-

dict coding sequences from the generated transcript sequences. GeneMarkS-T utilizes

iterative self-training and a hidden semi-Markov model to predict coding regions in

eukaryotic transcripts. This algorithm had also been used in other publications analyz-

ing human long-read transcriptomes [17, 23, 51].

Rarefaction curve analysis

Rarefaction curves of isoform diversity were performed using the specaccum function

from R library vegan. The input to specaccum is a table of Iso-seq isoforms for FSM,

NIC, and NNC categories identified in the ten cell lines. For rarefaction analysis by

subsampling full-length reads, relative abundances of isoforms were estimated by

extracting the number of full-length sequences supporting each isoform from the FSM,
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NIC, and NNC categories. Rarefaction analysis was performed using the “subsample_

with_category.py” script in the cDNA cupcake package.

Alternative splicing event and alternative promoter analysis

After data processing, the full-length GC transcriptome was analyzed using the soft-

ware SUPPA2 to detect 7 types of alternative splicing events including A3/A5 (alterna-

tive 3′ and 5′ splice sites), AF/AL (alternative first and last exons), SE (skipping exon),

RI (retained intron), and MX (mutually exclusive exon). Specifically, SUPPA2 calculates

possible alternative splicing events from an input annotation file containing the gen-

omic coordinates and ranges of transcript isoforms (GTF format). We then used the

generateEvent command in SUPPA2 with –f ioe options on the gtf file containing the

FSM, NIC, and NNC isoforms identified from SQANTI2. This command generates an

ioe output file containing the local alternative splicing events from the gtf file. Splicing

events were considered as novel if all transcripts containing the splice events are novel

isoforms (NIC or NNC), and splicing events found in at least one known isoform

(FSM) were considered known. Expression levels of each alternative splicing event was

estimated using the psiPerEvent command in SUPPA2, using the ioe file generated

from generateEvent and gene expression matrix generated using Kallisto. This com-

mand generates a table containing the expression level (PSI) for each identified alterna-

tive splicing event per sample.

The full-length transcriptome was analyzed with proActiv version 0.1.0 (https://

goekelab.github.io/proActiv/) [8] software to identify active promoter sites. Short-read

RNA-seq from cell lines, primary GC, and adjacent normal samples were aligned to the

reference genome using STAR [52]. The junction files and full-length transcriptome

were used as input by proActiv to estimate promoter activities in each sample. Differen-

tially expressed promoters were identified using DESeq2 [53]. We assembled two inde-

pendent cohorts of primary GC and normal RNA-seq samples to identify differentially

expressed promoters between GC and normal samples. The first cohort consists of 282

tumor and 33 normal samples from TCGA. The second cohort consists of 20 paired

tumor-normal GC samples sequenced in-house.

Mass spectrometry proteomics

Cell lines were grown and extracted in quadruplicates using RIPA buffer (Sigma) ac-

cording to the manufacturer’s instructions. In total, 200 μg of protein was used for MS

sample preparation. Samples were boiled at 95 °C prior to separation on a 12%

NuPAGE Bis-Tris precast gel (Thermo Fisher Scientific) for 15 min at 170 V in 1×

MOPS buffer. The gel was fixed using the Colloidal Blue Staining Kit (Thermo Fisher

Scientific) and each lane was divided into 2 equal fractions. For in-gel digestion, sam-

ples were destained in destaining buffer (25 mM ammonium bicarbonate; 50% ethanol),

reduced in 10 mM DTT for 1 h at 56 °C followed by alkylation with 55 mM iodoaceta-

mide (Sigma) for 45 min in the dark. Tryptic digestion was performed in 50mM am-

monium bicarbonate buffer with 2 μg trypsin (Promega) at 37 °C overnight. Peptides

were desalted on StageTips and analyzed by nanoflow liquid chromatography on an

EASY-nLC 1200 system coupled to a Q Exactive HF mass spectrometer (Thermo

Fisher Scientific). Peptides were separated on a C18-reversed phase column (25 cm
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long, 75 μm inner diameter) packed in-house with ReproSil-Pur C18-AQ 1.9 μm resin

(Dr Maisch). The column was mounted on an Easy Flex Nano Source and temperature

controlled by a column oven (Sonation) at 40 °C. A 215-min gradient from 2 to 40%

acetonitrile in 0.5% formic acid at a flow of 225 nl/min was used. Spray voltage was set

to 2.4 kV. The Q Exactive HF was operated with a TOP20 MS/MS spectra acquisition

method per MS full scan. MS scans were conducted with 60,000 at a maximum injec-

tion time of 20 ms and MS/MS scans with 15,000 resolution at a maximum injection

time of 50 ms.

The raw files were processed with MaxQuant [27], and search results were filtered

with a false discovery rate of 0.01. Known contaminants, reverse hits, and entries that

did not qualify as unique peptides of the MaxQuant results were removed.

Western blotting

For ARID1A overexpression studies, constructs were amplified the following primers:

ARID1A-Canonical-F: 5′-CGACGATGACAAGGGATCCATGGCCGCGCAGGTCGCCC

CCGC-3′.

ARID1A-Known-F-: 5′-CGACGATGACAAGGGATCCATGGGGGGAGGCGGCCCCT

CCGC-3′.

ARID1A-Novel-F: 5′-CGACGATGACAAGGGATCCATGGATCAGATGGGCAAGATG

AG-3′.

ARID1A-R: 5′-GGAATTGATCCCGCTCGAGTCATGACTGGCCAATCAAAAAC

A-3′.

PCR products were cloned into a pHR’CMVGFPIRESWSln18-based vector (gift from

Dr. Shang Li) using Gibson Assembly Master Mix (NEB).

Cells were lysed in RIPA buffer (Sigma) for 10 min on ice with the presence of prote-

ase inhibitors. Cell lysates were centrifuged at 9000 rpm for 10 min and supernatants

were collected for concentration measurements using Pierce BCA protein assay kit.

The following antibodies were used for western blotting: ARID1A (sc-32761, Santa

Cruz), GAPDH (60004-1-Ig, Proteintech Group), and TMEM59 (GTX104486,

GeneTex).

5′ RACE

5′ Rapid amplification of cDNA ends (5′ RACE) was performed using the FirstChoice™

RNA Ligase Mediated RACE (RLM-RACE) Kit (Invitrogen, AM1700). In brief, 10 μg of

total RNA was treated with calf intestinal phosphatase (CIP) to remove the 5′-phos-

phate from uncapped RNA (e.g., ribosomal RNA, fragmented mRNA, tRNA). Full-

length, capped mRNA was unaffected in this treatment. Then the RNA is treated with

tobacco acid pyrophosphatase (TAP) to remove the cap structure from the full-length

mRNA, exposing its 5′-monophosphate. As the result, only the uncapped, full-length

mRNAs contained a free 5′-phosphate, which was ligated with a synthetic RNA

adapter. Subsequently, cDNA was synthesized from reverse transcription reaction with

M-MLV Reverse Transcriptase. cDNA was then amplified by two rounds of nested

PCR (namely outer and inner PCR) using adaptor-specific outer/inner primers with

gene-specific outer/inner primers by Q5® High-Fidelity DNA Polymerase (NEB,

M0491S). PCR amplification results were examined by gel electrophoresis. PCR bands
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of interest were excised and purified for cloning with the TOPO™ TA Cloning™ Kit

(Invitrogen, 450640). A minimum of 7 independent colonies were selected for sequen-

cing. Gene-specific outer/inner primers are listed in Additional File 2, Table S8.

MeDIP-sequencing

DNA was sonicated using COVARIS S2, and peak fragment distribution between 100

and 500 bp was verified on an Agilent Bioanalyzer (Agilent Technologies) using the

DNA1000 chip. Fragmented DNA was end-repaired, dA-tailed, and adapter ligated

using NEBNext® DNA Library Prep Master Mix Set for Illumina (E6040). Samples were

then spiked with control DNAs that were unmethylated, methylated, and hydroxy-

methylated (Diagenode C02040010) as a quality control measure. For each sample, in-

put DNA that was not exposed to the primary antibody was included. Adapter-ligated

DNA was subjected to immunoprecipitation with a primary monoclonal antibody

against 5-methyl cytosine (Diagenode C15200081) using a previously published proto-

col [54]. Real-time PCR using primers against the spiked DNA controls were performed

to verify successful and specific enrichment of methylated DNA (data not shown).

Immunoprecipitated samples were amplified using Phusion® High-Fidelity DNA Poly-

merase (M0530) and NEBNext® Multiplex Oligos for Illumina® (E7335) for 10 cycles.

Amplified libraries were run on the Agilent Bioanalyzer using the high-sensitivity DNA

kit prior to Illumina sequencing using a single-end 100 base pair configuration.

MeDIP short reads were aligned to the reference genome using bwa [55], and dupli-

cates were removed using samtools [56]. Peaks were called using MACS2 [57] using in-

put control. Enrichment of MeDIP peaks around promoter sites were visualized using

genomation [58].

Clinical outcome analysis

We downloaded clinical data of GC samples from the integrated TCGA clinical data re-

source [59]. Then, the function “surv_cutpoint” from R package “survminer” was ap-

plied to determine the optimal promoter activity ratio based on progression-free

survival information of the patients. Survival in patients with high or low promoter ac-

tivity ratio was compared using the Kaplan–Meier method and the log-rank test.

Bioinformatics workflow and command lines

The overall bioinformatics workflow is provided as Additional File 1; Figure S7 and the

command lines used are listed in Additional file 3.
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