
Li et al. Genome Biology (2020) 21:265
https://doi.org/10.1186/s13059-020-02168-z

METHOD Open Access

The design and construction of
reference pangenome graphs with
minigraph
Heng Li1,2* , Xiaowen Feng1,2 and Chong Chu2

*Correspondence:
hli@ds.dfci.harvard.edu
1Department of Data Sciences,
Dana-Farber Cancer Institute,
Boston 02215, MA, USA
2Department of Biomedical
Informatics, Harvard Medical
School, Boston 02215, MA, USA

Abstract
The recent advances in sequencing technologies enable the assembly of individual
genomes to the quality of the reference genome. How to integrate multiple genomes
from the same species and make the integrated representation accessible to biologists
remains an open challenge. Here, we propose a graph-based data model and
associated formats to represent multiple genomes while preserving the coordinate of
the linear reference genome. We implement our ideas in the minigraph toolkit and
demonstrate that we can efficiently construct a pangenome graph and compactly
encode tens of thousands of structural variants missing from the current reference
genome.

Keywords: Bioinformatics, Genomics, Pangenome

Background
The human reference genome is a fundamental resource for human genetics and biomed-
ical research. The primary sequences of the reference genome GRCh38 [1] are a mosaic
of haplotypes with each haplotype segment derived from a single human individual. They
cannot represent the genetic diversity in human populations, and as a result, each individ-
ual may carry thousands of large germline variants absent from the reference genome [2].
Some of these variants are likely associated with phenotype [3] but are often missed
or misinterpreted when we map sequence data to GRCh38, in particular with short
reads [4]. This under-representation of genetic diversity may become a limiting factor in
our understanding of genetic variations.
Meanwhile, the advances in long-read sequencing technologies make it possible to

assemble a human individual to a quality comparable to GRCh38 [1, 5]. There are already
a dozen of high-quality human assemblies available in GenBank [6]. Properly integrating
these genomes into a reference pangenome, which refers to a collection of genomes [7],
would potentially address the issues with a single linear reference.

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13059-020-02168-z&domain=pdf
http://orcid.org/0000-0003-4874-2874
mailto: hli@ds.dfci.harvard.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Li et al. Genome Biology (2020) 21:265 Page 2 of 19

A straightforward way to represent a pangenome is to store unaligned genomes in a
full-text index that compresses redundancies in sequences identical between individuals
[8–10]. We may retrieve individual genomes from the index, inspect the k-mer spectrum
and test the presence of k-mers using standard techniques. In principle, it is also possible
to apply canonical read alignment algorithms to map sequences to the collection, but
in practice, the redundant hits to multiple genomes will confuse downstream mapping-
based analyses [11]. It is not clear how to resolve these multiple mappings.
The other class of methods encodes multiple genomes into a sequence graph, usually

by collapsing identical or similar sequences between genomes onto a single represen-
tative sequence. The results in a pangenome graph. A pangenome graph is a powerful
tool to identify core genome, the part of a genome or gene set that is shared across the
majority of the strains or related species in a clade [12]. A common way to construct a
basic pangenome graph is to generate a compacted de Bruijn graph (cDBG) [13–19] from
a set of genomes. Basic cDBG does not keep sample information. Iqbal et al. [20] pro-
posed colored cDBG with each color represents a sample or a population. Colored cDBG
can be constructed efficiently [21, 22]. However, a colored cDBG discards the chromo-
somal coordinate and thus disallows the mapping of genomic features. It often includes
connections absent from the input genomes and thus encodes sequences more than the
input. A colored cDBG cannot serve as a reference pangenome graph, either. deBGA [23]
addresses the issue by labeling each unitig with its possibly multiple locations in the input
genome(s). Pufferfish [24] further reduces its space requirement. Nonetheless, given hun-
dreds of human genomes, there will be many more vertices in the graph andmost vertices
are associated with hundreds of labels. Whether deBGA and pufferfish can scale to such
datasets remains an open question. GBWT [25] provides another practical solution to
storage and indexing, but no existing tools can practically construct a cDBG for many
human genomes in the GBWT representation.
In addition to cDBG, we can derive a reference pangenome graph from a single linear

multi-sequence alignment (MSA) [26, 27]. It has been used for HLA typing but is not
applicable to whole chromosomes when they cannot be included in a single linear MSA.
The third and possibly the most popular approach to reference graph generation is to
call variants from other sources and then incorporate these variants, often in the VCF
format [28], into the reference genome as alternative paths [29–33]. However, because
VCF does not define coordinates on insertions, this approach cannot properly encode
variations on long insertions and is therefore limited to simple variations. There are no
satisfactory solutions to the construction of reference pangenome graphs.
In this article, we introduce the reference Graphical Fragment Assembly (rGFA) for-

mat to model reference pangenome graphs. We propose and demonstrate an incremental
procedure to construct graphs under this model. The resulting graphs encode structural
variations (SVs) of length 100bp or longer without haplotype information. Our implemen-
tation, minigraph [34] (https://github.com/lh3/minigraph), can construct a pangenome
graph from twenty human assemblies in 3 h.

Results
We will first describe a data model for reference pangenome graphs, which establishes
the foundation of this article. We will then present a new sequence-to-graph mapper,
minigraph, and show how this mapper incrementally constructs a pangenome graph. We

https://github.com/lh3/minigraph

Li et al. Genome Biology (2020) 21:265 Page 3 of 19

will demonstrate the utility of pangenome graphs with a human graph generated from
twenty human haplotypes and a primate graph generated from four species.

Modeling reference pangenome graphs

Sequence graphs

There are several equivalent ways to define a sequence graph. In this article, a sequence
graph G(V ,E) is a bidirected graph. Each vertex v ∈ V is associated with a DNA sequence;
each edge e ∈ E has two directions, one for each endpoint, which leads to four types
of edges: forward-forward, reverse-forward, forward-reverse, and reverse-reverse. The
directions on an edge dictate how a sequence is spelled from a walk/path in the graph.
Common assembly graphs, such as the overlap graph, string graph, and de Bruijn graph
can all be formulated as sequence graphs.
The Graphical Fragment Assembly (GFA) format [35] describes sequence graphs. The

core of GFA is defined by the following grammar:
<GFA> <-(<segment>|<link>)+

<segment> <-‘S’<segId><segSeq>

<link> <-‘L’<segId>[+-]<segId>[+-]<cigar>

A line starting with letter “S” corresponds to a vertex and a line starting with “L” cor-
responds to a bidirected edge. In a de Bruijn graph, we often attach sequences to edges
instead of vertices [36, 37]. To avoid the confusion, in this article, we also call a vertex as
a segment and call an edge as a link, following the GFA terminology. Figure 1a shows an
example GFA that encodes Fig. 1b.

Fig. 1 Example rGFA and GAF formats. a Example rGFA format. rGFA-specific tags include SN, name of the
stable sequence from which the vertex is derived; SO, offset on the stable sequence; SR, rank: 0 if the vertex or
edge is on the linear reference; >0 for non-reference. b Corresponding sequence graph. Each thick arrow
represents an oriented DNA sequence. c Example GAF format, using the segment coordinate, for reads
“GTGGCT” and “CGTTTCC” mapped to the graph. d Equivalent GAF format using the stable coordinate

Li et al. Genome Biology (2020) 21:265 Page 4 of 19

A sequence graph in the GFA format natively defines a segment coordinate systemwhere
each base in the graph is uniquely indexed by a 2-tuple (segId, segOffset). For example,
in Fig 1a, the base at position (s2, 2) is “G.” A major problem with this coordinate is that
it is decoupled from linear annotations and is sensitive to graph transformations. For
example, if we split a segment into two connected segments, the set of sequences spelled
from the graph remains the same, but the segment coordinates will be changed. Due to
the instability of segment coordinate, a basic sequence graph is inadequate for a reference
graph.

Reference pangenome graphs

We propose the reference GFA (rGFA) format to encode reference pangenome graphs.
rGFA is an extension to GFA with three additional tags that indicate the origin of a
segment from linear genomes (Fig. 1a). This simple addition gives us a unique stable coor-
dinate system as an extension to the linear reference coordinate (e.g., GRCh38). We can
pinpoint a position such as “chr1 : 9” in the graph and map existing annotations onto
the graph. We can also report a path or walk in the stable coordinate. For example, path
“s1 → s2 → s3” unambiguously corresponds to “chr1:0-5 → chr1:5-8 → chr1:8-12” or
simply “chr1:0-12” if we merge adjacent coordinate; similarly, “s1 → s2 → s5 → s6” cor-
responds to “chr1:0-8 → foo:8-16”. We will formally describe the path format when
introducing the GAF format in the next section.
In rGFA, each segment is associated with one origin. This apparently trivial require-

ment in fact imposes a strong restriction on the types of graphs rGFA can encode: it
forbids the collapse of different regions from one sequence, which would often happen in
a cDBG. We consider this restriction an advantage of rGFA because it requires the graph
to have a “linear” flavor intuitively and simplifies the data structure to store the graph.
For simplicity, rGFA disallows overlaps between edges and forbids multiple edges (more

than one edges between the same pair of vertices). These two restrictions help to avoid
ambiguity and reduce the complexity in implementation. They are not strictly necessary
in theory.

The Graphical mApping Format (GAF)

As there are no text formats for sequence-to-graph alignment, we propose a new Graphi-
cal mApping Format (GAF) by extending the Pairwise mApping Format (PAF) [35]. GAF
is TAB-delimited with each column defined in Table 1. Column 6 encodes a path on the
graph. It follows the formal grammar below:

<path> <- <stableId>|<orientIntv>+

<orientIntv> <- (‘>’|‘<’)(<segId>|<stableIntv>)

<stableIntv> <- <stableId>‘:’<start>‘-’<end>

In this grammar, <segId> is a segment identifier on an S-line in rGFA; <stableId>
is a stable sequence name at the SN tag on the corresponding S-line. Column 6 can
be either a path in the segment coordinate (Fig. 1c) or an equivalent path in the stable
coordinate (Fig. 1d). We can merge adjacent stable coordinates if the two segments are
originated from the same stable sequence and the end offset of the first segment is equal
to the start offset of the second segment. For example, “>chr1:0-5>chr1:5-8” can
be simplified to “>chr1:0-8”. Furthermore, if a path in column 6 is derived from one

Li et al. Genome Biology (2020) 21:265 Page 5 of 19

Table 1 The Graphical mApping Format (GAF)

Col Type Description

1 string Query sequence name

2 int Query sequence length

3 int Query start coordinate (0-based; closed)

4 int Query end coordinate (0-based; open)

5 char Strand relative to col. 6

6 string Graph path matching regular expression

/([><][^\s><]+(:\d+-\d+)?)+|([^\s><]+)/

7 int Path sequence length

8 int Path start coordinate

9 int Path end coordinate

10 int Number of matching bases in the mapping

11 int Number of bases, including gaps, in the mapping

12 int Mapping quality (0–255 with 255 for missing)

reference sequence, we recommend to replace it with the entire reference path on the for-
ward orientation (e.g. see “read1” in Fig. 1d). With this convention, a GAF line is reduced
to PAF for a sequence mapped to a reference sequence. Similar to PAF, GAF also allows
optional tags in the SAM-like format. Base alignment is kept at the cg tag.
Minigraph produces GAF in both the segment and the stable coordinate. GraphAligner

[38] produces GAF in the segment coordinate only, which can be converted to the stable
coordinate.

Sequence-to-graphmapping

Our incremental graph construction algorithm relies on genome-to-graph alignment
(Fig. 2b). As existing sequence-to-graph aligners [38, 39] do not work with chromosome-
long query sequences, we adapted minimap2 [40] for our purpose and implemented
minigraph (Fig. 2a). Briefly, minigraph uses a minimap2-like algorithm to find local hits to
segments in the graph, ignoring the graph topology. It then chains these local hits if they
are connected on the graph, possibly through cycles. This gives the approximate mapping
locations. Minigraph does not perform base-level alignment. This is because the graph
we construct encodes SVs and rarely contains paths similar at the base level. The best
mapping is often clear without base alignment.
To evaluate the accuracy of minigraph mapping, we simulated PacBio reads from

GRCh38 with PBSIM [41] and mapped them to the graph we constructed in the next
section. Table 2 compares the performance of minigraph and GraphAligner [38] v1.0.10
on 68,857 simulated reads mapped over 8 CPU threads. The N50 read length is 15kb.
Nine thousand eight hundred sixty-two reads are mapped across two or more segments
by GraphAligner. Note that both minigraph and GraphAligner ignore the stable coordi-
nates during mapping. All segments, originated either from GRCh38 or from individual
genomes, are treated equally. To this end, while we simulated reads from GRCh38, we are
also evaluating how well mappers work with complex SVs present in any input samples.
On this dataset, minigraph is faster than GraphAligner and uses less memory, partly

because minigraph does not perform base alignment. As is shown in Table 2, minigraph
is more accurate than GraphAligner. This is counter-intuitive given that GraphAligner
does base alignment. Close inspection reveals that most mismapped reads by minigraph

Li et al. Genome Biology (2020) 21:265 Page 6 of 19

Fig. 2 Minigraph algorithms. a Diagram of the minigraph mapping algorithm. Minigraph seeds alignments
with minimizers, finds good enough linear chains, connects them in the graph and seeks the most weighted
path as a graph chain. b Diagram of incremental graph construction. A graph is iteratively constructed by
mapping each assembly to an existing graph and augmenting the graph with long poorly mapped
sequences in the assembly

are mapped to the correct genomic loci but wrong graph paths. On the contrary, most
mismapped reads by GraphAligner are mapped to wrong genomic loci. This suggests
minigraph is better at finding approximate mapping locations but GraphAligner is bet-
ter at disambiguating similar graph paths. Combining the strength of both could lead to
a better graph mapper. We do plan to implement base-level alignment in minigraph in
future.
We have also tried vg v1.21.0 [39]. It indexed the same graph in 14.7 wall-clock hours

and mapped the simulated reads in 1.8 h over 8 threads, tens of times slower than mini-
graph and GraphAligner. However, no reads are mapped in the output. We have not been
able to make vg work with our data.

Table 2 Performance of sequence-to-graph mapping

Minigraph GraphAligner

Indexing time (wall-clock sec) 100 589

Mapping time (wall-clock sec) 79 140

Peak RAM (GB) 19.5 27.2

Percent unmapped reads 0.5% 0%

Percent wrong mappings 1.7% 4.6%

Li et al. Genome Biology (2020) 21:265 Page 7 of 19

Generating pangenome graphs

Figure 2b shows how minigraph constructs a pangenome graph (see the “Methods”
section for details). This procedure is similar to multiple sequence alignment via par-
tial order graph [42] except that minigraph works with cyclic graphs and ignores small
variants. Minigraph only considers SVs of 100 bp–100 kb in length and ignores SVs in
alignments shorter than 100kb. For each input assembly, it filters out regions covered by
two or more primary alignments longer than 20 kb in the assembly. This filter avoids par-
alogous regions in a sample and guarantees that graphs generated by minigraph can be
modeled by rGFA.
As a sanity check, we compared minigraph to dipcall (https://github.com/lh3/dipcall)

on calling SVs 100bp or longer from a synthetic diploid sample composed of CHM1 and
CHM13 [4]. Given two SV callsets A and B, we say a call in A ismissed in callset B if there
are no calls in B within 1000bp from the call in A. With this criterion, 2.7% of 14,792 SVs
called by dipcall are missed by minigraph; 6.0% of 14,932 minigraph SVs are missed by
dipcall. We manually inspected tens of differences in IGV [43] and identified two causes.
First, an INDEL longer than 100 bp called by one caller may be split into two shorter
INDELs by the other caller. There are often more than one smaller SVs around a missed
SV call. Second, dipcall skips regions involving high density of SNPs or involving both
long insertions and long deletions, but minigraph connects these events and calls SVs in
such regions. It tends to call more SVs. Overall, we believe minigraph and dipcall found
similar sets of SVs.

A human pangenome graph

Starting with GRCh38, we constructed a human pangenome graph from 20 human haplo-
types or haplotype-collapsed assemblies (Table 3). It took minigraph 2.7 wall-clock hours

Table 3 Assemblies used for graph construction

Name Species Population Accession/source

CHM1 Human N/A GCA_001297185.1

CHM13 Human N/A GCA_000983455.1

NA12878 Human European [44], phased

NA24385 Human Jewish [44], phased

PGP1 Human N/A [44], phased

NA19240 Human African GCA_001524155.4

HG00514 Human East Asian GCA_002180035.3

HG01352 Human American GCA_002209525.2

NA19434 Human African GCA_002872155.1

HG02818 Human African GCA_003574075.1

HG03486 Human African GCA_003086635.1

HG03807 Human South Asian GCA_003601015.1

HG00733 Human American GCA_002208065.1

HG02059 Human East Asian GCA_003070785.1

HG00268 Human European GCA_008065235.1

HG04217 Human South Asian GCA_007821485.1

AK1 Human East Asian GCA_001750385.1

Clint Chimpanzee GCA_002880755.3

Susie Gorilla GCA_900006655.3

Kamilah Gorilla GCA_008122165.1

Susie Orangutan GCA_002880775.3

https://github.com/lh3/dipcall

Li et al. Genome Biology (2020) 21:265 Page 8 of 19

over 24 CPU threads to generate this graph. The peak memory is 98.1GB. The resulting
graph consists of 148,618 segments and 214,995 links. It contains 37,332 variations, where
a variation denotes a minimal subgraph that has a single source and a single sink with
both segments coming from GRCh38. A path through the bubble between the source and
the sink represents an allele.
Variations in the human graph are enriched with Alus and VNTRs (Fig. 3a). While

interspersed repeats are about evenly distributed along chromosomes except in the pseu-
doautosomal regions (Fig. 3e), VNTRs are enriched towards telomeres [6]. It is worth
noting the density of minisatellites is also higher in subtelomeres. If we normalize the
density of VNTRs in the pangenome graph by the density of minisatellites in GRCh38,

a b

c d

e

f

Fig. 3 Characteristics of the human and the great ape graphs. a Human variations stratified by repeat class
and by the number of alleles of each variation. The repeat annotation was obtained from the longest allele of
each variation. VNTR: variable-number tandem repeat, a tandem repeat with the unit motif length ≥7bp. STR:
short random repeat, a tandem repeat with the unit motif length ≤6bp. LCR: low-complexity regions.
Mixed-inter.: a variation involving ≥2 types of interspersed repeats. b Great ape variations stratified by repeat
class and by the number of alleles. c Human biallelic variations stratified by repeat class and by insertion
to/deletion from GRCh38. Both alleles are required to be covered in all assemblies. d Human-specific biallelic
variations stratified by repeat class and by insertion to/deletion from GRCh38. Red bars correspond to
insertions to the human lineage. e Distribution of different types of human variations along chromosomes.
f Boxplot of the longest allele length in each repeat class. Outliers are omitted for the clarity of the figure

Li et al. Genome Biology (2020) 21:265 Page 9 of 19

the enrichment of VNTRs towards telomeres is still visible but becomes less prominent.
At the same time, repeat-less variations are also enriched towards the ends of chromo-
somes (green areas in Fig. 3e), suggesting subtelomeres tend to harbor SVs anyway. We
also identified 85 processed pseudogenes among these variations.
Another noticeable feature of VNTRs is that over half of VNTR variations are multi-

allelic (Fig. 3a). Figure 4 shows a multi-allelic region composed of VNTRs. We can see
many insertions of different lengths. The two different NA12878 assemblies also disagree
with each other, which we often see around other VNTR loci in NA12878 as well. We
have not inspected raw reads in this particular example, but we tend to believe the dis-
agreement is caused by local misassemblies rather than somatic mutations. In addition,
due to the multiallelic nature of such VNTRs, the two haplotypes in a human individ-
ual are often different. Assemblies mixing the two haplotypes (aka collapsed assemblies)
may have more troubles in these regions. Multiallelic VNTRs are hard to assemble
correctly.

Fig. 4 IGV screenshot of a region enriched with long insertions. Numbers on wide purple bars indicate
insertion lengths. CLR: PacBio noisy continuous long reads. HiFi: PacBio high-fidelity reads

Li et al. Genome Biology (2020) 21:265 Page 10 of 19

Multiallelic VNTRs are also hard to align and to call. In Fig. 4, the insertion positions are
often different, which could be caused by a few mutations or sequencing errors. A naive
alignment-based SV caller would call a dozen of low-frequency insertions in this region,
which does not reflect these correlated events. Without base-level alignment, minigraph
may have more troubles with obtaining the optimal alignment in these complex VNTR
regions. Improved data quality, assembly algorithms and graph mapping algorithms are
required to investigate VNTR regions in detail.

A great ape pangenome graph

We also constructed a great ape pangenome graph from GRCh38, one chimpanzee,
two gorillas, and one orangutan (Table 3). This graph contains 206,452 variations, over
four times more than the human graph. About half of variations are originated from
orangutan, the species most distant from human.
In the great ape graph, the L1-to-Alu ratio is close to 1:1, much higher than the

ratio in the human graph (Fig. 3b vs a). This is perhaps correlated with the elevated
L1 activity in great apes [45]. Of retrotransposon-related variations specific to the
human lineage, the overwhelming majority are insertions (Fig. 3d), which is expected
as transpositions lead to insertions only. Most human-specific Alu deletions are incom-
plete and involve ancient Alu subfamilies. They are likely genomic deletions that
happen to hit Alus. In contrast, the majority of “partial-repeats” are deletions from
the human lineage. Two thirds of autosomal insertions in this category are segmental
duplications in GRCh38. In all, minigraph is an efficient tool to study closely related
species.

Blacklist regions from human pangenome graphs

The human pangenome graph effectively encodes SVs ≥100bp in 20 genomes. These
large-scale variations could be a frequent source of technical artifacts in variant call-
ing with short reads. To test this hypothesis, we compared short-read SNP calls with vs
without regions around SVs in the pangenome graph.
We constructed a human pangenome graph excluding CHM1 and CHM13, the two

samples used in the SynDip benchmark [4], and generated regions around variations (see
the “Methods” section), which we call as blacklist regions, following the rationale in [46].
Blacklist regions is totaled 29.2 Mb in length, intersecting 0.7% of confident regions in
SynDip [4]; 0.7% of truth SNPs are contained in blacklist regions—true SNPs are not
enriched in blacklist regions.
We mapped short reads used in [4] with minimap2 and called variants with GATK

v4.1.2 [47]. This callset contains 32,879 false positive SNPs, 21% of which fall in black-
list regions—false SNP calls are highly enriched in this < 1% region of human genome.
This confirms a noticeable fraction of false SNP calls using short reads are resulted from
misalignment involving SVs.

Discussion
Based on the GFA assembly format [35], we proposed the rGFA format, which defines
a data model for reference pangenome graphs at the same time. rGFA takes a linear
reference genome as the backbone and maintains the conceptual “linearity” of input
genomes.

Li et al. Genome Biology (2020) 21:265 Page 11 of 19

rGFA is not the only pangenome graph model. Vg [39] encodes a stable sequence with
a path through the sequence graph [48]. A segment in the graph may occur on multiple
paths, or occur multiple times on one path if there are cycles in the graph. This way, vg
allows different regions in one chromosome collapsed to one segment. We call such a
graph as a collapsed graph. rGFA cannot encode a collapsed graph. The vg model is thus
more general.
In our view, however, the reference pangenome graph should not be a collapsed graph.

In a collapsed graph, the definition of orthology is not clear because multiple sequences
from the same sample may go through the same segment. Without the concept of orthol-
ogy, we cannot define variations, either. In addition, due to the one-to-many relationship
between segments and the reference genome, it is intricate to derive the stable coordi-
nate of a path in a collapsed graph. For example, suppose segment s1 corresponds to two
regions chr1:100-200 and chr1:500-600. To convert a path s2 → s1 → s3 to the stable
coordinate, we have to inspect adjacent segments to tell which s1 corresponds to; this
becomes more challenging when s2 and s3 represent multiple regions in the reference
genome. In contrast, rGFA inherently forbids a collapsed graph and avoids the potential
issues above. This makes rGFA simpler than vg’s path model and easier to work with.
To demonstrate practical applications of rGFA, we developed minigraph to incremen-

tally generate pangenome graphs. It can generate a graph from 20 genomes in 3 h and can
scale to hundreds of genomes in future. A limitation of minigraph is that it does not per-
form base alignment and may be confused by similar paths in the graph. Unfortunately,
base-level sequence-to-graph alignment is not a fully solved problem. Partial-order graph
alignment [42] and PaSGAL [49] only work with directed acyclic graphs (DAGs). Vg [39]
uses a heuristic to unroll cycles but it is expotential in time in the worst case and for
DAGs, its exact mode is tens of times slower than PaSGAL. Antipov et al. [50] proved
that alignment against cyclic graphs can be done in polynomial time. GraphAligner [38]
implements a fast quadratic algorithm for computing edit distance [51]. However, edit
distance based alignment disallows long INDELs and is often inadequate for accurate
variant calling. Jain et al. [52] recently proposed a quadratic algorithm for alignment with
affine gap penalty but the authors focused on the theoretical analysis only. To the best
of our knowledge, no tools can efficiently perform sequence-to-graph alignment under
affine gap cost. We plan to learn from the existing algorithms and implement fast base
alignment in minigraph in future. This may take significant effort.
Another limitation of minigraph is that it is unable to align sequences against a graph

encoding all small variants. Such a graph will be composed of millions of short seg-
ments. Not indexing minimizers across segments, minigraph will fail to seed the initial
linear chains. This limitation can only be resolved by completely changing the minigraph
mapping algorithm. Nonetheless, small variants are easier to analyze with the stan-
dardmethods. Incorporating these variants unnecessarily enlarges the graph, complicates
implementations, increases the rate of false mappings [53], and reduces the performance
of common tasks. There is also no known algorithm that can construct such a complex
graph for hundreds of human genomes.
Minigraph does not keep track of the sample information as of now. To address this

issue, we are considering to implement colored rGFA, similar to colored de Bruijn
graphs [20]. In a colored rGFA, a color represents one sample. Each segment or link
is associated with one or multiple colors, indicating the sources of the segment or the

Li et al. Genome Biology (2020) 21:265 Page 12 of 19

link. Colors can be stored in an rGFA tag or in a separate segment/link-by-sample binary
matrix [22]. The matrix representation may be more compact given a large number of
samples.
We have shownminigraph can be a fast and powerful research tool to summarize SVs at

the population scale and to study the evolution of closely related species. Amore practical
question is how a reference pangenome graph may influence routine data analysis. Here
is our limited view.
We think a critical role a reference graph plays is that it extends the coordinate sys-

tem of a linear reference genome. This allows us to annotate variations in highly diverse
regions such as the human HLA and KIR regions. The existing pipelines largely ignore
these variations because most of them cannot be encoded in the primary assembly of
GRCh38.
The extended graph coordinate system further helps to consistently represent complex

SVs. Given multiple samples, the current practice is to call SVs from individual samples
and thenmerge them. Two subtly different SVs, especially long insertions, may be called at
two distinct locations and treated as separate events. With the minigraph procedure, the
two SVs are likely to be aligned together as long as they are similar to each other and are
sufficiently different from the reference allele. To some extent, minigraph is performing
multiple sequence alignment with partial order alignment [42]. This procedure is more
robust to different representations of the same SV than naive merging. When we refer
to a SNP, we often use its chromosomal coordinate such as “chr1:12345”. We rarely do
so for SVs because their positions are sensitive to alignment and SV callers. The more
consistent SV representation implied by a pangenome graph will help to alleviate the issue
and subsequently facilitate the genotyping of SVs [33, 54, 55].
While we believe a reference pangenome graph will make complex variations more

accessible by geneticists and biologists, we suspect a great majority of biomedical
researchers will still rely on a linear reference genome due to the conceptual simplicity of
linear genomes and the mature tool chains developed in decades. Many analyses such as
SNP calling in well behaved regions do not benefit much from a pangenome representa-
tion, either. Nonetheless, a pangenome reference still helps applications based on linear
references. With a graph reference, we may blacklist regions enriched with SVs that lead
to small variant calling errors. We may potentially generate “decoy” sequences that are
missing from the primary assembly to attract falsely mapped reads away. We may per-
form read alignment against a graph, project the alignment to the linear coordinate and
finish the rest of analyses in the linear space. We anticipate a pangenome reference to
supplement the linear reference, not to replace it.

Conclusions
Complex human sequence variations are like genomic dark matter: they are pervasive
in our genomes but are often opaque to the assay with the existing tools. We envision a
pangenome graph reference will become an effective means to the study of these com-
plex variations. We proposed a data model (rGFA), designed formats (rGFA and GAF),
and developed companion tools (minigraph and gfatools) to demonstrate the feasibility
of our vision. Our work is still preliminary but it is likely to set a starting point to the
development of the next-generation graph-based tools, which may ultimately help us to
understand our genomes better.

Li et al. Genome Biology (2020) 21:265 Page 13 of 19

Methods
Theminigraphmapping algorithm

Seeding and linear chaining

Similar to minimap2, minigraph uses minimizers on segments as seeds. It also applies a
similar chaining algorithm but with different scoring and with a new heuristic to speed
up chaining over long distances. For the completeness of this article, we will describe part
of the minimap2 chaining algorithm here.

Minimap2-like chaining Formally, an anchor is a 3-tuple (x, y,w), representing a closed
interval [x − w + 1, x] on a segment in the reference graph matching an interval
[
y − w + 1, y

]
on the query. Given a list of anchors sorted by x, let f (i) be the maximal

chaining score up to the ith anchor in the list. f (i) can be computed by:

f (i) = max
{
max
i>j≥1

{
f
(
j
) + α

(
j, i

) − β
(
j, i

)}
,wi

}
(1)

where α
(
j, i

) = min
{
min

{
yi − yj, xi − xj

}
,wi

}
is the number of matching bases between

anchor i and j. β
(
j, i

)
is the gap penalty. Let gji = ∣

∣(yi − yj
) − (

xi − xj
)∣∣ be the gap

length and dji = min
{
yi − yj, xi − xj

}
be the smaller distance between the two anchors.

Minigraph uses the following gap cost:

β
(
j, i

) =

⎧
⎪⎨

⎪⎩

∞ (
gji > G

)

c1 · gji + c2 · dji + log2 gji
(
0 < gji ≤ G

)

0
(
gji = 0

)

where G = 100000 in the graph construction mode, c1 = e−dw and c2 = 0.05 · e−dw.
By default, d = 0.01 is the expected per-base sequence divergence and w = 19 is
the minimizer length. In comparison, minimap2 applies G = 5000, c1 = 0.19 and
c2 = 0. Minigraph allows much larger gaps between minimizers and more heavily
penalizes gaps.
Solving Eq. 1 leads to an O

(
n2

)
algorithm where n is the number of anchors. This algo-

rithm is slow for large n. Minimap2 introduces heuristics to speed up the computation
by approximating this equation. It works well for minimap2 that only allows small gaps
and has base-level alignment as a fix to chaining errors. However, as minigraph intends to
chain much longer gaps, the minimap2 algorithm occasionally misses the optimal align-
ment in long segmental duplications and produces false variations. Minigraph introduces
a new heuristic to speed up chaining.

Dynamic 1-dimension Range-Min-Query Before we move onto the minigraph solu-
tion, we will first introduce Range-Min-Query (RMQ). Given a set of 2-tuples

{
(yi, si)

}
,

RMQ(a, b) returns the minimum sj among
{
sj : a ≤ yj ≤ b

}
. We implemented 1-

dimension RMQ with a modified AVL tree, a type of balanced binary search tree (Fig. 5).
When performing RMQ(a, b), we first find the smallest and the largest nodes within inter-
val [a, b] using the standard algorithm. In this example, the two nodes are (21,32) and
(45,21), respectively. We then traverse the path between the two nodes to find the mini-
mum. With a balanced tree structure, we do not need to descend into subtrees. The time
complexity is O(m logm), where m is the number of nodes in the tree. We can insert
nodes to or delete nodes from the tree while maintaining the property of the tree. This
achieves dynamic RMQ.

Li et al. Genome Biology (2020) 21:265 Page 14 of 19

Fig. 5 Implementing 1-dimension Range-Min-Query (RMQ). Given a set of 2-tuples, a binary search tree is
built for the first values in the tuples. Each node p in the tree is associated with a pointer. The pointer points
to the node that is in the subtree descended from p and has the minimal second value. In this example,
RMQ(20, 50) = 14

Chaining with a linear gap cost function A linear gap cost takes the form of β ′ (j, i
) =

c1
[(
yi − yj

) + (
xi − xj

)]
. Given a list of anchors (xi, yi,wi) sorted by position xi, let

f ′(i) = max
i > j ≥ 1

xi − G ≤ xj ≤ xi − wi
yi − G ≤ yj ≤ yi − wi

{
f ′ (j

) + wj − β ′ (j, i
)}

(2)

We can find the optimal f ′(i) in O(n log n) time with RMQ [56, 57]. To see that, define

h′(j) = f ′(j) + wj + c1
(
yj + xj

)

The following condition

f ′(j) + wj − β ′ (j, i
)

> f ′(k) + wk − β ′ (k, i)

is equivalent to h′(j) > h′(k), independent of i. If we maintain RMQi as the binary tree
that keeps

{(
yj,−h′ (j

))
: j < i, xi − G ≤ xj ≤ xi − wi

}
, we have

f ′(i) = −RMQi (yi − G, yi − wi) − c1 (xi + yi)

This solves Eq. 2 in O(n log n) time.

Minigraph linear chaining While chaining with a linear gap cost function can be solved
efficiently, we prefer more realistic cost function used in minimap2. In practical imple-
mentation, when we come to anchor i, we find the optimal predecessor j∗ under the
desired gap cost β

(
j, i

)
for anchors

{
j : j < i, xi − G′ ≤ xj < xi, yi − G′ ≤ yj < yi

}
, where

G′ < G is set to 10000 by default. Meanwhile, we use the RMQ-based algorithm to iden-
tify the anchor j′∗ optimal under the linear gap cost β ′ (j, i

)
. We choose j′∗ as the optimal

predecessor if

f
(
j∗

) + α
(
j∗, i

) − β
(
j∗, i

)
< f

(
j′∗

) + α
(
j′∗, i

) − β
(
j′∗, i

)

This may occasionally happen around long segmental duplications when the minimap2
heuristic misses the optimal solution. Effectively, minigraph does thorough search in
a small window and approximate search in a large window using a faster but less
sophisticated gap cost function.

Li et al. Genome Biology (2020) 21:265 Page 15 of 19

Graph chaining

Minigraph generates a set of linear chains {Li} with the procedure above that completely
ignores the graph topology. It then applies another round of chaining taking the account
of the topology.
We say linear chain Li precedes Lj, written as Li ≺ Lj, if (1) the ending coordinate of Li

on the query sequence is smaller than the ending coordinate of Lj, and (2) there is a walk
from Li to Lj in the graph. If there are multiple walks from Li to Lj, minigraph enumerates
the shortest 16 walks and chooses the walk with its length being the closest to the query
distance between Li and Lj.
Given a list of linear chains sorted by their ending coordinates on the query sequence,

let g(i) be the optimal graph chaining score up to linear chain Li. We can compute g(i)
with another dynamic programming:

g(i) = max
{
max
Lj≺Li

{
g
(
j
) + ω

(
Lj

) − β
(
j, i

)}
,ω (Li)

}

where β
(
j, i

)
is the weight between Li and Lj. As minigraph does not perform base-level

alignment, β
(
j, i

)
is the same as the gap penalty function used for linear chaining. ω (Li)

is the optimal score of Li computed during linear chaining.
The procedure above has two limitations. First, when computing the weight between Li

and Lj, minigraph largely ignores base sequences and only considers the distance between
them on both the query and the graph. When there are multiple walks of similar lengths
between Li and Lj, minigraph miss the graph chain that leads to the best base alignment.
Although we added a heuristic by considering 17-mer matches between the query and the
graph paths, we found this heuristic is not reliable in complex regions. Second, minigraph
only enumerates the shortest 16 walks. In complex subgraphs, the optimal walk from
Li to Lj may not be among them. We plan to implement base alignment to address the
limitations. We may use the current minigraph algorithm for easy cases and apply the
more expensive base alignment when the current algorithm potentially fails.
The graph chaining algorithm results in one or multiple graph chains. A graph chain is

a list of anchors (si, xi, yi,wi), where [xi − wi + 1, xi] on segment si in the graph matches
[
yi − wi + 1, yi

]
on the query sequence. A graph chain satisfies the following conditions:

if i < j, yi < yj; if i < j and si = sj, we have xi < xj; if si
= si+1, the two segments are
adjacent on the graph. It is an extension to linear chains.

Theminigraph graph generation algorithm

Using the minimap2 algorithm [40], minigraph identifies a set of primary chains that do
not greatly overlap with each other on the query sequence. A region on the query is con-
sidered to be orthogonal to the reference if the region is contained in a primary chain
longer than 100 kb and it is not intersecting other primary chains longer than 20 kb.
Minigraph scans primary chains in orthogonal regions and identifies subregions where

the query subsequences significantly differs from the corresponding reference subse-
quences. To achieve that, minigraph computes a score hi for each adjacent pair of anchors
(si, xi, yi,wi) and (si+1, xi+1, yi+1,wi+1). Let dxi be the distance between the two anchors
on the graph and dyi = yi+1 − yi be the distance on the query sequence. hi is computed as

hi =
{

−10 if dxi = dyi ≤ wi+1
η · max

{
dxi , d

y
i
}

otherwise
(3)

Li et al. Genome Biology (2020) 21:265 Page 16 of 19

where η is the density of anchors averaged across all primary graph chains. Define
H

(
i, j

) = ∑j
k=i hk . A highly divergent region between the query and the graph will be

associated with a large H
(
i, j

)
. Minigraph uses the Ruzzo-Tompa algorithm [58] to iden-

tify all maximal scoring intervals on list (hi), which correspond to divergent regions. In
each identified divergent region, minigraph performs base alignment [40, 59] between the
query and the graph sequences and retains a region if it involves an INDEL ≥ 100bp in
length or a ≥ 100bp region with base-level identity below 80%. In Eq. 3, -10 is an insen-
sitive parameter due to the downstream filtering. In the end, minigraph augments the
existing graph with identified variations (Fig. 2b).

Annotating variations

We applied RepeatMasker [60] v1.332 to classify interspersed repeats in the longest
allele sequence of each variation. RepeatMasker is unable to annotate VNTRs with
long motifs. It also often interprets VNTRs as impure STRs. Therefore, we did not use
the RepeatMasker VNTR or STR annotations directly. Instead, we combined Repeat-
Masker and SDUST [61] results to collect low-complexity regions (LCRs). We identified
pure tandem repeats composed of a motif occurring twice or more (implemented in
https://github.com/lh3/etrf). An LCR is classified as VNTR if 70% of the LCR is VNTR;
similarly, an LCR is classified as STR if 70% is STR; the rest are classified as “Other-LCR”
in Fig. 3. The annotation script is available in the minigraph GitHub repository.

Creating blacklist regions

For each variation in the graph, we extend its genomic interval on GRCh38 by 50bp
from each end. We name this set of intervals as I0. We align sequences inserted to
GRCh38 against GRCh38 with “minimap2 -cxasm20 -r2k” and filter out alignments with
mapping quality below 5. Let I(a, b) be the set of GRCh38 intervals that are contained
in alignments with identity between a and b. The blacklist regions are computed by
I0∪I(0, 0.99)\I(0.998, 1), where “∪” denotes the interval union operation and “\” denotes
interval subtraction.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.1186/s13059-020-02168-z.

Additional file 1: Review history.

Acknowledgments
We are grateful to Benedict Paten and Erik Garrison for discussions on pangenome graphs. We thank minigraph users
who have suggested features and helped to fix various issues.

Peer review information
Kevin Pang was the primary editor on this article and managed its editorial process and peer review in collaboration with
the rest of the editorial team.

Review history
The review history is available as Additional file 1.

Authors’ contributions
HL conceived the project, developed minigraph, and drafted the manuscript. XF did the pseudogene analysis. CC helped
with RepeatMasker annotation. All authors helped to revise the manuscript. The authors read and approved the final
manuscript.

Funding
This work is supported by National Institutes of Health (NIH) grant U01HG010961 and R01HG010040.

https://github.com/lh3/etrf
https://doi.org/10.1186/s13059-020-02168-z

Li et al. Genome Biology (2020) 21:265 Page 17 of 19

Availability of data andmaterials
Minigraph is openly available at https://github.com/lh3/minigraph and zenodo [34]. This repository also includes the
script to convert from the segment coordinate to the stable coordinate, to annotate variations, and to generate blacklist
regions from the graph. The companion gfatools is available at https://github.com/lh3/gfatools. The human and the
great ape graphs are hosted at http://ftp.dfci.harvard.edu/pub/hli/minigraph/. The NA12878, NA24385, and PGP1 phased
assemblies were downloaded from http://ftp.dfci.harvard.edu/pub/hli/whdenovo/. Assemblies generated by McDonnell
Genome Institute include GCA_001524155.4 for NA19240, GCA_002180035.3 for HG00514, GCA_002209525.2 for
HG01352, GCA_002872155.1 for NA19434, GCA_003574075.1 for HG02818, GCA_003086635.1 for HG03486,
GCA_003086635.1 for HG03486, GCA_003601015.1 for HG03807, GCA_002208065.1 for HG00733, GCA_003070785.1 for
HG02059, GCA_008065235.1 for HG00268, and GCA_007821485.1 for HG04217. Other assemblies are available from
GenBank under accession GCA_001297185.1 for CHM1 [2], GCA_000983455.1 for CHM13 [2], GCA_001750385.1 for
AK1 [62], GCA_002880755.3 for chimpanzee Clint [63], GCA_900006655.3 for gorilla Susie [64], GCA_008122165.1 for
gorilla Kamilah [63] and GCA_002880775.3 for orangutan Susie [63].

Ethics approval and consent to participate
Ethical approval was not needed for this study.

Competing interests
The authors declare that they have no competing interests.

Received: 12 March 2020 Accepted: 23 September 2020

References
1. Schneider VA, Graves-Lindsay T, Howe K, Bouk N, Chen H-C, Kitts PA, Murphy TD, Pruitt KD, Thibaud-Nissen F,

Albracht D, Fulton RS, Kremitzki M, Magrini V, Markovic C, McGrath S, Steinberg KM, Auger K, Chow W, Collins J,
Harden G, Hubbard T, Pelan S, Simpson JT, Threadgold G, Torrance J, Wood JM, Clarke L, Koren S, Boitano M,
Peluso P, Li H, Chin C-S, Phillippy AM, Durbin R, Wilson RK, Flicek P, Eichler EE, Church DM. Evaluation of GRCh38
and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly. Genome
Res. 2017;27(5):849–64. https://doi.org/10.1101/gr.213611.116.

2. Huddleston J, Chaisson MJP, Steinberg KM, Warren W, Hoekzema K, Gordon D, Graves-Lindsay TA, Munson KM,
Kronenberg ZN, Vives L, Peluso P, Boitano M, Chin C-S, Korlach J, Wilson RK, Eichler EE. Discovery and genotyping
of structural variation from long-read haploid genome sequence data. Genome Res. 2017;27(5):677–85. https://doi.
org/10.1101/gr.214007.116.

3. Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, Nadeau JH. Missing heritability and strategies for finding
the underlying causes of complex disease. Nat Rev Genet. 2010;11(6):446–50. https://doi.org/10.1038/nrg2809.

4. Li H, Bloom JM, Farjoun Y, Fleharty M, Gauthier L, Neale B, MacArthur D. A synthetic-diploid benchmark for
accurate variant-calling evaluation. Nat Methods. 2018;15(8):595–7. https://doi.org/10.1038/s41592-018-0054-7.

5. Wenger AM, Peluso P, Rowell WJ, Chang P-C, Hall RJ, Concepcion GT, Ebler J, Fungtammasan A, Kolesnikov A,
Olson ND, et al. Accurate circular consensus long-read sequencing improves variant detection and assembly of a
human genome. Nat Biotechnol. 2019;37(10):1155–62. https://doi.org/10.1038/s41587-019-0217-9.

6. Audano PA, Sulovari A, Graves-Lindsay TA, Cantsilieris S, Sorensen M, Welch AE, Dougherty ML, Nelson BJ, Shah
A, Dutcher SK, Warren WC, Magrini V, McGrath SD, Li YI, Wilson RK, Eichler EE. Characterizing the major structural
variant alleles of the human genome. Cell. 2019;176(3):663–67519. https://doi.org/10.1016/j.cell.2018.12.019.

7. Computational Pan-Genomics Consortium. Computational pan-genomics: status, promises and challenges. Brief
Bioinform. 2016;19(1):118–35. https://doi.org/10.1093/bib/bbw089.

8. Mäkinen V, Navarro G, Sirén J, Välimäki N. Storage and retrieval of highly repetitive sequence collections. J Comput
Biol. 2010;17(3):281–308. https://doi.org/10.1089/cmb.2009.0169.

9. Liu B, Zhu D, Wang Y. deBWT: parallel construction of Burrows–Wheeler Transform for large collection of genomes
with de bruijn-branch encoding. Bioinformatics. 2016;32(12):174–82. https://doi.org/10.1093/bioinformatics/btw266.

10. Boucher C, Gagie T, Kuhnle A, Langmead B, Manzini G, Mun T. Prefix-free parsing for building big BWTs. Algoritm
Mol Biol. 2019;14(1):13. https://doi.org/10.1186/s13015-019-0148-5.

11. Na JC, Kim H, Park H, Lecroq T, Léonard M, Mouchard L, Park K. FM-index of alignment: a compressed index for
similar strings. Theor Comput Sci. 2016;638:159–70. https://doi.org/10.1016/j.tcs.2015.08.008.

12. Vernikos G, Medini D, Riley DR, Tettelin H. Ten years of pan-genome analyses. Curr Opin Microbiol. 2015;23:148–54.
https://doi.org/10.1016/j.mib.2014.11.016.

13. Marcus S, Lee H, Schatz MC. SplitMEM: a graphical algorithm for pan-genome analysis with suffix skips.
Bioinformatics. 2014;30(24):3476–83. https://doi.org/10.1093/bioinformatics/btu756.

14. Baier U, Beller T, Ohlebusch E. Graphical pan-genome analysis with compressed suffix trees and the
Burrows–Wheeler transform. Bioinformatics. 2015;32(4):497–504. https://doi.org/10.1093/bioinformatics/btv603.

15. Beller T, Ohlebusch E. A representation of a compressed de Bruijn graph for pan-genome analysis that enables
search. Algoritm Mol Biol. 2016;11:20. https://doi.org/10.1186/s13015-016-0083-7.

16. Chikhi R, Limasset A, Jackman S, Simpson JT, Medvedev P. On the representation of de Bruijn graphs. J Comput
Biol. 2015;22(5):336–52. https://doi.org/10.1089/cmb.2014.0160.

17. Minkin I, Pham S, Medvedev P. TwoPaCo: an efficient algorithm to build the compacted de Bruijn graph from many
complete genomes. Bioinformatics. 2017;33(24):4024–32. https://doi.org/10.1093/bioinformatics/btw609.

18. Chikhi R, Limasset A, Medvedev P. Compacting de Bruijn graphs from sequencing data quickly and in low memory.
Bioinformatics. 2016;32(12):201–8. https://doi.org/10.1093/bioinformatics/btw279.

19. Almodaresi F, Pandey P, Patro R. Rainbowfish: a succinct colored de Bruijn graph representation. In: Schwartz R,
Reinert K, editors. 17th International Workshop on Algorithms in Bioinformatics (WABI 2017), Leibniz International

https://github.com/lh3/minigraph
https://github.com/lh3/gfatools
http://ftp.dfci.harvard.edu/pub/hli/minigraph/
http://ftp.dfci.harvard.edu/pub/hli/whdenovo/
https://doi.org/10.1101/gr.213611.116
https://doi.org/10.1101/gr.214007.116
https://doi.org/10.1101/gr.214007.116
https://doi.org/10.1038/nrg2809
https://doi.org/10.1038/s41592-018-0054-7
https://doi.org/10.1038/s41587-019-0217-9
https://doi.org/10.1016/j.cell.2018.12.019
https://doi.org/10.1093/bib/bbw089
https://doi.org/10.1089/cmb.2009.0169
https://doi.org/10.1093/bioinformatics/btw266
https://doi.org/10.1186/s13015-019-0148-5
https://doi.org/10.1016/j.tcs.2015.08.008
https://doi.org/10.1016/j.mib.2014.11.016
https://doi.org/10.1093/bioinformatics/btu756
https://doi.org/10.1093/bioinformatics/btv603
https://doi.org/10.1186/s13015-016-0083-7
https://doi.org/10.1089/cmb.2014.0160
https://doi.org/10.1093/bioinformatics/btw609
https://doi.org/10.1093/bioinformatics/btw279

Li et al. Genome Biology (2020) 21:265 Page 18 of 19

Proceedings in Informatics (LIPIcs), vol. 88. Dagstuhl, Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik;
2017. p. 18–11815. https://doi.org/10.4230/LIPIcs.WABI.2017.18.

20. Iqbal Z, Caccamo M, Turner I, Flicek P, McVean G. De novo assembly and genotyping of variants using colored de
Bruijn graphs. Nat Genet. 2012;44(2):226–32. https://doi.org/10.1038/ng.1028.

21. Muggli MD, Alipanahi B, Boucher C. Building large updatable colored de Bruijn graphs via merging. Bioinformatics.
2019;35(14):51–60. https://doi.org/10.1093/bioinformatics/btz350.

22. Holley G, Melsted P. Bifrost – highly parallel construction and indexing of colored and compacted de Bruijn graphs.
Genome Biol. 2020;21:249.

23. Liu B, Guo H, Brudno M, Wang Y. deBGA: read alignment with de Bruijn graph-based seed and extension.
Bioinformatics. 2016;32(21):3224–32. https://doi.org/10.1093/bioinformatics/btw371.

24. Almodaresi F, Sarkar H, Srivastava A, Patro R. A space and time-efficient index for the compacted colored de Bruijn
graph. Bioinformatics. 2018;34(13):169–77. https://doi.org/10.1093/bioinformatics/bty292.

25. Sirén J, Garrison E, Novak AM, Paten B, Durbin R. Haplotype-aware graph indexes. Bioinformatics. 2019;36:400–7.
https://doi.org/10.1093/bioinformatics/btz575.

26. Dilthey A, Cox C, Iqbal Z, Nelson MR, McVean G. Improved genome inference in the MHC using a population
reference graph. Nat Genet. 2015;47(6):682–8. https://doi.org/10.1038/ng.3257.

27. Dilthey AT, Mentzer AJ, Carapito R, Cutland C, Cereb N, Madhi SA, Rhie A, Koren S, Bahram S, McVean G, et al.
HLA*LA–HLA typing from linearly projected graph alignments. Bioinformatics. 2019;35(21):4394–6. https://doi.org/
10.1093/bioinformatics/btz235.

28. Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST,
McVean G, Durbin R, 1000 Genomes Project Analysis Group. The variant call format and vcftools. Bioinformatics.
2011;27(15):2156–8. https://doi.org/10.1093/bioinformatics/btr330.

29. Eggertsson HP, Jonsson H, Kristmundsdottir S, Hjartarson E, Kehr B, Masson G, Zink F, Hjorleifsson KE, Jonasdottir
A, Jonasdottir A, Jonsdottir I, Gudbjartsson DF, Melsted P, Stefansson K, Halldorsson BV. Graphtyper enables
population-scale genotyping using pangenome graphs. Nat Genet. 2017;49(11):1654–60. https://doi.org/10.1038/
ng.3964.

30. Rakocevic G, Semenyuk V, Lee W-P, Spencer J, Browning J, Johnson IJ, Arsenijevic V, Nadj J, Ghose K, Suciu MC,
et al. Fast and accurate genomic analyses using genome graphs. Nat Genet. 2019;51(2):354–62. https://doi.org/10.
1038/s41588-018-0316-4.

31. Sibbesen JA, Maretty L, Danish Pan-Genome Consortium, Krogh A. Accurate genotyping across variant classes and
lengths using variant graphs. Nat Genet. 2018;50(7):1054–9. https://doi.org/10.1038/s41588-018-0145-5.

32. Biederstedt E, Oliver JC, Hansen NF, Jajoo A, Dunn N, Olson A, Busby B, Dilthey AT. NovoGraph: human genome
graph construction from multiple long-read de novo assemblies. F1000Res. 2018;7:1391. https://doi.org/10.12688/
f1000research.15895.2.

33. Eggertsson HP, Kristmundsdottir S, Beyter D, Jonsson H, Skuladottir A, Hardarson MT, Gudbjartsson DF,
Stefansson K, Halldorsson BV, Melsted P. Graphtyper2 enables population-scale genotyping of structural variation
using pangenome graphs. Nat Commun. 2019;10(1):5402. https://doi.org/10.1038/s41467-019-13341-9.

34. Li H. Minigraph: a sequence-to-graph mapper and pangenome graph generator. 2020. https://doi.org/10.5281/
zenodo.4016798. Accessed 12 Mar 2020.

35. Li H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences. Bioinformatics.
2016;32(14):2103–10. https://doi.org/10.1093/bioinformatics/btw152.

36. Pevzner PA, Tang H, Waterman MS. An Eulerian path approach to DNA fragment assembly. Proc Natl Acad Sci U S
A. 2001;98(17):9748–53. https://doi.org/10.1073/pnas.171285098.

37. Gnerre S, Maccallum I, Przybylski D, Ribeiro FJ, Burton JN, Walker BJ, Sharpe T, Hall G, Shea TP, Sykes S, Berlin AM,
Aird D, Costello M, Daza R, Williams L, Nicol R, Gnirke A, Nusbaum C, Lander ES, Jaffe DB. High-quality draft
assemblies of mammalian genomes from massively parallel sequence data. Proc Natl Acad Sci U S A. 2011;108(4):
1513–8. https://doi.org/10.1073/pnas.1017351108.

38. Rautiainen M, Marschall T. GraphAligner: rapid and versatile sequence-to-graph alignment. Genome Biol. 2020;21:
253.

39. Garrison E, Sirén J, Novak AM, Hickey G, Eizenga JM, Dawson ET, Jones W, Garg S, Markello C, Lin MF, Paten B,
Durbin R. Variation graph toolkit improves read mapping by representing genetic variation in the reference. Nat
Biotechnol. 2018;36(9):875–9. https://doi.org/10.1038/nbt.4227.

40. Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094–100. https://doi.org/
10.1093/bioinformatics/bty191.

41. Ono Y, Asai K, Hamada M. PBSIM: PacBio reads simulator–toward accurate genome assembly. Bioinformatics.
2013;29(1):119–21. https://doi.org/10.1093/bioinformatics/bts649.

42. Lee C, Grasso C, Sharlow MF. Multiple sequence alignment using partial order graphs. Bioinformatics. 2002;18(3):
452–64. https://doi.org/10.1093/bioinformatics/18.3.452.

43. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP. Integrative genomics
viewer. Nat Biotechnol. 2011;29(1):24–6. https://doi.org/10.1038/nbt.1754.

44. Garg S, Fungtammasan A, Carroll A, Chou M, Schmitt A, Zhou X, Mac S, Peluso P, Hatas E, Ghurye J, Maguire J,
Mahmoud M, Cheng H, Heller D, Zook JM, Moemke T, Marschall T, Sedlazeck FJ, Aach J, Chin C-S, Church GM,
Li H. Efficient chromosome-scale haplotype-resolved assembly of human genomes. bioRxiv. 2019. https://doi.org/
10.1101/810341.

45. Mathews LM, Chi SY, Greenberg N, Ovchinnikov I, Swergold GD. Large differences between LINE-1 amplification
rates in the human and chimpanzee lineages. Am J Hum Genet. 2003;72(3):739–48. https://doi.org/10.1086/368275.

46. Amemiya HM, Kundaje A, Boyle AP. The ENCODE blacklist: identification of problematic regions of the genome. Sci
Rep. 2019;9(1):9354. https://doi.org/10.1038/s41598-019-45839-z.

47. Depristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, Del Angel G, Rivas MA, Hanna
M, McKenna A, Fennell TJ, Kernytsky AM, Sivachenko AY, Cibulskis K, Gabriel SB, Altshuler D, Daly MJ. A
framework for variation discovery and genotyping using next-generation dna sequencing data. Nat Genet.
2011;43(5):491–8. https://doi.org/10.1038/ng.806.

https://doi.org/10.4230/LIPIcs.WABI.2017.18
https://doi.org/10.1038/ng.1028
https://doi.org/10.1093/bioinformatics/btz350
https://doi.org/10.1093/bioinformatics/btw371
https://doi.org/10.1093/bioinformatics/bty292
https://doi.org/10.1093/bioinformatics/btz575
https://doi.org/10.1038/ng.3257
https://doi.org/10.1093/bioinformatics/btz235
https://doi.org/10.1093/bioinformatics/btz235
https://doi.org/10.1093/bioinformatics/btr330
https://doi.org/10.1038/ng.3964
https://doi.org/10.1038/ng.3964
https://doi.org/10.1038/s41588-018-0316-4
https://doi.org/10.1038/s41588-018-0316-4
https://doi.org/10.1038/s41588-018-0145-5
https://doi.org/10.12688/f1000research.15895.2
https://doi.org/10.12688/f1000research.15895.2
https://doi.org/10.1038/s41467-019-13341-9
https://doi.org/10.5281/zenodo.4016798
https://doi.org/10.5281/zenodo.4016798
https://doi.org/10.1093/bioinformatics/btw152
https://doi.org/10.1073/pnas.171285098
https://doi.org/10.1073/pnas.1017351108
https://doi.org/10.1038/nbt.4227
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/bty191
https://doi.org/10.1093/bioinformatics/bts649
https://doi.org/10.1093/bioinformatics/18.3.452
https://doi.org/10.1038/nbt.1754
https://doi.org/10.1101/810341
https://doi.org/10.1101/810341
https://doi.org/10.1086/368275
https://doi.org/10.1038/s41598-019-45839-z
https://doi.org/10.1038/ng.806

Li et al. Genome Biology (2020) 21:265 Page 19 of 19

48. Llamas B, Narzisi G, Schneider V, Audano P, Biederstedt E, Blauvelt L, Bradbury P, Chang X, Chin C,
Fungtammasan A, Clarke W, Cleary A, Ebler J, Eizenga J, Sibbesen J, Markello C, Garrison E, Garg S, Hickey G,
Lazo G, Lin M, Mahmoud M, Marschall T, Minkin I, Monlong J, Musunuri R, Sagayaradj S, Novak A, Rautiainen M,
Regier A, Sedlazeck F, Siren J, Souilmi Y, Wagner J, Wrightsman T, Yokoyama T, Zeng Q, Zook J, Paten B, Busby B.
A strategy for building and using a human reference pangenome [version 1; peer review: 1 approved, 1 approved
with reservations]. F1000Research. 2019;8:1751. https://doi.org/10.12688/f1000research.19630.1.

49. Jain C, Misra S, Zhang H, Dilthey AT, Aluru S. Accelerating sequence alignment to graphs. In: 2019 IEEE
International Parallel and Distributed Processing Symposium, IPDPS 2019, May 20-24, 2019. Rio de Janeiro, Brazil:
IEEE; 2019. p. 451–61.

50. Antipov D, Korobeynikov A, McLean JS, Pevzner PA. hybridspades: an algorithm for hybrid assembly of short and
long reads. Bioinformatics. 2016;32(7):1009–15.

51. Rautiainen M, Mäkinen V, Marschall T. Bit-parallel sequence-to-graph alignment. Bioinformatics. 2019;35(19):
3599–607.

52. Jain C, Zhang H, Gao Y, Aluru S. On the complexity of sequence-to-graph alignment. J Comput Biol. 2020;27(4):
640–54.

53. Pritt J, Chen N-C, Langmead B. Forge: prioritizing variants for graph genomes. Genome Biol. 2018;19(1):220.
https://doi.org/10.1186/s13059-018-1595-x.

54. Hickey G, Heller D, Monlong J, Sibbesen JA, Sirén J, Eizenga J, Dawson ET, Garrison E, Novak AM, Paten B.
Genotyping structural variants in pangenome graphs using the vg toolkit. Genome Biol. 2020;21(1):35. https://doi.
org/10.1186/s13059-020-1941-7.

55. Chen S, Krusche P, Dolzhenko E, Sherman RM, Petrovski R, Schlesinger F, Kirsche M, Bentley DR, Schatz MC,
Sedlazeck FJ, et al. Paragraph: a graph-based structural variant genotyper for short-read sequence data. Genome
Biol. 2019;20(1):291. https://doi.org/10.1186/s13059-019-1909-7.

56. Abouelhoda MI, Ohlebusch E. A local chaining algorithm and its applications in comparative genomics. In: Benson
G, Page RDM, editors. Proceedings Algorithms in Bioinformatics, Third International Workshop, WABI 2003,
September 15-20, 2003. Budapest, Hungary: Springer; 2003. p. 1–16. https://doi.org/10.1007/978-3-540-39763-2_1.

57. Otto C, Hoffmann S, Gorodkin J, Stadler PF. Fast local fragment chaining using sum-of-pair gap costs. Algoritm Mol
Biol. 2011;6:4. https://doi.org/10.1186/1748-7188-6-4.

58. Ruzzo WL, Tompa M. A linear time algorithm for finding all maximal scoring subsequences. In: Lengauer T,
Schneider R, Bork P, Brutlag DL, Glasgow JI, Mewes H, Zimmer R, editors. Proceedings of the Seventh International
Conference on Intelligent Systems for Molecular Biology, August 6-10, 1999. Heidelberg, Germany: AAAI; 1999.
p. 234–41.

59. Suzuki H, Kasahara M. Introducing difference recurrence relations for faster semi-global alignment of long
sequences. BMC Bioinformatics. 2018;19:45. https://doi.org/10.1186/s12859-018-2014-8.

60. Tarailo-Graovac M, Chen N. Using repeatmasker to identify repetitive elements in genomic sequences. Curr Protoc
Bioinforma. 2009;Chapter 4:4–10.

61. Morgulis A, Gertz EM, Schäffer AA, Agarwala R. A fast and symmetric dust implementation to mask low-complexity
DNA sequences. J Comput Biol. 2006;13(5):1028–40. https://doi.org/10.1089/cmb.2006.13.1028.

62. Seo J-S, Rhie A, Kim J, Lee S, Sohn M-H, Kim C-U, Hastie A, Cao H, Yun J-Y, Kim J, Kuk J, Park GH, Kim J, Ryu H,
Kim J, Roh M, Baek J, Hunkapiller MW, Korlach J, Shin J-Y, Kim C. De novo assembly and phasing of a Korean
human genome. Nature. 2016;538(7624):243–7. https://doi.org/10.1038/nature20098.

63. Kronenberg ZN, Fiddes IT, Gordon D, Murali S, Cantsilieris S, Meyerson OS, Underwood JG, Nelson BJ, Chaisson
MJP, Dougherty ML, Munson KM, Hastie AR, Diekhans M, Hormozdiari F, Lorusso N, Hoekzema K, Qiu R, Clark K,
Raja A, Welch AE, Sorensen M, Baker C, Fulton RS, Armstrong J, Graves-Lindsay TA, Denli AM, Hoppe ER, Hsieh P,
Hill CM, Pang AWC, Lee J, Lam ET, Dutcher SK, Gage FH, Warren WC, Shendure J, Haussler D, Schneider VA, Cao
H, Ventura M, Wilson RK, Paten B, Pollen A, Eichler EE. High-resolution comparative analysis of great ape genomes.
Science. 2018;360(6393):eaar6343. https://doi.org/10.1126/science.aar6343.

64. Gordon D, Huddleston J, Chaisson MJP, Hill CM, Kronenberg ZN, Munson KM, Malig M, Raja A, Fiddes I,
Hillier LW, Dunn C, Baker C, Armstrong J, Diekhans M, Paten B, Shendure J, Wilson RK, Haussler D, Chin C-S,
Eichler EE. Long-read sequence assembly of the gorilla genome. Science. 2016;352(6281):0344. https://doi.org/10.
1126/science.aae0344.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.12688/f1000research.19630.1
https://doi.org/10.1186/s13059-018-1595-x
https://doi.org/10.1186/s13059-020-1941-7
https://doi.org/10.1186/s13059-020-1941-7
https://doi.org/10.1186/s13059-019-1909-7
https://doi.org/10.1007/978-3-540-39763-2_1
https://doi.org/10.1186/1748-7188-6-4
https://doi.org/10.1186/s12859-018-2014-8
https://doi.org/10.1089/cmb.2006.13.1028
https://doi.org/10.1038/nature20098
https://doi.org/10.1126/science.aar6343
https://doi.org/10.1126/science.aae0344
https://doi.org/10.1126/science.aae0344

	Abstract
	Keywords

	Background
	Results
	Modeling reference pangenome graphs
	Sequence graphs
	Reference pangenome graphs
	The Graphical mApping Format (GAF)

	Sequence-to-graph mapping
	Generating pangenome graphs
	A human pangenome graph
	A great ape pangenome graph
	Blacklist regions from human pangenome graphs

	Discussion
	Conclusions
	Methods
	The minigraph mapping algorithm
	Seeding and linear chaining
	Minimap2-like chaining
	Dynamic 1-dimension Range-Min-Query
	Chaining with a linear gap cost function
	Minigraph linear chaining

	Graph chaining

	The minigraph graph generation algorithm
	Annotating variations
	Creating blacklist regions

	Supplementary informationSupplementary information accompanies this paper at https://doi.org/10.1186/s13059-020-02168-z.
	Additional file 1

	Acknowledgments
	Peer review information
	Review history
	Authors' contributions
	Funding
	Availability of data and materials
	Ethics approval and consent to participate
	Competing interests
	References
	Publisher's Note

