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Abstract

Background: Epigenomic studies that use next generation sequencing experiments
typically rely on the alignment of reads to a reference sequence. However, because of
genetic diversity and the diploid nature of the human genome, we hypothesize that
using a generic reference could lead to incorrectly mapped reads and bias
downstream results.

Results: We show that accounting for genetic variation using a modified reference
genome or a de novo assembled genome can alter histone H3K4me1 and H3K27ac
ChIP-seq peak calls either by creating new personal peaks or by the loss of reference
peaks. Using permissive cutoffs, modified reference genomes are found to alter
approximately 1% of peak calls while de novo assembled genomes alter up to 5% of
peaks. We also show statistically significant differences in the amount of reads
observed in regions associated with the new, altered, and unchanged peaks. We report
that short insertions and deletions (indels), followed by single nucleotide variants
(SNVs), have the highest probability of modifying peak calls. We show that using a
graph personalized genome represents a reasonable compromise between modified
reference genomes and de novo assembled genomes. We demonstrate that altered
peaks have a genomic distribution typical of other peaks.

Conclusions: Analyzing epigenomic datasets with personalized and graph genomes
allows the recovery of new peaks enriched for indels and SNVs. These altered peaks are
more likely to differ between individuals and, as such, could be relevant in the study of
various human phenotypes.

Keywords: Personalized genomes, Genome graphs, De novo assembly, Modified
reference, Reference bias, ChIP-seq, Epigenomics

Background
Standard ChIP-seq analysis relies on aligning reads to a reference sequence followed by
peak calling [1, 2]. While the reference genome is a good approximation of the sequence
under study, it does not account for the millions of small genetic variants, the larger struc-
tural variants, or the two haplotypes of the human genome [3]. Instead, aligners cope with
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Fig. 1 a Two instances of reference bias that could be corrected by a personalized genome. One read is
mapped to the incorrect location in the reference genome. The other read is unmapped in the reference
genome, but becomes mapped in the personalized genome. b Phased personalized genomes can be
implemented in several ways. The reference can be patched with called variants to create a pair of modified
personal genomes (MPGs). Alternatively, a sequence graph genome could be augmented with an
individual’s alleles (GPG). Finally, the entire personal genomic sequence can be assembled de novo (DPG)

variation by allowing mismatches and indels in read alignments [4]. For example, reads
that align to the SNP shown in Fig. 1a would simply include a mismatch in their align-
ment to the reference sequence. Differences between the genome under study and the
reference will shift the mapping of some reads and generate unmapped reads (Fig. 1a), a
phenomenon known as reference bias [5]. Provided that themapping of a number of reads
is modified, an alignment to a personalized genome could lead to the gain or the loss of a
peak, or what we will call an altered peak (AP). Actually, it has already been shown that
just changing the assembly version of the reference can affect epigenomic analyses [6].
In the current study, we want to evaluate the impact of using different types of per-

sonalized genomes on ChIP-seq analysis (Fig. 1b). One obvious way of generating a
personalized genome is to modify the reference genome using phased variant calls
obtained from whole-genome sequencing to generate a diploid pair of sequences [7]. We
call this making a modified personalized genome (MPG). Because we cannot align reads
to both MPGs simultaneously, analyses are done separately for each haploid sequence
and merged afterwards. The advantage is that aligned reads would no longer feature the
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mismatch corresponding to the SNP mentioned above (Fig. 1b). Epigenomic studies
involving the use of MPGs are present in the literature. For instance, Shi et al. mod-
ified the reference genome using phased single nucleotide variant (SNV) calls and
then realigned transcription factor and histone ChIP-seq data to record allelic spe-
cific binding events [8]. However, that study did not consider indels and was limited
to understanding how SNVs affect standard analyses but not the identification of APs.
Additionally, although pipelines such as AlleleSeq [7] do support indels and structural
variations (SVs), they remain restricted to detecting allellic specific events without pro-
viding a way to detect APs. Allim [9] is a similar pipeline that attempts to detect
instances of allelic imbalance in gene expression by modifying the reference to con-
struct parental haplotypes. Turro et al. also leveraged genotypes, this time by mod-
ifying a reference transcriptome [10]. A study that did look at the use of MPGs as
compared to the reference genome was done in the context of RNA-seq [11], where
it was shown that personalized mouse genomes can improve transcript abundance
estimates.
Improving the reference using SNVs and indels can help account for variation of small

length, but not for larger SVs. For this reason, we also turn to de novo assembled personal
genomes (DPGs) to fully reconstruct the genome sequence under study and to capture a
broader range of genetic differences (Fig. 1b). Here, we employ a phased de novo assembly
of NA12878. Like MPGs, it provides a sequence for each haploid but it is not constructed
from the reference genome. However, high-quality DPGs remain challenging to obtain
for epigenomic analyses, as they typically require at least 50× sequencing depth and long
reads, which remain costly [12]. Also, the computational time for DPGs is much higher
than aligning to a reference and calling variants [13]. Moreover, de novo assemblies may
contain defects and are often incomplete compared to the reference [14]. Despite this,
they may still provide a useful point of comparison.
Finally, the above trade-offs also motivate the exploration of graph genomes as an

additional strategy. Graph genomes are a flexible way of representing many possible
sequences in a concise data structure [15]. Unlike traditional one-dimensional sequence
representations, graph genomes split sequences into segments called nodes. The nodes
are connected to each other by edges, which allows traversing the graph from one node
to another. Well-defined rules about the semantics of nodes and the direction of edges
allow graphs to express many sequences. A valid traversal is called a path and represents
one possible sequence that is represented by the graph. This emerging technology can
encode sequence variation at many levels for different purposes [16]. For example, it can
encode genetic variation within a population of the same species, genomic differences
between species within a phylogenetic tree, or genomic rearrangements of a cancerous
tumor. We will employ graph genomes to construct a graph personalized genome (GPG)
representing the diploid genome of a single individual (Fig. 1b). GPGs can leverage avail-
able call sets that include a broad range of variants, from SNPs and indels to catalogs of
sequence resolved SVs, and also capture the diploid nature of the human genome [17].
This is achieved by converting the reference genome to a graph format and augmenting it
with nodes representing the variants. By mapping to a GPG, we expect that reads contain-
ing variants will align to the appropriate path, which improves read alignment accuracy
[5]. Conveniently, genome graph implementations such as vg [18] exist and provide the
proper utilities and semantics to work with annotations spanning multiple coordinate
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systems. Moreover, there are tools that can call ChIP-seq peaks directly from graph
genomes [19] .
The objective of our study is to provide a comparison between alternative person-

alized genomes (MPGs, DPGs, and GPGs) for ChIP-seq analyses. We focus on the
H3K4me1 and H3K27ac histone marks primarily due to broad availability in samples of
the Blueprint Consortium [20] (see below). H3K27ac is linked with enhancers, distin-
guishing between active and inactive enhancers and therefore impacts gene regulation
[21]. At the same time, H3K4me1 correlates with H3K27ac in enhancers, but can inter-
act with chromatin regulators such as p300 and other histone marks to determine other
classes of regulatory elements [22]. Even if only a fraction of peaks are observed to be
altered, these regions will correspond to biochemically active regions that are more likely
to differ between individuals and, as such, could be relevant in the study of various human
phenotypes.

Results
Modified personal genomes alter a small fraction of peaks that are enriched in indels

There are many high-confidence variant call sets and assemblies of the NA12878 genome,
which makes it a good candidate for benchmarking [23, 24]. We created a paternal and
maternal MPG for NA12878 and aligned whole-genome sequencing (WGS) reads to the
standard human reference and to these MPGs (see the “Methods” section). We wanted
to estimate the proportion of changed mappings and noted that 3.6% of WGS reads
move depending on the reference that is used (Additional file 1: Table S1a). To mea-
sure the impact of reads changing location on ChIP-seq calls, we aligned H3K4me1 and
H3K27ac ENCODE datasets from NA12878 and counted the proportion of altered peaks
(see the “Methods” section). Altered peaks are categorized into two categories. Peaks in
the personalized genome that do not overlap a peak in the reference genome are called
personal-only. Peaks in the reference genome that do not overlap a peak in the per-
sonalized genome are called ref-only. Any peak in the personal genome that overlaps a
peak in the reference genome is a common peak (see the “Methods” section). We found
that the fraction of personal-only and ref-only peaks was consistent between the two
histone marks (Table 1). Among the H3K4me1 calls, each MPG yielded roughly 1600
personal-only (1.1%) peaks and roughly 800 ref-only peaks (0.6%). Among the H3K27ac
calls, we called roughly 600 personal-only peaks (1.0%) and 300 ref-only peaks (0.5%)
in each MPG. Notably, personal-only peaks were found at about double the rate of
ref-only peaks. Ref-only peaks arise when the reads forming a peak pileup in the refer-
ence map to different locations in the personalized genome. In contrast, personal-only
peaks emerge when reads shift their mapping from the reference pileup to the new
personalized pileup or when reads that did not map to the reference become mapped
to the personalized genome. Consistent with this hypothesis, there was a net gain of
mapped WGS reads in the NA12878 MPG (Additional file 1: Table S1a) and personal-
only intervals are enriched in ChIP-seq rescued reads relative to ref-only intervals
(Additional file 1: Fig S1a).
Aligning to a personalized genome may cause differences in read density that do

not necessarily lead to an AP call, especially in the strong peak regions. For that
reason, we also counted the reads in personal-only, ref-only, and common peak inter-
vals and compared them between the reference and personalized alignments (see the
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Table 1 Number of altered peak calls in MPGs, DPGs, and GPGs for the NA12878 H3K4me1 and
H3K27ac marks

Version Mark Common Personal-only Ref-only

MPG, paternal H3K4me1 146,520 1636 (1.1%) 854 (0.6%)

MPG, maternal H3K4me1 146,570 1622 (1.1%) 808 (0.6%)

MPG, downsampled H3K4me1 146,688 1051 (0.7%) 550 (0.4%)

DPG, Hap1 H3K4me1 141,444 7176 (4.8%) 6755 (4.6%)

DPG, Hap2 H3K4me1 141,442 7130 (4.8%) 6774 (4.6%)

DPG, Pendleton H3K4me1 142,347 16,245 (10.2%) 8912 (5.8%)

GPG H3K4me1 132,668 3068 (2.3%) 1178 (0.9%)

MPG, paternal H3K27ac 68,888 660 (1.0%) 351 (0.5%)

MPG, maternal H3K27ac 68,909 688 (1.0%) 335 (0.5%)

MPG, downsampled H3K27ac 68,953 438 (0.6%) 218 (0.3%)

DPG, Hap1 H3K27ac 63,419 2078 (3.2%) 9901 (13.5%)

DPG, Hap2 H3K27ac 63,441 2091 (3.2%) 9899 (13.5%)

DPG, Pendleton H3K27ac 66,811 5208 (7.2%) 4980 (6.9%)

GPG H3K27ac 75,538 1847 (2.4%) 1206 (1.6%)

“Methods” section). Ideally, AP calls should also have a skewed coverage toward the per-
sonal or reference genome that indicates a clear change in read depth at that site. However,
for most AP calls, we found that their coverage distribution remained clustered within
the distribution of the common and unaffected peak calls (Fig. 2a). Most affected peak
calls fall into the no-skew category together with common calls, with only around 30 out
of 1600 peaks having a coverage skewed toward the reference or the MPG (Fig. 2b and
Table S2). Comparing the q value distribution of common peaks against the distribu-
tion of APs revealed similar modes but a much shorter right tail for APs (Fig. 2c). This
means that personal-only peaks and ref-only peaks are confined to a region of narrower
width and lower confidence (as measured by MACS2 score) than most common peaks
(Additional file 1: Fig S1b - S1c). Similar results were also observed for H3K27ac
(Additional file 1: Fig S2a and S3a).
Finally, we wanted to explore the link between AP and variant calls, as we expected

the former to occur mainly in the presence of the latter. For this purpose, we binned AP
calls according to the overlapped combination of variants (see the “Methods” section).
Reassuringly, we found that peak calls that do not contain variations have a near zero
chance of being altered, while peaks overlapping at least one indel are the most likely to
be altered followed by peaks overlapping at least one SNP (Fig. 2d). Interestingly, peaks
containing at least one SNP and indel are the least likely to be altered. A factor that could
explain this trend is the peak width associated to each peak category and histone mark.
Indeed, we found that the mean width of peaks overlapping both indels and SNPs is the
highest among the four combinations of variations, followed by peaks with at least one
indel and peaks with at least one SNP (Fig. 2d). Using a regularized logistic regression
model (see the “Methods” section), we were also able to show that peak width has an
inverse relationship with AP calls (Additional file 1: Fig S1d - S1e). We estimated that the
AP call log-odds ratio decreases by 0.19 per additional 100 bp in peak width and increases
by 1.29 per additional SNP and by 2.0 per additional indel. This model predicts fewer
altered peaks in broad histone marks and more altered peaks in narrow histone marks
and transcription factors.
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Fig. 2 a A comparison of the coverage of H3K4me1 peak called regions in hg19 and the maternal MPG. b
Identification of peak called regions that have a significant difference in coverage. c Q value distributions of
the same H3K4me1 peaks. d NA12878 MPG estimate of the probability that each combination of variation
calls present in a region may cause a personal-only peak call compared to their average widths

Applying modified personal genomes to Blueprint samples

NA12878 is a deeply sequenced sample with high-quality variant calls, meaning that it
is not representative of most datasets. We wanted to evaluate the proportion of altered
peaks on lower pass WGS datasets such as Blueprint, a cohort of samples used in the
study of hematopoietic epigenomes for which ChIP-seq data is available [20] (see the
“Methods” section). In Blueprint samples, we called on average 130 and 47 thousand com-
mon peaks for H3K4me1 and H3K27ac, respectively. Overall, the total number of peaks
is comparable to NA12878 (Additional file 1: Table S3). In H3K4me1, there are approxi-
mately 750 (0.6%) personal-only peaks and 450 (0.4%) ref-only peaks. In H3K27ac, there
are approximately 330 (0.7%) personal-only peaks and 190 (0.4%) ref-only peaks. Among
these samples, the number of APs is almost always below the NA12878 benchmark
(Fig. 3a and S4a). Again, ref-only peaks are observed to occur less often than personal-
only peaks. A decrease is also observed with skewed peaks. While not numerous in the
benchmark to begin with (50–70), their number in the typical Blueprint sample barely
reaches double-digit numbers (Fig. 3b and S4b). This is likely due to the difference in
the whole-genome sequencing depth, as the NA12878 variant call set (3.5M SNPs, 0.5M
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Fig. 3 a Proportion of peaks that are called only in personalized MPGs. b Number of peaks with higher
coverage in the personalized MPG than in the reference. c Blueprint MPG estimates of the probability that
each combination of variation calls present in a region may cause a personal-only peak call compared to
their relative average widths. d The probability that a variant affects a peak called on full reads is lower
compared to trimmed reads

indels) is richer than Blueprint (approximately 3.25M SNPs and 0.375M indels per sample,
Additional file 1: Fig S4c). We confirmed this by creating a NA12878 MPG by down-
sampling the original set to 2.6M SNVs and 100K indels. As shown in Table 1, the
downsampledMPG produces fewer AP calls relative to the full set for both H3K4me1 and
H3K27ac marks. We should also keep in mind that the phasing of NA12878 variant calls
is better than for Blueprint, which could also contribute to more AP calls.
In Blueprint, altered peaks remain enriched in variants, with peaks containing indels

being altered most frequently (Fig. 3c). Again, we found that the peaks of H3K4me1 were
slightly less likely to be altered than the peaks of H3K27ac. As previously discussed, this
is probably due to the inverse relationship between peak width and altered calls. As to
the quality of altered Blueprint peaks, the same pattern of width, confidence, and cov-
erage observed in NA12878 was seen again in Blueprint samples (Additional file 1: Fig
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S5). The small differences in coverage together with the weak confidence of APs indi-
cate that MPGs can only alter the calls of regions that are very near the threshold of
significance.
Finally, in this initial analysis, we had trimmed every sample to a read length of 36 bp

to make it comparable to the NA12878 datasets (see the “Methods” section). To test the
effect of read length, we repeated the Blueprint analysis with the full 100 bp reads. We
found, as expected, that as the read length increases, APs become less likely (Fig. 3d). We
repeated the NA12878 WGS alignment comparison with the longer 100 bp reads to gain
some insight on why this happens (Additional file 1: Table S4a). Compared to the shorter
reads (Additional file 1: Table S1a), the longer reads show a small decrease in aligned reads
with unequal mappings. However, the proportion of reads are mapped in one genome but
not in the other halves. This is accompanied by a greater mapping rate of the whole WGS
dataset. Therefore, the decrease in APs can be attributed to a smaller proportion of reads
that are rescued by the personalized genome.

De novo personalized genomes create a larger number of altered peaks

If the moderate effect of using MPGs for ChIP-seq calls in NA12878 and Blueprint is
explained by the fact that larger scale variations had not been taken into account, then
de novo assemblies, or DPGs, could potentially have a broader impact. Support for this
hypothesis comes from the increased rate of read mapping changes when using DPGs
instead of MPGs (Additional file 1: Table S1b). We opted to use the 10× Hap1 de novo
assembly as a DPG for this comparison (see the “Methods” section). In this DPG, 9.8% of
reads change their mapping, which is nearly a threefold increase from the equivalent anal-
ysis with MPGs. When using full reads, we still get that 9.4% of reads alter their mapping
(Additional file 1: Table S4b). As in MPGs, the number of rescued reads proportionally
changes the most.
In the context of ChIP-seq analysis, this should lead to a larger number of altered

peaks. Indeed, using the same datasets (see the “Methods” section), we found that the
altered peak calls are roughly five times more numerous with a similar number of com-
mon peaks when using the Hap1 and Hap2 DPGs instead of an MPG (Table 1). For
H3K4me1, we obtained approximately 7.1 thousand (4.8%) personal-only peaks and 6.7
thousand (4.6%) ref-only peaks. For H3K27ac, we called approximately 2.1 thousand
(3.2%) personal-only peaks. For this mark, the number of ref-only peaks is unusually large
at 9.9 thousand (13.5%) peaks. We also repeated the analysis that identifies peaks that
have skewed read counts toward the DPG or the reference. Notably, we found that many
AP calls now have substantial differences in coverage (Fig. 4a and Additional file 1: Fig
S2c for H3K27ac). There are also many significantly skewed peaks, with a larger read
count difference between the reference and the DPG (Fig. 4b and Additional file 1: Fig
S2d for H3K27ac). Similar results are also obtained using the Pendleton DPG (see the
“Methods” section and Table 1). Overall, personal-skewed and ref-skewed peaks are one
to two orders of magnitude more numerous in DPGs versus MPGs (Additional file 1:
Table S2). Although personal-only peaks do not reach an identical distribution to com-
mon peaks, there are considerable gains in terms of width and quality (Additional file 1:
Fig S6a). DPG-only peaks are found to have a higher mean SNP and indel density com-
pared to common peaks (Additional file 1: Fig S6d). As for ref-only peaks, they are only
slightly enriched in variation calls. This can be explained by a group of ref-only calls



Groza et al. Genome Biology          (2020) 21:124 Page 9 of 22

Fig. 4 a A comparison of the coverage of peak called regions in the reference and the Hap1 DPG. The smear
represents ref-only peaks with no coverage in Hap1. b Identification of peak called regions that have a
significant difference in coverage. c Summary of the overlap between altered peaks, confident peaks, repeats,
and segmental duplications [58]. d The repeats that overlap altered peaks are enriched in Alu elements
relative to their frequency in the RepeatMasker. The categories are chosen by grouping repeats by name
prefix, summing their frequencies per group, and taking the largest groups. Remaining groups are labeled as
“other.” The control regions are random genomic intervals with a width distribution identical to altered peaks

that have coverage in the reference but not in the DPG (Fig. 4a). We view these ref-
only peaks as probably missing from the de novo assembly and not as the product of
genetic variation.
If SVs are the root of many AP calls, then many of these peaks should overlap repeats or

segmental duplications that are known to be underrepresented in de novo assemblies [25].
We selected the most confident subset of H3K4me1 AP calls to be overlapped with seg-
mental duplication (SD) and repeat annotations (see the “Methods” section). This reduces
the initial set to 828 confident DPG-only and 2064 confident ref-only peaks. Among
confident DPG-only peaks, only 349 peaks are located in regions free of SDs (Fig. 4c).
Ref-only peaks with positive DPG coverage register much fewer SDs (6.3%). However,
ref-only peaks without DPG coverage are highly associated with SDs (71.3%) (Additional
file 1: Table S5). The lack of coverage suggests that these duplicated sequences are not
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present in the DPG. Looking among the SD-free peaks, we discovered peaks with large
differences between the reference alignment and the DPG alignment (Additional file 1:
Fig S7). We also measured the enrichment in APs of the different repeat families (see the
“Methods” section). Alus were found to be 2 times more frequent in DPG-only peaks and
1.5 times in ref-only peaks (Fig. 4d). The same is not true for repeat families such as L1,
which occur equally or less often in APs relative to the genome. There also exists a small
confident subset of 46 DPG-only and 115 ref-only peaks that are free of both SDs and
repeats. Despite the absence of known repeats or segmental duplications, these peaks can
still have large differences in coverage between the DPG and the reference alignments
(Additional file 1: Fig S8). We obtained similar results for H3K27ac (Additional file 1: Fig
S9a - S9b).

Graph personalized genomes create more altered peaks than MPGs

Although DPGs are more effective than MPGs to recover APs, in practice, they are often
difficult to obtain. Therefore, we were interested in GPGs due to their ability to represent
genetic variation and potentially approximate de novo assemblies by exploiting structural
variant catalogs. In addition, GPGs improve on MPGs by allowing read alignment to a
diploid genome instead of treating each haploid individually. As before, we mapped the
same WGS reads to the reference genome, this time represented as a graph, and to the
NA12878 GPG and then compared their coordinates using built-in vg functionality (see
the “Methods” section). By properly representing the diploid genome, we expected GPGs
to shift the mapping of a greater proportion of reads than an equivalent pair of MPGs. In
fact, we found that the proportion of unequal mappings between the reference graph and
the NA12878 GPG (8.3%) is more than twice the number between the reference and the
NA12878 MPGs (3.43%) given the same WGS dataset (Additional file 1: Table S1c). We
verified that this proportion remains stable when varying alignment mismatch and gap
penalties (Additional file 1: Fig S10a).
We found similar numbers of common peaks in GPGs as in MPGs and DPGs, specif-

ically 132 thousand H3K4me1 calls and 75 thousand H3K27ac calls (see Table 1 and
the “Methods” section). Among the H3K4me1 calls, 3068 (2.3%) are personal-only and
1178 (0.9%) are ref-only. Among the H3K27ac calls, 1847 (2.4%) are personal-only and
1206 (1.6%) are ref-only. Both sets of values are intermediate between MPGs and DPGs
(Table 1). Revisiting the peak read counts between the reference graph and the diploid
graph shows greater dispersion, among both altered and common peaks (Fig. 5a). The
same test for read count skew yields between 279 and 411 peaks, an order of magnitude
more than MPGs (Fig. 5b, Additional file 1: Table S2). See also Additional file 1: Fig S2e
- S2f for similar results with H3K27ac. Next, we recalculated the association of indels
and SNPs with the personal-only peak calls in GPGs (Additional file 1: Fig S11b). Again,
indels have the strongest association with APs for both H3K4me1 and H3K27ac marks.
Contrary to MPGs, H3K27ac peaks containing both indels and SNPs are just as likely to
be altered as peaks containing only SNPs, despite being much wider. Similarly to MPGs,
peaks lacking variants are the least likely to be altered in both histone markers.
The false discovery rate (FDR) is an important parameter in peak calling. It is possible

that a peak that is personal-only at a given FDR would be found in the reference at higher
FDR. Testing for this, we found that for H3K27ac, 1021 of 1847 peaks remain personal-
only at 0.05 FDR even when using 0.10 FDR in the reference. For H3K4me1, 745 of 3068
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Fig. 5 a A comparison of the coverage of H3K4me1 peak called regions in the reference and the graph
genome. Pairwise overlaps between MPG, DPG, and GPG H3K4me1 peak tracks. b Identification of peak
called regions that have a significant difference in coverage. c Overlap of all peak calls. d Overlap of altered
personal-only peak calls. e Overlap of ref-only peak calls. f Empirical null distributions for the overlap of
personal-only peaks between personal genome implementations

peaks remain personal-only. This suggests that personal genomes move some read pile-
ups just above the significance threshold. We know that personalized genomes improve
alignment accuracy [5] and that individualized genomes improve transcript abundance
estimates in RNA-seq [11]. Provided the signal also increases in ChIP-seq, we argue that
the peak ranking in personalized genomes is more meaningful than the ranking in the



Groza et al. Genome Biology          (2020) 21:124 Page 12 of 22

reference genome. The excess of personal-only to ref-only peaks supports the new
ranking. If the ranking changed randomly, the number of personal-only peaks would
equal ref-only peaks. We also check that the number of personal-only was not too sen-
sitive to the choice of FDR threshold (Additional file 1: Fig S12). We ran even more
ENCODE datasets through our GPG pipeline tomeasure the proportion of APs across the
NA12878 reference epigenome (Additional file 1: Fig S13). GPG-only peaks were found
to vary from 0.84% for CTCF to 6.53% for H3K9me3.
An additional concern is that the FDR of peak callers such as MACS2 may be inac-

curate. Therefore, we tested IDR, a tool that compares the ranking of peaks between
replicates to better control the FDR [26]. Using our approach on an additional NA12878
ENCODE dataset (H3K4me3), due to the availability of consistent replicates with similar
read depth and read length, we found that the proportion of personal-only peaks in this
dataset declines from 0.99 to 0.6% if we correct MACS2 peaks with IDR (Additional file 1:
Table S6). This shows that the majority of personal-only peaks remain, even if we apply a
more stringent statistical cutoff. We also show that personal-only peaks are supported by
orthogonal sources of data in addition to replicates. We do so by correlating the peak calls
to the read depth in H3K4me1, H3K27ac, and H3K4me3. In common peaks, the average
read depth rises together with the average read depth of correlated histone marks (Addi-
tional file 1: Fig S14). In personal-only peaks, we observe a similar pattern together with
an increased average read depth compared to ref-only peaks. Moreover, since alignment
parameters may also be relevant, we confirm that simply aligning ChIP-seq reads to the
reference with different mismatch and gap penalties does not change more reference peak
calls than a personalized genome (Additional file 1: Fig S10b, S10c).
Next, we were interested in the concordance between the 3 approaches:MGP, GPG, and

DPG (see the “Methods” section). We found the overlap between the total peak tracks to
be substantial, with over 100,000 H3K4me1 peak calls overlapping between the three per-
sonalized genome implementations (Fig. 5c and S9d for H3K27ac). In contrast, when the
AP calls are intersected, a small overlap is observed for personal-only peaks and ref-only
peaks (Fig. 5d, e and S9e - S9f for H3K27ac). Only 234 of 3068 (7.6%) of the NA12878 GPG
personal-only calls are replicated in the DPG. Similarly, only 79 GPG ref-only calls are
replicated from a total of 1178 peaks (9.8%). Comparatively, the replication rates between
MPGs and DPGs are slightly higher, despite smaller absolute number of peaks. One hun
dred eighty-six of 1622 (14%) personal-only peaks and 82 of 808 (10.1%) ref-only peaks are
replicated in the DPG. We wanted to know if chance alone could explain this small over-
lap of AP calls. We checked this by generating a distribution of peak overlaps by randomly
and repeatedly sampling the respective number of personal-only peaks in each genome
from its total number of peaks (see the “Methods” section). The expected number of repli-
cated personal-only peaks is 140 peaks between the GPG and DPG and 80 peaks between
the MPG and DPG (Fig. 5f ). As such, albeit small, the number of replicated peaks cannot
be explained by chance alone.

Further characterizing the altered peaks

We were interested in comparing the quality of the APs found by the three different
approaches. We did this by comparing the q values of peaks by rank in each genome
(Fig. 6a). From this, we observed that the best DPG-only peaks surpass the best GPG-only
and MPG-only peaks by a wide margin. The top GPG APs only surpass the top MPG APs
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Fig. 6 a Comparison of altered peak q values between MPG, GPG, and DPG implementations by rank. The
top n peak subset was increased by 5 peak increments. b Distribution of gene relative positions of
personal-only peaks among all genomes. Personal-only and common peaks replicated in at least two
genomes are also featured. c The pileup of a GPG-only peak projected to the hg19 linear reference. d The
true graph rendering of the above AP in the NA12878 GPG and reference genome graph

by around one unit on the − log10(q) scale. But on a linear scale, this means that the most
confident GPG APs are an order of magnitude more confident than the most confident
MPG APs. See Additional file 1: Fig S3c - S3d for H3K27ac.
H3K4me1 is a histone mark known to be associated with gene activation that is present

near transcription start sites and transcribed regions [27]. Meanwhile, H3K27 is localized
in enhancers [21]. However, these patterns may not necessarily be replicated in AP calls,
particularly if they are caused by noisy signal. Therefore, we wanted to check whether APs
maintain the same genomic distribution as the rest of the calls, among all three genome
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implementations. To this end, we computed the distances to the nearest gene for MPG-
only, DPG-only, and GPG-only peaks as well as for personal-only and common peaks that
were replicated in at least two genomes (see the “Methods” section). We distinguished
between peaks that overlap a gene and peaks that are within 10 kb, between 10 kb and
100 kb, or further than 100 kb from a gene. Overall, the genomic profile of AP calls is very
similar to that of replicated common calls across the board, regardless of the genome or
replication (Fig. 6b and Additional file 1: Fig S9c for H3K27ac).
Given that more than half of APs are within genes, some may be of particular interest.

Indeed, Fig. 6c shows a GPG-only example projected to the reference, while Fig. 6d shows
the true graph rendering of the pileups. The personalized peak overlaps four consecutive
SNVs which are incorporated in the GPG but not the reference graph. Since this peak
lies on the alternate allele, future allelic quantification pipelines that operate on graph
genomes should be able to detect such events. The graph rendering clearly shows a fair
number of reads aligning to these SNVs, forming a pileup that fails to appear in the refer-
ence graph. Moreover, this interval is within the third intron of STON1-GTF2A1L, a gene
that appears in twoGWAS studies linking it to neovascular age-relatedmacular degenera-
tion [28] and polycystic ovary syndrome [29]. Such examples justify investigating whether
GPGs could improve our understanding of gene regulation in individual genomes.

Discussion
By moving from the reference sequence to a MPG, GPG, and DPG, the genome rep-
resentation became richer by incorporating SNVs and indels, variants in the form of a
diploid graph, and also larger structural variants. These personalized genomes provide
an upstream benefit by improving read alignment to downstream ChIP-seq peak calling
pipelines. When reanalyzing ChIP-seq datasets using these personalized genome imple-
mentations, we were able to identify hundreds to thousands of APs using permissive
MACS2 and Graph Peak Caller FDR cutoffs. The proportions of altered peaks in GPGs
only decreased by a factor of 2 in the stringent IDR analysis that employs ENCODE
replicates. While most APs detected using MPGs had only marginal changes in cover-
age, the GPGs and DPGs yielded tens to thousands of peaks with significant read count
differences relative to the reference. Notably, we observed that indels followed by SNVs
were enriched in APs and that there was an inverse correlation with peak width. We also
observed that Alus were overrepresented in APs, a transposable element known to be
active in the human genome [30] and with many polymporphic instances in the popu-
lation. Although it is tempting to think that some of these APs might be driven by Alu
polymorphisms, it would require additional validation as it could also be caused by errors
in the personalized genomes that were used for the analysis.
The vast majority of common peaks were identified consistently by the 3 methods, but

only a minority of APs were found by 2 or more methods. This limited overlap might be
a consequence of the fact that the genome implementations are technically very differ-
ent from each other. For instance, only DPGs at this stage took into account SVs, but at
the same time, some regions of the personal genome might be missing for the current
DPG. GPGs represent a promising compromise between MPG and DPGs as they also
have the ability to natively account for the diploid nature of the human genome. A natural
extension will be to try to incorporate SVs into GPGs to see how it can further improve
their performance. Comparing the results of several graph genome aligners that employ
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different strategies in addition to varying alignment parameters would be interesting once
they become widely available. Furthermore, as pangenome graphs are created to capture
all known variations [15] together with the haplotypes of entire populations, it might be
possible to further improve on the current performance as well as finding associations
between genotype and personal-only peaks.
Even though we primarily focused on APs, we also encountered peaks that differed

significantly in read counts. These skewed common peaks produced by personalized
genomes should not be ignored, particularly when performing differential expression
analysis between control and treatment groups. Even if the number of skewed peaks is
generally smaller than APs, they remain important because such studies typically iden-
tify a small number of differentially expressed regions. Therefore, the application of
personalized genomes could reveal new data points or correct false positives.
In studying the impact of using personalized genomes with epigenomic data, we initially

focused on the human species because of the high quality of its reference, which allowed
us to reliably estimate bias. However, the above results could be amplified in species of
greater genetic diversity such as chimps [31]. Notably, to properly determine the bio-
logical significance of APs, our analysis will need to be expanded to datasets obtained
from more tissues and with follow-up experiments. Finally, we constructed personalized
genomes that only incorporate germline genetic variation. However, this does not account
for somatic genetic variation that is known to exist at the cell and tissue level [32]. The
construction of pan-cellular genome graphs is another direction to explore, especially as
single cell multiomic technologies mature [33].

Conclusions
Analyzing epigenomic datasets with personalized and graph genomes allows the recovery
of novel ChIP-seq peaks many of which fall within genic regions and could differ between
individuals. Although we focused this study on ChIP-seq, it is likely that these results
will extend to other epigenomic assays such as ATAC-seq and whole-genome bisulfite
sequencing. As we move toward profiling the epigenome of large human cohorts to study
various phenotypes, it is likely that using personalized and graph genomes will reveal
important loci that would have been missed otherwise.

Methods
Data

We selected NA12878 as a benchmark dataset due to the availability of phased variation
calls from high coverage whole-genome sequencing (200×) [23] in addition to several
de novo assemblies. FASTQs for H3K27ac, H3K4me1 marks, and a control (input) were
downloaded from the ENCODE project [34]. The accession numbers for these samples
are ENCFF000ASM, ENCFF000ASU, and ENCFF002ECP, respectively. We also used an
ENCODE H3K4me3 dataset with accession number ENCSR057BWO for the IDR repli-
cate analysis. To generate additional supporting results for ChIP-seq, we used a low pass
NA12878 WGS dataset from IGSR [35] (SRR622461) [36]. Samples from the Blueprint
project [37] were also selected due to the availability of phased variation calls from low
pass whole-genome sequencing (8×) together with ChIP-seq datasets for the H3K4me1
and H3K27ac histone marks. In total, 151 H3K4me1 samples and 111 H3K27ac samples
were used in this analysis.
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Preparing personalized genomes

Three different approaches were used to generate personalized genomes. First,
vcf2diploid [7] was used to substitute the alternative sequence of the phased variation
calls into the hg19 reference to create a MPG. The output are two FASTA files for each
contig, forming the conventionally named maternal and paternal haplotypes. The contig
FASTAs were concatenated according to their haplotype, resulting in one maternal and
one paternal FASTA. It is to be noted that vcf2diploid does not process unordered
contigs. Therefore, unordered contigs were removed from hg19 to ensure the same set of
contigs between the standard and substituted versions. Also, vcf2diploid generates
two chain files that allow the lifting of annotation tracks with coordinates in hg19 to the
corresponding personalized haplotype using liftOver [38]. This is necessary since the
incorporated indels shift the coordinates of the maternal/paternal haplotype relative to
hg19.
The second approach, applied only to the NA12878 dataset, consisted of using de novo

assembled genomes from the Pendleton [39] and two 10X Genomics assemblies [40] to
create two DPGs. The 10X Genomics assembly includes two pseudo-haps named Hap1
and Hap2 that will be used as a de novo assembled diploid genome. In the case of the
de novo assemblies, the chain files had to be produced from a BLAT [41] alignment
between the de novo assembly and hg19 with the UCSC tool set [42]. This allowed the
lifting of annotation tracks from the de novo assembly to the hg19 reference. The per-
formance of DPG and MPG chain files was compared through the proportion peaks
that failed to lift. Note that hg19 contains alternative contigs that represent some loci
multiple times. In de novo assemblies, we expect loci to be represented only once.
Therefore, the above analysis was performed on a hg19 version that was stripped of
alternative contigs.
To allow alignment to personalized MPG or DPG FASTAs using bwa mem [43], an

index was created using bwa index. A FASTA index was also created using samtools
faidx [44] to compute the new chromosome sizes.
The third approach involved creating a reference graph genome by converting the linear

hg19 reference to a graph format. A copy of this graphwas then augmented withNA12878
variant calls, which yields the GPG. This was done with vg construct [18]. xg and
GCSA2 graph indices were created withvg index to allowmapping reads with vg map.

Aligning, peak calling, and annotating

To remove any effect of read length, all reads were trimmed to 36 bp using trimmomatic
[45]. The trimmed reads were aligned using bwa mem to hg19 and each personalized
haplotype FASTAs. After marking duplicates with picard [46], peak calling was done
on the corresponding BAM files using MACS2 [47] with --nomodel and the --gsize
parameter set to 80% of the assembly length. In graph genomes, peaks were called with
Graph peak caller [19], a graph MACS2 implementation, by using the same linear
genome size and the same fragment length parameter that was estimated byMACS2. The
q value threshold (false discovery rate) was set at 0.05.
For each alignment, a coverage annotation was produced with bedtools bamtobed

[48]. The output was a BED file listing all the aligned reads and their coordinates. Graph
alignments (GAM) were surjected to BAM using vg surject and underwent the same
procedure.
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Lifting annotations

In the case of DPGs, coverage and peak annotations were lifted from the DPG to hg19
using the tool liftOver . In the case of MPGs, the annotations were lifted from hg19
to the MPG. Therefore, this required the lifting of variant call annotations to the MPG in
addition to the peak call and coverage annotations.
The variant call annotation was first converted from the VCF format to BED, sepa-

rated by phase and type (SNP vs indel), and then lifted to the personalized haplotype. The
outcome is a set of BED files listing the SNPs and indels separately for each respective
haplotype.
liftOver was called with default arguments in BP samples, which require 95%

sequence identity between lifted regions and target regions. This stringent -minMatch
was not an issue since MPGs are almost identical to hg19 and virtually all peaks lift. In
10X and Pendleton samples, -minMatch was set 0.85 to reduce the number of unlifted
peaks and reduce the number of false ref-only peaks. To evaluate lifting efficacy, the num-
ber of peaks that failed to lift was compiled for every sample. Once tracks are lifted to a
common coordinate system, it becomes possible to overlap and compare the annotations
from the personalized haplotype and the hg19 standard reference using bedtools.
Graph annotations are readily surjected onto hg19 using built-in functionality in vg and

Graph peak caller.

Overlapping annotations

The lifted or surjected peak call annotations were overlapped using bedtools

intersect and bedtools subtract. Peaks resulting from the intersect of the per-
sonalized and the hg19 peak tracks were categorized as common. Peaks resulting from
subtracting the hg19 track from the personalized track were categorized as personal-only.
Similarly, peaks resulting from subtracting the personalized track from the hg19 track
were categorized as ref-only. If a peak in the personalized genome shows any partial over-
lap with a peak in the reference genome, it is labeled as common. The end result is a
set of three BED files for each personalized genome containing the common peaks, the
personal-only peaks, and the ref-only peaks. Note that these definition depend solely on
the peak call annotation and do not take into consideration the read depth of those peaks.
The number of variation calls in each peak was calculated. The corresponding indel and

SNP tracks were intersected with the track of each category of peaks using bedtools

intersect -c to list the number of variations overlapping each common, personal-
only, and ref-only peak.
Furthermore, the peak tracks were overlapped with the coverage tracks of the personal-

ized and hg19 versions of the alignment using bedtools intersect -c. The output
is the original peak track with an additional field listing the number of reads in each peak.
As a result, the number of reads in regions corresponding to the peaks is known in the
reference alignment and the personalized alignment.

Finding peaks with skewed coverage

To find peak called regions that have significant differences between their hg19 and
personalized coverages, a statistical test was needed. This comparison is similar to dif-
ferential expression in that read counts are compared between two conditions: the hg19
reference and the personalized assembly. For the purpose of differential expression,
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technical variation that occurs during the preparation of different libraries is known to be
underestimated by Poisson-based tests (overdispersion) [49]. However, unlike differential
expression, our read counts are not compared between multiple sequencing experiments
done under the two conditions. Instead, there is only one dataset that was aligned to two
different assemblies, which implies that biological and technical variation is not present
here in the same way. Therefore, we simply used a χ2 test with a significance value α

of 0.05 to detect peaks with skewed coverage. We obtained an identical result with the
edgeR package [50] by setting the dispersion parameter to 1 × 10−3 (near 0). Peaks with
null coverage in one of the alignment versions were artificially assigned one read to allow
applying the test. Peaks with insignificant differences were placed in the no-skew category.
An overview of the above steps can be found in Figures S15a and S15b.
Peaks that had significant differences with a higher coverage in hg19 than in the

personalized haplotype were categorized as ref-skewed. Similarly, peaks that had a
higher coverage in the personalized genome than in the reference were categorized as
personal-skewed.

Characterizing altered peak calls

To quantify the fraction of AP calls, the number of ref-only and personal-only peaks was
counted and then divided by the total number of peaks to obtain their frequency relative
to the total number of peaks in their sample. For each sample, the set of all peaks was
divided into mutually exclusive categories according to the combination of overlapping
variation calls (SNPs only, indels only, SNPs and indels, none). The same was repeated for
ref-only and personal-only peaks. For any given variation category, the counts of ref-only
and personal-only peaks were divided by the sample wide peak count of the given category
to obtain the probability that the peak call could be affected by that specific combination
of variations. At the same time, the mean peak widths were recorded.
For DPGs, we counted the number of hg19-relative variant calls overlapping com-

mon, ref-only, and personal-only peaks. We did this to check whether ref-only peaks and
personal-only peaks remained enriched in hg19-relative variation calls compared to com-
mon peaks, despite the fact that they originate from peak calls in a de novo assembly and
not hg19 itself.
We also counted the overlaps of altered peaks in DPGs with SDs and repeats from the

RepeatMasker annotation. Repeats were first grouped by family. Confident peaks were
selected by removing any peak with a log(MACS2 score) < 4.0. This value was chosen
because it excludes uncertain and uninteresting peak calls and most APs generated by
MPGs.
Logistic regression was performed on NA12878 H3K4me1 peaks with AP/common as

a binary response variable and peak width, SNP count, and indel count as covariates using
the glmnet [51] R package. Ref-only and personal-only peaks were coded as AP = 1,
and common peaks were coded as AP = 0. Lastly, common peaks were downsampled
to the number of AP calls to avoid unbalanced classes. Since the fitting algorithm is
non-deterministic, we ran cv.glmnet 1000 times and reported the median coefficient
values.
In the H3K4me3 replicate analysis, Graph Peak Caller was run on the alignment of each

replicate and also on the merged alignments. IDR was run on the peaks of each replicate
to obtain corrected peaks to be compared against the peaks of the merged alignments.
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The histone mark correlations were generated with HOMER [52] to support altered
peaks with orthogonal data.

ComparingWGS alignments between genomes

If peak track differences occur between two assemblies, they should be corroborated
by differences in the mapping of a sufficient number of reads between their raw align-
ments. That is, the proportion of reads with different mappings between the reference
and the personalized genome should be considerable. To show this, we used Jvarkit

cmpbamsandbuild [53] to compare the DPG and MPG alignments of the low pass
NA12878 whole-genome dataset to hg19. The same comparison was done between the
reference and the paternal NA12878 MPG. To compare the GPG and the reference graph
alignments, vg gamcompare was used instead. For unequal mappings, we considered
reads that are mapped more than 100 bp apart, reads that are mapped in one build but
not the other, and reads that fail to lift between assemblies. We add these proportions
to obtain the final proportion of changed mappings. The IGSR WGS dataset was chosen
instead of a ChIP-seq dataset because we expect a more uniform coverage of genomic
regions.

Finding replicated peaks amongMPGs, DPGs, and GPGs

To get the replicated calls between the DPG and the MPG approaches, the personalized
tracks needed to be lifted to a common coordinate system in hg19. This is necessary
because the MPG APs were computed in MPG coordinates, while the DPG and GPG APs
were computed in hg19 coordinates. To do so, chain files were created through the previ-
ous BLATmethod to lift theMPGs to hg19. Once the tracks of ref-only and personal-only
peaks respective to theMPGs were lifted to hg19, GenomicRanges [54] was used to cal-
culate the pairwise overlap of peak calls between the three approaches and identify peaks
that are replicated with at least two of the three methods. This package was also used
to characterize the position of peaks relative to genes in the UCSC gene annotation. A
Venn diagram was produced for personal-only calls, ref-only calls, and all peak calls using
nVenn [55].
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