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Abstract

Background: Somatic mutations in healthy tissues contribute to aging, neurodegeneration, and cancer initiation,
yet they remain largely uncharacterized.

Results: To gain a better understanding of the genome-wide distribution and functional impact of somatic mutations,
we leverage the genomic information contained in the transcriptome to uniformly call somatic mutations from over
7500 tissue samples, representing 36 distinct tissues. This catalog, containing over 280,000 mutations, reveals a wide
diversity of tissue-specific mutation profiles associated with gene expression levels and chromatin states. For example,
lung samples with low expression of the mismatch-repair gene MLH1 show a mutation signature of deficient mismatch
repair. In addition, we find pervasive negative selection acting on missense and nonsense mutations, except for
mutations previously observed in cancer samples, which are under positive selection and are highly enriched in many
healthy tissues.

Conclusions: These findings reveal fundamental patterns of tissue-specific somatic evolution and shed light on aging
and the earliest stages of tumorigenesis.
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Background
In humans, somatic mutations play a key role in senescence
and tumorigenesis [1]. Pioneering work on somatic evolution
in cancer has led to the characterization of cancer driver
genes [2] and mutation signatures [3]; the interplay between
chromatin, nuclear architecture, carcinogens, and the muta-
tional landscape [4–7]; the evolutionary forces acting on
somatic mutations [8–11]; and clinical implications of som-
atic mutations [12].
Somatic mutations have been far less studied in healthy

human tissues than in cancer. Early studies focused on blood
[13, 14] as it is readily accessible and because of the known
effects of immune-driven somatic mutation. Recently, som-
atic mutations have been characterized in tissues like the skin
[15], brain [16, 17], esophagus [18, 19], and colon [20]. These
studies confirmed that cells harboring certain mutations ex-
pand clonally, and the number of clonal populations—as well
as the total number of somatic mutations—increases with
age. Additionally, recurrent positively selected mutations in
specific genes (e.g., NOTCH1) were observed. However, a

more comprehensive understanding of somatic mutations
across the human body has been limited by the small num-
ber of tissues studied to date.
Most studies on somatic evolution in healthy tissues

have sequenced DNA from biopsies to high coverage.
However, the transcriptome also carries all the genomic
information of a cell’s transcribed genome, in addition
to RNA-specific mutations or edits. RNA-seq has been
used to identify germline DNA variants [21], and re-
cently, single-cell (sc) RNA-seq was used to call DNA
somatic mutations in the pancreas of several people [22].
To systematically identify somatic mutations in the

human body and to investigate their distribution and
functional impact, we developed a method that leverages
the genomic information carried by RNA to identify
DNA somatic mutations while avoiding most sources of
false positives. We applied it to infer somatic mutations
across 36 non-cancerous tissues, allowing us to explore
the landscape of somatic mutations throughout the hu-
man body.
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Results
Somatic mutation calling across 36 non-disease tissues
from 547 people
Our method considers genomic positions where we ob-
served two alleles in the RNA-seq reads and assesses
whether they are likely to be bona fide DNA somatic
mutations (Fig. 1a). We optimized the minimum levels
of RNA-seq read depth, sequence quality, and number
of reads supporting the variant allele to limit the impact
of sequencing errors (Additional file 1: Figure S1a; see
the “Methods” section). We then applied extensive filters
to eliminate false positives from biological and technical
sources, including RNA editing, sequencing errors, and
mapping errors (see the “Methods” section; Fig. 1b, c;
Additional file 1: Figure S2a; Additional file 2: Supple-
mentary Tables legends and Additional file 3: Table S1).
To validate the method, we compared somatic muta-

tion calls from 105 blood RNA-seq samples to exome
DNA sequencing performed on the same samples (GTEx
Consortium, 2017) (Fig. 1d). We observed a false-
discovery rate (FDR) of 29% which represents the per-
centage of somatic mutations called from RNA-seq not
having evidence in the corresponding DNA exome-seq
sample (Fig. 1d, Additional file 1: Figure S1c; see the
“Methods” section). Mutations with a higher variant
allele frequency (VAF) had an overall lower FDR (Add-
itional file 1: Figure S1d); accounting for this trend
yielded an estimated 34% FDR for our complete set of
mutation calls (see the “Methods” section). This is com-
parable to the 40% FDR in a previous study that inferred
mutations from scRNA-seq in the pancreas [22].
After applying the pipeline and filters to RNA-seq data

from the GTEx project, we retained a total of 7584 sam-
ples from 36 different tissues and 547 different individ-
uals with no detectable cancer (Additional file 4: Table
S2). This resulted in a total of 280,843 unique mutations
(Additional file 5: Table S3), most of which were rare
across samples (median frequency = 0.026% of samples;
Additional file 1: Figure S2b) and across individuals (me-
dian frequency = 0.37% of individuals; Additional file 1:
Figure S2c). We found no enrichment of mutations with
VAF close to 0.5 (Additional file 1: Figure S1e), suggest-
ing that there is little contamination of heterozygous
germline variants.
We first investigated the factors influencing mutation

counts per sample and tissue (see the “Methods” sec-
tion). The main contributor was sequencing depth and
to a lesser extent other biological and technical factors
(Additional file 1: Figure S2d, Additional file 6: Table
S4). Tissues that have more mutations than expected
from sequencing depth include those most often ex-
posed to environmental mutagens or with a high cellular
turnover like the skin, lung, blood, esophagus mucosa,
spleen, liver, and small intestine (Fig. 2a). On the other

end of the spectrum are those with low environmental
exposure or low cellular turnover such as the brain, ad-
renal gland, prostate, and several types of muscle—heart,
esophagus muscularis, and skeletal muscle (Fig. 2a).
We observed similar trends across all six possible

point mutation types (complementary mutations—such
as C>T and G>A—were collapsed because when one is
detected the other is always present on the other DNA
strand) (Additional file 1: Figure S3a). C>T and T>C
mutations were the most abundant types, followed by
C>A (Additional file 1: Figure S3b; Additional file 7:
Table S5).

Mutation load is affected by age, sex, ethnicity, and
natural selection
After controlling for all known technical factors (see the
“Methods” section), we observed that age was positively cor-
related with mutation load across most tissues (Add-
itional file 1: Figure S4a; 29/36 tissues with Spearman ρ > 0,
binomial p = 1.6 × 10−4). Blood showed the most significant
age association for all mutation types combined (Fig. 2b;
1st–4th-quartile Wilcoxon p = 0.013; Spearman ρ = 0.21,
Benjamini-Hochberg [BH] FDR< 0.0001), whereas the sun-
exposed skin was the most significant for C>T mutations,
the most common mutation associated with UV radiation
(1st–4th-quartile Wilcoxon p = 0.00041; Spearman ρ = 0.17
BH-FDR= 0.02). We observed other strong age associations
in several brain regions, and in particular the basal ganglia
(Additional file 1: Figure S4a), supporting the hypothesis that
somatic mutation load could contribute to the increasing risk
of neurodegenerative diseases with age [23].
In addition to age, other biological factors also contrib-

uted to somatic mutations. For example, women show a
much greater mutation load in breast than men (Fig. 2b;
Wilcoxon p = 1.7 × 10−8). We also observed female-biased
mutations (BH-FDR < 0.1) in the subcutaneous adipose,
visceral adipose, liver, and adrenal gland; in contrast, we
found no significant male-biased mutations after multiple
hypothesis correction (Additional file 1: Figure S4c; Add-
itional file 8: Table S6). Ethnicity can also affect mutation
rates: we found a significant increase of C>T mutations in
Caucasian sun-exposed skin compared to non-exposed
skin, but no corresponding difference in African-
Americans (Fig. 2c, Additional file 1: Figure S4b), likely
due to protection against UV radiation provided by higher
melanin content. Finally, we observed that the number of
stem cell divisions [24] in a tissue was weakly correlated
with mutation load (Additional file 9: Note S1, Add-
itional file 1: Figure S5).
To investigate the role of natural selection on somatic

mutations, we examined the variant allele frequency
(VAF) within every sample where a given mutation was
observed. We expected that most mutations we observed
were present in clonal expansions of cells, since
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Fig. 1 (See legend on next page.)
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mutations only present in a single cell would be too rare
for our method to detect; therefore, VAFs reflect the ex-
tent of this expansion, which can be affected by natural
selection on cellular proliferation rate as well as other
factors such as how long the clone has been proliferat-
ing. In general, we expect synonymous mutations that
do not change the amino acid sequence to have the
weakest effects on cellular fitness, missense variants that
change an amino acid to have intermediate effects, and
nonsense mutations that introduce a premature termin-
ation codon to have the strongest effects. These muta-
tions could then show differing VAFs according to how
likely they are to affect (and most likely reduce) cellular
fitness, with stronger deleterious effects leading to lower
VAF. Indeed, this was the pattern we observed, with syn-
onymous variants having significantly higher VAF than
both missense and nonsense variants (Fig. 2d).
Since our mutations are called from the transcriptome,

these results could be influenced by nonsense-mediated
decay (NMD), which degrades transcripts containing
premature termination codons. While we did observe
evidence of NMD (Additional file 1: Figure S4d), we
found that nonsense mutations in the last exon of
genes—which are not subjected to NMD [25]—still have
significantly lower VAF compared to synonymous and
missense mutations (Wilcoxon p = 1.9 × 10−213 and p =
5.6 × 10−150, respectively; Additional file 1: Figure S4d),
confirming the existence of negative selection against
nonsense mutations. Therefore, in contrast to what has
been observed in cancer [9], we found evidence of nega-
tive selection acting against both missense and nonsense
mutations.

Somatic mutation profiles are tissue-specific and
associated with chromatin state
To visualize the tissue specificity of somatic mutational
patterns, we applied t-SNE [26] to the full set of muta-
tions called in each of the 7584 tissue samples (including
the 2-bp flanking each mutation; see the “Methods” sec-
tion; Fig. 2e). We then used a silhouette score (SS) to
quantify clustering of samples in this two-dimensional
space (see the “Methods” section), where a value SS = 1
indicates samples that are maximally clustered within a
group and a value SS = 0 means that samples are

equidistant to samples within vs outside a group. Group-
ing samples by their donor-of-origin results in a mean
SS = 0, no different than expected by chance (Fig. 2f).
However, grouping samples by tissue resulted in values
0.7 > SS > 0.1, suggesting tissue-specific mutation pat-
terns. The spleen, blood, skin, liver, and esophagus mu-
cosa exhibited the most coherent profiles (Fig. 2f,
Additional file 1: Figure S6a, d); conversely, the artery,
lung, stomach, and thyroid had the least consistent pro-
files (Fig. 2f, Additional file 1: Figure S6e, f). Interest-
ingly, some tissues cluster together as shown by SSs
obtained by grouping samples from more than one tis-
sue, suggesting shared mutagenic or repair processes
(Fig. 2f; Additional file 1: Figure S6b, c; e.g., skeletal
muscle and heart, SS = 0.38; seven brain regions, SS =
0.53; colon and small intestine, SS = 0.31). These results
suggest that the somatic mutation landscape of the tran-
scribed genome is largely defined by tissue-of-origin.
To explore the source of this tissue specificity, we hy-

pothesized that chromatin may play an important role, as
it does in cancer [4, 5]. We assessed the association be-
tween tissue-specific mutation rates and five histone mod-
ifications measured across many human tissues by the
Roadmap Epigenomics Project [27] (Additional file 10:
Table S7; see the “Methods” section). Across most tissues
(except the brain), there is a strong positive association be-
tween mutation rate and a marker for heterochromatin
(H3K9me3); conversely, we found strong negative associa-
tions with actively transcribed regions (H3K36me3; Fig. 2g;
Additional file 1: Figure S4e). These results suggest that
chromatin associations with mutation rates in the human
body are nearly ubiquitous and arise prior to cancer
development.

Mutational strand asymmetries are widespread and vary
across individuals
Cancer mutations often occur preferentially on one DNA
strand, either in reference to transcription or to DNA rep-
lication (leading vs lagging strand) [28]. Since our muta-
tions are derived from transcribed exons, we focused on
transcriptional mutational strand asymmetries.
We observed the strongest asymmetry for C>A muta-

tions, which preferentially occur on the transcribed
strand in most tissues except for the brain (Fig. 3a, b;

(See figure on previous page.)
Fig. 1 A method to identify DNA somatic mutations from RNA-seq. a A general overview of the method. RNA-seq reads were downloaded from
GTEx v7 (left) and processed to identify positions with two different base calls at a high confidence. Then, sources of biological and technical
artifacts were removed (right, see the “Methods” section). b Schematic illustrating potential sources of sequence variation. c Average percentage
of variants detected in blood RNA-seq that are retained after each step of filtering (see the “Methods” section). d Validation of the method. For
105 individuals, we compared variant calls from exome DNA-seq data with those from RNA-seq of the same samples. Median FDR values per
mutation type are shown, and they represent the fraction of mutations called in RNA-seq for which there are no exome reads supporting the
same variant (see the “Methods” section and Additional file 1: Figure S1c). Error bars represent the 95% confidence interval after bootstrapping
10,000 times
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mean [transcribed/non-transcribed] ratio = 1.6 in the
non-brain, 0.98 in the brain). C>A mutation load on the
transcribed strand also showed the greatest variation be-
tween individuals (Fig. 3a, b). C>A asymmetries were
often correlated between different tissues of the same
person (Fig. 3c, Additional file 1: Figure S7a), suggesting
a common factor can induce C>A mutations specifically
on the transcribed strand (or equivalently, G>T muta-
tions on the non-transcribed strand) across many of an
individual’s tissues. This factor is of unknown origin; it
could be intrinsic (e.g., genetic), extrinsic (e.g., exposure
to a mutagen), or a combination of the two. Interest-
ingly, this same C>A asymmetry has been observed in
lung and ovarian cancer [28] and in cell lines exposed to
different environmental agents [29]; our results suggest
it is far more widespread, occurring in most tissues ex-
cept for the brain.
Strand asymmetries could potentially arise from RNA-

specific edits or transcriptional errors. To test if these
are bona fide DNA mutations, we examined exome data
from matching blood samples and observed general
agreement between the level of asymmetry per gene as
measured by DNA vs RNA-seq (Fig. 3d).
In addition, we found blood samples to have the high-

est levels for C>T and T>C asymmetries. However, the
directionality of these asymmetries suggests that samples
with high biases may be driven by the two major types
of RNA editing: A>I (represented in our data by T>C on
the transcribed strand) and C>U (represented in our
data by C>T on the non-transcribed strand) (Fig. 3a,
right panel). Interestingly, estimating cell type abun-
dances in each blood sample (see the “Methods” section)
revealed that the abundances of two cell types, resting
NK cells and CD8+ T cells, showed the strongest associ-
ations with the extent of both of these asymmetries
(Additional file 1: Figure S7b,c). Consistent with this re-
sult, these same two cell types have been shown to have

increased levels of both types of editing in stress condi-
tions [30]. This suggests that some RNA editing sites
may be present in our catalog of somatic mutations,
though we did not observe an increased FDR for these
two mutation types in the blood (Fig. 1d), suggesting
that RNA editing has not substantially inflated our
FDRs.

Gene expression implicates pathways associated with
somatic mutation load
To explore cellular factors accompanying an increase in
somatic mutation load across non-disease tissues, we per-
formed an unbiased tissue-level search for genes whose ex-
pression was associated—either positively or negatively—
with exome-wide mutational load (see the “Methods”
section). These enrichments may reflect a mixture of causal
scenarios: gene expression impacting mutations or vice versa,
or both driven by a third variable. Here we focused on the
most abundant C>T mutations (Fig. 4; Additional file 1:
Figure S8); other mutation types are described in the supple-
ment (Additional file 1: Figures S9, S10).
While most genes were tested in the majority of tis-

sues (Additional file 1: Figure S8a), the most significant
associations were specific to only 1–3 tissues (Bonfer-
roni-corrected p < 0.05; Fig. 4a, Additional file 1: Figure
S8b). Among genes positively associated with mutation
load in multiple tissues (see the “Methods” section), we
observed enrichments for GO categories that included
nucleotide excision repair, cellular transport, cell adhe-
sion, and macroautophagy and categories including im-
mune response, keratinization, and cell polarity for
negative expression-mutation associations (Fig. 4b; Add-
itional file 11: Tables S8, Additional file 12: Table S9).
Consistent with these results, several of these same pro-
cesses (e.g., cellular transport, autophagy, and cell adhe-
sion) are known to be associated with mutation load in
cancer or normal cells [31–33].

(See figure on previous page.)
Fig. 2 Cross-tissue analysis of somatic mutations. a The total number of mutations observed in a tissue depends on the sequencing depth of that tissue.
Sequencing depth is defined as the cumulative amount of uniquely mapped reads across all samples of a tissue. A linear regression line is shown in blue;
tissues above it exhibit more mutations than expected by sequencing depth, while tissues below it show fewer mutations than expected. Rho is the Spearman
coefficient. b Examples of significant mutation associations with age and biological sex (see Additional file 1: Fig. S4 and Additional file 6: Table S4 for all tissue
data). Age ranges represent the youngest and oldest quartiles for each tissue. To control for sequencing depth and other technical artifacts, mutation values
were obtained as the residuals from a linear regression (see the “Methods” section). p values are from a two-sided Mann-Whitney test. c Caucasian sun-exposed
skin shows a higher percentage of C>T mutations compared to the sun-protected skin, while no such difference was seen for African-American skin. p values
are from two-sided Mann-Whitney tests. d Median variant allele frequency (VAF) for each mutation type based on their impact to the amino acid sequence;
error bars represent the 95% confidence interval after bootstrapping 1000 times; p values are from two-sided Mann-Whitney tests. e tSNE plot constructed from
a normalized pentanucleotide mutation profile (the mutated base plus two nucleotides in each direction; see the “Methods” section for normalization details)
and all samples in this study. f Average silhouette scores representing the coherence of selected groups of samples from the tSNE space in panel e; a score of
1 represents maximal clustering, whereas 0 represents no clustering (see the “Methods” section). Grouping was performed by tissue-of-origin, or multiple tissues
combined (red labels). “Grouped by people” (green label) is an average silhouette score after grouping samples by their person-of-origin from 20 randomly
selected people. The blue dashed line represents the average random score expectation after permuting tissue labels (see the “Methods” section), and the blue
stripes are ± two standard deviations. Error bars in points represent the 95% confidence interval based on bootstrapping 10,000 times. g Mutation load is
positively associated with H3K9me3 and/or negatively associated with H3K36me3 across most tissues analyzed. p values were obtained from a linear regression
using all histone modifications as explanatory variables (see the “Methods” section). Gray range denotes non-significant p values after Bonferroni correction
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To further explore the contribution of different DNA
repair pathways to mutagenesis, we focused on the asso-
ciations between the expression of repair pathway mem-
bers with mutation load. Specifically, we analyzed genes
involved in double-strand break (DSB) repair, mismatch
repair (MMR), nucleotide excision repair (NER), base
excision repair (BER), the DNA deaminases APOBEC3A/
B, and the translesion polymerase POLH. We found 14
associations at a < 20% FDR, 8 at < 10% FDR, and 2 at <
5% FDR (Fig. 4c blue asterisks; Additional file 1: Figure
S8c-g) which are further described in Additional file 9:
Note S2.
We then tested genes in these pathways for consistent

associations with mutation load across tissues (see the
“Methods” section; Fig. 4c, left panel; Additional file 1:
Figure S10a-e). We observed significant hits from NER
(XPA, FDR = 0.01; XPC, FDR = 0.07; DDB1, FDR = 0.07),
MMR (MLH1, FDR = 0.05; MSH6, FDR = 0.16; PMS2
FDR = 0.17), and BER (NEIL2, FDR = 0.15). The associa-
tions were generally in the expected direction, based on
what is known about each gene (see Additional file 9:
Note S3); for example, all associations of MLH1 were
negative, indicating lower expression associated with
higher mutation load (Fig. 4c, Additional file 1: Figure
S8e). If this association reflects a causal relationship, we
hypothesized that tissue samples with low expression of
MLH1 might show a mutation profile suggestive of defi-
cient mismatch repair. Supporting this hypothesis, we
observed that in the lung—the tissue with the strongest
association between MLH1 expression and C>T muta-
tion load—samples with low expression of MLH1 had a
significant resemblance to a cancer mutation signature
that has been attributed to deficient MMR (Fig. 4d; simi-
larity to COSMIC signature 6: cosine similarity = 0.76,
p = 0.001 for C>T mutations, and cosine similarity =
0.28, p = 0.02 across all mutation types). MLH1 silencing
contributes to cancer development and mutagenesis
[34], and our results suggest that natural variation of
MLH1 expression may affect mutagenesis in pre-
cancerous tissues as well.
To further explore factors that may contribute to muta-

tion load, we analyzed the expression of entire pathways
or functionally related gene sets in each tissue (see the
“Methods” section). MMR, BER, and NER are all strongly
associated with mutation load in multiple tissues, but with

very little overlap among them (Fig. 4e; Additional file 1:
Figure S10f-j). As a result, these associations are primarily
dominated by just one or two pathways per tissue.
In summary, most transcriptional signatures associated

with mutation load are tissue-specific; however, genes
associated with mutation load in several tissues are
enriched in a number of pathways including DNA re-
pair. These results paint a complex landscape where mu-
tational load across non-disease tissues is associated
with a variety of cellular functions.

Cancer driver genes are enriched for mutations and
under positive selection in non-disease tissues
To investigate the extent to which cancer-associated mu-
tations exist in a pre-cancerous state, we calculated the
enrichment of all COSMIC [35] cancer point mutations in
our mutation maps (see the “Methods” section). Many
samples were highly enriched (hypergeometric
Bonferroni-corrected p < 0.05), with some having more
than 20% overlap with COSMIC mutations (Fig. 5a). In
contrast, we observed almost no significant overlaps in a
negative control (using a permuted set of mutations per-
sample that conserves mutation frequencies and genomic
regions from the original set of mutations; see the
“Methods” section; Additional file 1: Figure S11a). The
sun-exposed skin had the highest level of overlap (hyper-
geometric BH-FDR < 0.05), with 100% of samples having
significant enrichments, followed by the sun-protected
skin and skeletal muscle (Fig. 5a). We observed the lowest
overlaps across the seven brain regions, aorta, and spleen.
Focusing our analysis on a panel of 53 known cancer

driver genes [2] (Additional file 13: Table S10), we ob-
served mutations in 31 of them (after excluding potential
false-positive mutations; see the “Methods” section and
Additional file 14: Table S11). Some tissues showed
significantly greater or lower mutation rates across these
genes (Fig. 5b). The sun-exposed skin was once again
the most significant tissue, with several others at FDR <
0.05, such as the muscle and heart (Fig. 5b). Interest-
ingly, MAP2K1 and RRAS2 are highly mutated in the
muscle, and IDH2 and PPP2R1A are highly mutated in
both the heart and skeletal muscle (Fig. 5c). Conversely,
several tissues—including most brain regions—had sig-
nificantly lower mutation rates than average in these
cancer drivers (Fig. 5b).

(See figure on previous page.)
Fig. 3 Somatic mutational strand asymmetries. a Mutation average and S.D. for each strand with respect to transcription (left and middle panels)
and the ratio of mean mutations on the transcribed over the non-transcribed strand (right panel). b Distribution of z-scores for mutation averages
and standard deviations on each strand (from panel a) across all samples. c Example of intra-individual correlation of C>A strand asymmetry in
two tissues; each point represents an individual for which we generated mutation maps in the two tissues (see Additional file 1: Figure S7a for all
tissue pairwise comparisons). d Correlation of mutational strand biases between calls from RNA-seq and matched DNA-seq; each point represents
the mutation strand bias observed in one gene across all 105 blood samples. Blue lines in all scatter plots are based on a linear regression; rho
values are the Spearman correlation coefficients
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Fig. 4 Mutation load is associated with the expression of genes and pathways. a Histogram of the number of tissues for which each gene was
significantly associated with mutation load (Bonferroni-corrected p <0.05). Associations were estimated for each tissue using linear models controlling for
population structure and biological and technical cofactors (see the “Methods” section). b Genes whose expression was negatively (top) or positively (bottom)
associated with C>T mutation load in multiple tissues are enriched in these representative GO categories (see the “Methods” section and Additional file 11:
Table S8, Additional file 12: Tables S9). c Individual gene-tissue associations between C>T mutations and expression of genes involved in DNA repair or DNA
mutagenesis (right panel). Blue asterisks denote significant associations using a permutation-based FDR strategy (see the “Methods” section; *FDR< 0.2, **FDR<
0.1, ***FDR< 0.05). Shown on the left panel are genes whose expression was associated with mutation load across all tissues more than expected by chance at
the indicated FDR (see the “Methods” section). d COSMIC cancer signature 6 (linked to MMR deficiency; left) is significantly similar to profiles from lung samples
expressing low levels of MLH1 (right). The plot in the left panel represents the frequency of C>T mutations at the indicated tri-nucleotide context for signature
6. The plot in the right panel is the log ratio of C>T mutation rates comparing the 20% of lung samples with the lowest MLH1 expression vs the 20% with the
highest MLH1 expression. Cosine similarity is indicated for C>T mutation across contexts, and the p value represents the frequency of cosine similarity values
that were greater than the original from permuted values—permutations were done by randomly selecting 2 groups of 20% of samples and calculating the
fold-change mutation frequencies between them. e Group-level gene expression associations of the shown pathways and C>T mutations across tissues (see
the “Methods” section). Heatmap columns in c and e are ordered based on a hierarchical clustering
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Observed mutations in cancer driver genes were then
classified by their impact on protein sequences. We
found that some genes were dominated by missense mu-
tations, such as IDH2, while others showed an excess of
synonymous mutations, such as MAP2K1 (Fig. 5d).
To assess the selective pressures acting on these genes,

we used a dN/dS approach, which assesses the ratio of
non-synonymous to synonymous mutations while
accounting for sequence composition and variable muta-
tion rates across the genome [36] (see the “Methods”
section). dN/dS values close to 1 represent little or no
detectable selection, dN/dS > 1 suggests positive selec-
tion, and dN/dS < 1 suggests purifying selection. Our
analysis showed that most of these cancer drivers are
evolving under positive selection (Fig. 5e). Missense
mutations had a mean dN/dS = 1.06 whereas nonsense
mutations had a mean dN/dS = 9.14 (indicating over
ninefold enrichment for nonsense mutations compared
to the expectation based on synonymous mutations in
the same genes); the latter is significantly more than ex-
pected from genome-wide values (permutation-based
p = 0.1 and p = 0.009, respectively; Fig. 5e).
NOTCH1 has been recently observed to evolve under

positive selection in the non-cancerous skin [15] and
esophagus [18, 19]. Consistent with this, we found the
highest rates of NOTCH1 mutations in these same two
tissues (Fig. 5c), with strong signals of positive selection
(NOTCH1 missense dN/dS = 1.46, nonsense dN/dS =
14.04). We also observed NOTCH1 mutations at slightly
lower rates in the small intestine and tibial artery
(Fig. 5c).
To further explore the effects of selection on

cancer-associated mutations, we performed a VAF
analysis (similar to Fig. 2d). Using the large catalog of
COSMIC cancer point mutations (as in Fig. 5a), we
created two subsets of our somatic mutation list:

those that have been observed in cancer samples and
those at precisely the same location as a known can-
cer mutation, but with a different base change (which
act as well-matched negative controls). We then sepa-
rated each of these two subsets into three mutation
types: synonymous, missense, and nonsense. In all
three cases, the VAFs of the cancer-associated muta-
tions were significantly higher than the matched non-
cancer-associated ones (Fig. 5f), suggesting that
cancer-associated mutations often increase cellular
proliferation rates (and thus VAFs). Using the syn-
onymous non-cancer mutations as representative of
neutrality (similar to the logic of dN/dS), we found
that all three cancer-associated mutation types had
higher VAF than these neutral proxies (Fig. 5f), sug-
gesting the action of positive (and not just weaker
negative) selection. Interestingly, the ratio of cancer/
non-cancer mutation VAFs was lowest for synonym-
ous (1.4-fold), intermediate for missense (2.0-fold),
and highest for nonsense (5.2-fold), suggesting stron-
ger positive selection for more extreme mutations. In
addition, cancer-associated mutations were found in
more individuals compared to other mutations, par-
ticularly in non-brain tissues (median of 1.7-fold more
individuals for non-brain mutations, and 1.2-fold for
the brain). These results are consistent with the dN/
dS analysis in Fig. 5e, which also showed the stron-
gest positive selection on nonsense mutations in
cancer driver genes, but the VAF analysis has sub-
stantially more power due to the greater number of
mutations analyzed.
To explore a subset of cancer driver mutations in

more detail, we identified specific mutations in our cata-
log that have been manually curated as oncogenic or
likely oncogenic from OncoKB [37] (Additional file 15:
Table S12). For instance, all nonsense mutations that we

(See figure on previous page.)
Fig. 5 Cancer driver genes evolve under strong positive selection, and cancer mutations are enriched in healthy tissues. a Percentage of COSMIC
cancer mutations observed per sample and grouped by tissue; p values for enrichment were calculated using a hypergeometric test accounting
for sequencing coverage, total number of mutations per sample, total number of COSMIC mutations, and the three possible alternate alleles that
any given reference allele can have (see the “Methods” section). p values are Bonferroni-corrected across all samples. b Relative mutation rates of
a selected group of 53 genes known to carry cancer driver mutations [2] (only 31 of them had at least 1 mutation in this study); the tissue-wide
average is indicated with the dotted line. Significant deviation from the tissue-wide average was calculated using the binomial distribution and
the tissue-wide average mutation rate. Benjamini-Hochberg FDR: ***FDR < 0.001, **FDR < 0.01, *FDR < 0.05. c Individual mutation rates for each
cancer driver gene across all tissues. d Percentage of mutations for each cancer driver gene stratified by impact to amino acid sequence; n is the
total number of mutations observed in a gene. e dN/dS values for missense (blue) and nonsense mutations (orange) in cancer driver genes
calculated using dndsloc [9, 36] (see the “Methods” section); averages per group are shown as rhomboids, and their respective genome-wide
averages are shown as dashed lines along with their 95% confidence intervals after bootstrapping 10,000 times. p values indicate the probability
of observing a higher average dN/dS from 10,000 equally sized randomly sampled groups of genes (see the “Methods” section). f Median variant
allele frequency (VAF) for each mutation type based on their impact to the amino acid sequence and colored by their cancer status. Mutations
“in cancer” (purple bars) are those that overlap with the COSMIC database in both base change and position, and mutations “not in cancer”
(yellow bars) are those that overlap with COSMIC only in position but not in base change. Error bars represent the 95% confidence interval after
bootstrapping 1000 times; p values are from two-sided Mann-Whitney tests. g Mutation maps of five cancer driver genes; oncogenic state was
obtained from oncoKB [37], and clustered mutation annotations were obtained from the databases Cancer Hotspots [38] and 3D Hotspots of
mutations occurring in close proximity at the protein level [39]

García-Nieto et al. Genome Biology          (2019) 20:298 Page 11 of 20



observed in NOTCH1 have been labeled as oncogenic
(Fig. 5g). We found many other oncogenic mutations as
well; for example, RHOA and RAC1 had oncogenic mu-
tations in their Ras domains (Fig. 5g).
Together, these results show that cancer mutations are

enriched in non-disease tissues and not only do they ac-
cumulate in driver genes, but the majority of these genes
are evolving under positive selection, suggesting that
these mutations increase cellular proliferation well be-
fore any cancer is observed.

Discussion
We developed a method to detect rare somatic muta-
tions from RNA-seq data and applied it to over 7500 tis-
sue samples (Fig. 1). To our knowledge, this is the
largest map to date of somatic mutations in non-
cancerous tissues.
It has been proposed that somatic mutations contrib-

ute to aging and organ deterioration [40, 41]; consist-
ently, we observed a positive correlation between age
and mutation burden in most tissues. Interestingly, sev-
eral brain regions are among the tissues exhibiting
stronger age correlation, and somatic mutations have
been shown to have a role in neurodegeneration [23].
We observed largely tissue-specific behaviors and

some pervasive observations shared across tissues, pro-
viding genome-wide evidence in humans consistent with
earlier gene-level findings in mouse models [42]. Muta-
tion profiles are defined by their tissue-of-origin, muta-
tion maps are delineated by tissue-specific chromatin
organization, and transcriptional signatures associated
with mutation load are highly tissue-specific. These re-
sults suggest that different cell types are subjected to
different evolutionary paths that could be dependent on
environmental or developmental differences. For ex-
ample, while most samples exhibit tissue-specific muta-
tion profiles, some others like transverse colon and the
small intestine have similar profiles. Additionally, we ob-
served that genes whose expression is associated with
mutation load in several tissues are enriched in DNA
repair, autophagy, immune response, cellular transport,
cell adhesion, and viral processes, and while these func-
tions have been implicated in mutagenesis in cancer
[31–33], our results highlight how expression variation
of these genes associates with mutational variation in
healthy tissues.
Cancer mutations are enriched across many organs.

Muscle and heart tissue are particularly interesting be-
cause they have lower-than-expected mutation rates, but
those mutations are highly enriched for cancer muta-
tions and had high mutation rates in cancer drivers. Sar-
comas are tumors originated from soft tissues—
including muscle—that are relatively uncommon and
have a low density of point mutations but high copy

number variation [43]. Our results show that low muta-
tion rates are also observed in these soft tissues, but
compared to tumors, cancer mutations are frequent.
The functional implications of this observation will need
to be explored in further detail.
Positive selection of driver genes has been recently

observed in healthy tissues [15, 18]. Accordingly, we
confirmed that NOTCH1 is under positive selection in
the skin and esophagus. We found other genes positively
selected both broadly (e.g., IDH2, CTNNB1, NFE2L2)
and with more tissue-specific patterns (e.g., KEAP1 in
the prostate, thyroid, and muscle; RAC1 in the skin,
esophagus, and breast), which will be important subjects
for future studies.
In general, mutations previously observed in cancer

studies were found in high abundance across many
healthy tissues, and our VAF analysis showed signatures
of positive selection acting on them. In contrast, when
looking at all mutations and in particular those not pre-
viously seen in cancer, we found that missense and non-
sense mutations are generally under negative selection.
Our results reconcile recent studies reporting prevalent
positive [9] or negative [11, 44] selection in somatic evo-
lution, as we find evidence of both co-existing in differ-
ent sets of mutations.
After this manuscript was submitted for publication,

another study was published that also called mutations
using GTEx samples [45]. Reassuringly, their results are
largely consistent with ours, including the higher muta-
tion rate in female breast tissue (vs male) and in the
sun-exposed skin (vs the non-sun-exposed skin) of Cau-
casians but not African-Americans, as well as the excess
of nonsense mutations in NOTCH1. However, a major
difference between the two studies is in the number and
confidence of mutations called. Specifically, Yizhak et al.
called 8870 somatic mutations in 6707 RNA-seq sam-
ples; this is 1.3 mutations per sample, which is actually
smaller than their expected 2–4 false positives per sam-
ple, suggesting that most of their calls are false positives.
This is supported by their validation of 5/28 tested vari-
ants (82% FDR) in GTEx samples and 13/86 variants
(85% FDR) in TCGA cancer samples. In contrast, we
called over 280,000 mutations with a 34% FDR, based on
thousands of validated variants in exome data. Thus, our
method called ~ 115 times as many true positive muta-
tions, at substantially higher confidence (Additional file 1:
Figure S12a). Additionally, 632 (7%) of their mutation
calls were flagged by one or more of our filters in the
corresponding tissues (Additional file 1: Figure S12b). As
a result of our increased power, we were able to connect
somatic mutations with tissue-specific chromatin and
gene expression levels (Fig. 2g, Fig. 4), detect both nega-
tive and positive selection acting on different subsets of
mutations (Fig. 2d, Fig. 5e, f), and discover widespread
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strand asymmetry (Fig. 3). One notable difference is that
Yizhak et al. detected TP53 and PIK3CA as the genes
with the most hotspot mutations genome-wide, whereas
these were not outliers in our analysis (Fig. 5d). How-
ever, it should be noted that these two genes were also
the only two genes that Yizhak et al. excluded from their
“panel of normals” filter when calling mutations, which
of course inflates their number of mutations, making
this result difficult to interpret.

Conclusions
Our findings paint a complex landscape of somatic mu-
tation across the human body, highlighting their tissue-
specific distributions and functional associations. The
prevalence of cancer mutations and positive selection of
cancer driver genes in non-diseased tissues suggests the
possibility of a poised pre-cancerous state, which could
also contribute to aging. Finally, our method for infer-
ring somatic mutations from RNA-seq data may help
accelerate the study of somatic evolution and its role in
aging and disease.

Methods
Raw RNA-seq retrieval and processing
We downloaded raw RNA-sequencing reads from the
dbGAP GTEx [46] project version 7 (phs000424.v7.p2).
We included 36 tissues with a total of 7584 samples
(Additional file 4: Table S2) after applying all filters in
the mutation calling pipeline (see below). We also proc-
essed DNA exome sequencing reads from 105 whole-
blood samples that had a matched RNA-seq sample.
Reads were mapped to the human genome Hg19

(NCBI build GRCh37.p13) using STAR [47] with the fol-
lowing parameters: requiring uniquely mapping reads
(--outFilterMultimapNmax 1), clipping 6 bases in the 5′
end of reads (--clip5pNbases 6), and keeping reads with
10 or fewer mismatches and less than 10% mismatches
of the read length that effectively mapped to genome
(--outFilterMismatchNmax 10, --outFilterMismatchNo-
verLmax 0.1). To avoid germline variant contamination
during the somatic mutation calling phase, all SNPs
from dbSNP [48] v142 were masked to Ns and ignored
in downstream processing (https://ftp.ncbi.nlm.nih.gov/
snp/organisms/human_9606_b142_GRCh37p13/BED).
After mapping, we removed duplicate reads to avoid

biases arising from PCR duplicates during library prepar-
ation using a custom python script.

DNA somatic mutation calling from RNA sequencing
Identifying DNA variants from RNA-seq requires filter-
ing out many sources of false positives. These include
sequencing errors, RNA editing events, mapping errors
around splice junctions, germline variants, and other se-
quencing/mapping biases. To address these issues, we

developed a custom mutation calling pipeline that bor-
rows ideas from classical DNA-based variant calling
coupled with extra filters to increase the fidelity of the
mutation calls from RNA-seq.
After mapping the raw RNA-seq reads, the pipeline

consists of three main parts: (1) identifying positions
with two base calls, (2) removing germline variants, and
(3) filtering out other potentially spurious variants.

Identifying positions with two base calls
After mapping, bam files were scanned to identify gen-
omic positions that were covered by reads having exactly
two different base calls. Given the intrinsic sequencing
error rate, we only considered positions with high cover-
age and high sequencing quality for this step. Stringent
cutoffs were set for coverage (c ≥ 40 reads) and sequencing
quality (qs ≥ 30 in Phred scale); this is in comparison twice
what some DNA-based calling algorithms have used [21].
Finally, only positions in which the minor allele was sup-
ported by at least 6 reads were considered (n ≥ 6). In com-
bination, these parameters define a theoretical distribution
of the probability of observing a mutation due to sequen-
cing errors, which is small for a wide range of sequence
coverage levels (Additional file 1: Figure S1a). In addition,
we included a filter to only consider variants with a prob-
ability of sequencing error p < 0.0001 (see filters below).
These strict cutoffs ensure a low probability of observing
sequencing errors even in highly covered genes; nonethe-
less, we still apply further filters to account for sequencing
errors (see below).

Identifying and eliminating germline variants
Common and rare germline variants have to be excluded
for the proper identification of somatic mutations. To
eliminate common variants, a strict filter was applied by
using a human genome masked with Ns for positions
known to have common variants from dbSNP v142 (see
above).
To eliminate all other germline variants, including rare

ones, we utilized the low confidence germline variants
called by GTEx. These calls were made by GTEx using
GATK’s HaplotypeCaller v3.4 on whole-genome sequen-
cing data at 30x coverage from whole-blood samples.
We specifically used the vcf file GTEx_Analysis_2016-
01-15_v7_WholeGenomeSeq_652Ind_GATK_Haplotype-
Caller.vcf which contains all germline variants before fil-
tering for MAF and low-quality variants. Our goal was
to exclude as many germline variants as possible, so we
reasoned that using all germline variants called by
GTEx—including the low-quality ones—was the safest
option to minimize germline mutation contamination in
our somatic mutation calls. While these variants were
called in whole-blood samples, germline variants should
be present in all tissues of an individual and as such
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these variants were excluded in a per-individual basis
across all tissues of that individual. Only sites that had
heterozygous or homozygous variants for the alternate
allele were excluded from the mutation calls of the given
individual.

Filtering out artifacts
A total of 13 filters were applied to exclude a variety of
artifacts:

1. Blacklisted regions. We excluded sex chromosomes,
unfinished chromosomal scaffolds, the
mitochondrial genome, and the HLA locus in
chromosome 6 which is known to contain a high
density of germline variants [49] making accurate
mapping challenging and is hence a potential
source of false-positive calls.

2. RNA edits. The most prevalent type of RNA editing
in humans is Adenine-to-Inosine (A>I) which is ob-
served as an A>G/T>C substitution in sequencing
data. The Rigorously Annotated Database of A-to-I
RNA editing (RADAR) [50] has extensively curated
RNA-edit events including calls identified using the
GTEx data [51]. We also obtained RNA-edit infor-
mation from the Database of RNA editing
(DARNED) that includes further edit types curated
from published studies [52]. We excluded all posi-
tions described in RADAR v2 (http://lilab.stanford.
edu/GokulR/database/Human_AG_all_hg19_v2.txt)
and in DARNED (https://darned.ucc.ie/static/down-
loads/hg19.txt) and observed an average decrease of
10% mutations per sample in our RNA-sequencing
calls but not in our DNA-sequencing calls from
GTEx (Additional file 1: Figure S2a), indicating
that we are indeed eliminating real RNA-edit
events that would otherwise be false-positive
mutation calls.

3. Splice junction artifacts. Splice junctions are
difficult to resolve during mapping because a gap
has to be introduced in reads spanning a splice
junction to map it to the corresponding exons in
the genome. We observed that the mutation rate
was higher close to annotated exon ends and it
stabilized at ~ 7 bp away from the exon end across
all tissues (Genecode v19 genes v7 annotation file)
(Additional file 1: Figure S1b). Most of these are
likely mapping artifacts, and we therefore excluded
all mutations located less than 7 bp away from an
annotated exon end.

4. Sequencing errors. While sequencing errors are
unlikely to be found given the parameters
established in the first part of the mutation calling
pipeline (see above), we additionally filtered out
mutations that had a probability of being

sequencing errors greater than 0.01%. This
probability was calculated using the upper tail
integral of the binomial distribution where the
number of successes is the number of reads
supporting the alternate allele, the number of
events is the coverage in that position, and the
probability of success is the conservative
assumption of p = 0.001 which equals our cutoff of
phred score 30 during the first part of the pipeline
(see above). This is extremely conservative because
it does not incorporate the probability of observing
the exact same base call across all reads supporting
the alternate allele.

5. Read position bias. To eliminate any systematic bias
of a mutation being consistently called around the
same position along reads supporting it versus the
rest of the reads, we excluded mutations that had a
p value less than 0.05 when applying a Mann-
Whitney U test of the positions in the read support-
ing the alternate allele vs the positions supporting
the reference allele. For these tests, we used
BCFtools [53] mpileup.

6. Mapping quality bias. We excluded mutations that
had a p value less than 0.05 when applying a Mann-
Whitney U test comparing mapping quality scores
of the base calls supporting the alternate allele vs
the mapping quality scores of reads supporting the
reference allele. For these tests, we used BCFtools
[53] mpileup.

7. Sequence quality bias. We excluded mutations with
a p value less than 0.05 when applying a Mann-
Whitney U test comparing sequencing quality
scores of base calls supporting the alternate allele vs
the scores of base calls supporting the reference al-
lele. For these tests, we used BCFtools [53] mpileup.

8. Strand bias. We excluded mutations with a p value
less than 0.05 when applying a Mann-Whitney U
test comparing strand bias of bases supporting the
reference and alternate allele (i.e., cases where mu-
tations were only observed on one strand were ex-
cluded; this is not related to the strand asymmetry
we observed for some mutation types). For these
tests, we used the “Mann-Whitney U test of Map-
ping Quality vs Strand Bias” of BCFtools [53]
mpileup.

9. Variant distance bias. We excluded variants that
showed a high or low mean pairwise distance
between the alternate allele positions in the reads
supporting it. Similar to the read position bias filter,
this ensures that we filter mutations that are
consistently observed around the same region of all
the reads that support it. We used a cutoff of p < 0.05
for a two-tail distribution of simulated mean pairwise
distances from the BCFtools [53] implementation.
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10. RNA-specific allele frequency bias. We observed an
enrichment of variants having a variant allele
frequency (VAF) greater than 0.9 only in mutation
calls from RNA-sequencing but not from the
matched DNA-sequencing samples. This RNA-
specific bias could be due to several factors, includ-
ing allele-specific expression leading to enrichment
of the alternate allele, RNA editing, or systematic
artifacts during RNA extraction, library construc-
tion, and sequencing. We took a conservative ap-
proach and excluded all mutations that had a VAF
greater than 0.7.

11. Tissue-specific mutation effects. To eliminate
false positives arising by systematic artifacts of
unknown origin, we first looked for recurrent
mutations observed in many samples of a given
tissue. While these mutations could be real and
have a biological impact, they may also reflect a
shared systematic artifact that is producing the
same exact mutation across several samples of
the same tissue. We decided to take a
conservative approach and eliminated all
mutations that were called in at least 40% of the
samples in one tissue. Even though we labeled
these mutations on a per-tissue basis, once iden-
tified, we removed them from any sample in any
tissue that had them.

12. Overall systematic mutation bias. We further
eliminated mutations that were present in at least
4% of all samples. Similarly, as in the previous step,
these mutations are more likely to have originated
from a systematic artifact.

13. Hyper-mutated samples. We excluded samples
that had an excess of mutations compared to
what it was expected from sequencing depth and
biological factors. To do so, we looked at the
residuals after applying a linear regression on
mutation numbers using as features sequencing
depth, age, sex, and BMI. We observed 48
samples that had residual values greater than
1500 (i.e., they had > 1500 more mutations than
expected by other factors) (Additional file 1:
Figure S1 g) and excluded them from further
analysis, leaving 7584 remaining. We did not
observe any hypo-mutated samples having similar
residual values in the opposite direction.

Method validation
To validate the precision of our DNA somatic mutation calls
from RNA-seq, we sought to compare those calls to DNA
sequencing from the exome. The GTEx Consortium per-
formed DNA exome capture followed by sequencing in
blood samples with a median coverage of 80x.

From the GTEx dbGaP repository (phs000424.v7.p2), we
downloaded raw DNA exome sequencing runs from 105
randomly chosen donors. We mapped the reads and called
mutations identically to our RNA-seq samples. Throughout
the study, we used the mutation calls from exome to validate
certain results when appropriate.
To validate the overall mutation calling pipeline, we

matched RNA-seq to exome DNA-seq samples of the same
individuals. Then, we asked what percentage of the mutation
calls from RNA-seq had reads supporting the alternate allele
in the matched exome DNA-seq. To account for coverage
differences between RNA-seq and DNA-seq, we focused this
analysis only on mutation calls for which we had reasonable
power of detection to validate mutations in DNA-seq data.
This is especially relevant because in highly expressed genes,
sequencing coverage can be > 1000x in RNA-seq; therefore,
we could detect mutations with VAF as low as 0.006 for a
1000x-covered position (given our minimum alternate allele
6-read cutoff described above). In comparison, in exome
DNA-seq given the 80x median coverage, we expect to see
only 0.48 reads supporting the alternate allele of a variant
with VAF= 0.006. We therefore devised a way to account for
this coverage difference between RNA-seq and DNA-seq,
and only compared positions where we had power of detec-
tion in both experiments. We first made the following
calculation:

ri ¼ Ci;DNA−seq
Ai;RNA−seq

Ci;RNA−seq

� �

where Ci and Ai are total and alternate read counts for a
mutation in position i and ri effectively represents the
number of expected reads to support the alternate allele
in DNA-seq at position i given the VAF observed in
RNA-seq. As shown in Additional file 1: Figure S1f, we
took a conservative approach and only compared gen-
omic positions where r ≥ 8, to ensure sufficient power of
validation. Since this method will inherently select muta-
tions in a way that shifts the VAF distribution towards
higher values, we have estimated a VAF-corrected FDR
by binning all validation variants by VAF (as in Add-
itional file 1: Figure S1d) and then calculating an average
FDR weighted by the fraction of all mutation calls
present in each bin. For example, if 20% of mutations
had a VAF-matched FDR of 25% and 80% of mutations
had a VAF-matched FDR of 30%, then the overall FDR
would be 29%. Applying this approach, our VAF-
corrected FDR was 34%.
For all positions selected, we then calculated the

percentage of mutations observed in an RNA-seq
sample that had at least one read supporting the vari-
ant allele in the exome DNA-seq, effectively resulting
in a false-discovery rate. When assigning a random
alternate allele (not including the reference allele
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among the choices) to the mutated positions in RNA-
seq, we did not observe support for > 98% of the
position-permuted mutations, validating this FDR cal-
culation (Additional file 1: Figure S1c).

Discovery of mutation associations with biological and
non-biological factors
We first sought to identify and subtract the effects of
non-biological factors influencing the number of muta-
tions observed per sample. To this end, we grouped
samples by tissue and performed a linear regression on
the mutation numbers using non-biological factors as
explanatory variables, which included sequencing depth,
transcriptome Shannon diversity, time spent in the PAX-
gene fixative (SMTSPAX from GTEx sample attributes),
total ischemic time (SMTSISCH from GTEx sample at-
tributes), and RNA integrity number (SMRIN from
GTEx sample attributes). We assessed the significance of
association between mutation number and any factor by
the p value of each coefficient in a multiple regression
(Additional file 6: Table S4).
To discover biological factors associated with mutation

numbers, we took the residuals of the previous linear regres-
sion (constructed with non-biological explanatory variables)
and performed another regression using biological factors as
explanatory variables. Biological factors included biological
sex, age, BMI, and the first three genotype principal compo-
nents constructed from the ~ 107 SNPs with MAF ≥ 0.1
available from GTEx. Significance was assessed by the p
value of each coefficient in a multiple regression (Add-
itional file 6: Table S4). Additionally, Spearman correlations
were independently performed between each biological fac-
tor and the residuals from the linear regression between mu-
tation number and non-biological factors.

Analysis of sample mutation profile similarity (tSNE)
To assess the mutation profile similarity across samples
and to evaluate their tissue specificity, we performed
clustering analysis on mutation profiles using tSNE
followed by silhouette scoring.
tSNE was performed on a matrix of m rows and n col-

umns, where m are samples and n are mutation type
counts. We used a 1536-type mutation profile including
two base-pairs upstream and downstream of the muta-
tion site (pentanucleotide profile).
The content of the background pentanucleotide se-

quences can be influenced by sample-specific gene expres-
sion, which in turns shapes the probability of observing
mutations across different pentanucleotide sequences,
thus obscuring the underlying de facto mutation profile.
To account for these background sequence differences
driven by expression differences, we used a normalized
mutation count. The normalized mutation count (muti)
was obtained as follows:

muti ¼ ciXgenes
g

sg;ieg

where ci is the count of the mutation type i, sg,i is the
number of occurrences of the i sequence context in gene
g, eg is the expression in TMP of gene g, and genes are
all genes with TPM ≥ 1 in the given sample. This calcu-
lation was performed separately for every sample. We
used the tSNE implementation in R (Rtsne) with param-
eters dims = 2, max_iter = 500, perplexity = 30, pca =
TRUE, theta = 0.5.
To quantify the clustering among different groupings

in the tSNE two-dimensional space, we calculated a sil-
houette score (SS) for each group defined in Fig. 2f by
first obtaining a silhouette score (si) for each sample in
each group:

si ¼ bi−ai
max ai; bið Þ

where ai is the average distance of sample i to all other
samples inside the group and bi is the average distance
of sample i to samples outside the group. We then cal-
culated the average score s of all samples in a given
group and the 95% confidence intervals based on boot-
strapping 10,000 times.
We performed the individual-based grouping by calcu-

lating silhouette scores for all tissues from 20 randomly
selected individuals and then averaging them. The ran-
dom expectation was calculated by permuting the tissue
labels across samples 10 times, repeating the SS calcula-
tion across tissues and then averaging all SSs.

Cell type decomposition for blood and lung samples
We used CIBERSORT [54] to identify the cell type com-
position of each whole-blood sample in the GTEx data.
Briefly, CIBERSORT applies a support vector regression
on a gene expression profile(s) using reference gene ex-
pression signatures from different cell types, and then
retrieves the cell type composition from the signatures
in the original expression profile(s). We used the online
portal (https://cibersort.stanford.edu/) and the default
LM22 expression signatures composed of the most
prevalent immune cell types. CIBERSORT was run on
the blood gene expression profiles with default parame-
ters: 100 permutations and “absolute” mode.

Gene expression associations
To avoid population-based effects for all expression as-
sociation analyses in this study, we only used self-
reported Caucasian people.
For each tissue, we used individual gene expression to

model mutation counts in a linear regression as follows:
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pi ¼ β0 þ
X
n

βn covn;i þ γxi

where x is the expression of a given gene in TPM, cov is
a covariate variable, and there are n covariates. To esti-
mate the effects of a SNP on the phenotype, γ is calcu-
lated for each gene in the genome that has a TPM > 1 in
at least 20% of the samples. Significance is measured
based on the p value of a non-zero t test performed on
γ. p values are adjusted using Bonferroni correction.
When pi is the vector of mutation loads, we defined it

as the residuals after regressing non-biological factors as
described previously (see above in the “Discovery of mu-
tation associations with biological and non-biological
factors” section). The covariates included in this model
are the first 3 PCs of the whole-genome genotypes, age,
sex, and BMI.
In all cases, both pi and γ were normalized by convert-

ing the values into quantiles and mapping them to the
corresponding values of the standard normal distribution
quantiles, following standard GTEx practices [46].

Gene Ontology analysis
For gene expression associations with mutation load, we
assessed enrichment in GO biological processes using
GOrilla [55]. We used as input a ranked list of genes
based on the number of tissues they were significant in
(and only including genes that were tested in more than
the median number of tissues all genes were tested in,
p < 0.05 after Bonferroni correction, see above in the
“Gene expression associations” section) and breaking ties
by significance. We then used REVIGO [56] to obtain
non-redundant categories.

Expression associations with genomic instability genes
We selected a panel of genes known to be involved in
different pathways of DNA repair or translesion replica-
tion (Fig. 4) and performed association analyses between
their expression and the mutational load for all different
mutation types on a per-tissue basis. We followed the
same linear regression strategy as described above in the
“Gene expression associations.” We devised customized
strategies to calculate FDRs for individual gene-tissue as-
sociations, gene enrichment across all tissues, and path-
way (gene group) associations in each tissue.
For individual gene-tissue associations, we calculated

an FDR based on the distribution of p values of the lin-
ear regressions from the tests of all genes in the genome
(see above for additional filters). Then, for each gene of
interest, we calculated the FDR as the percentage of
genes from all tests that had an equal or lower p value.
To obtain an FDR of the enrichment for different

pathways across tissues, for each pathway of interest, we
obtained the p values from the individual linear

regressions of each gene. We then created 10,000 groups
with randomly selected genes with the same size as the
pathway of interest and within the tissue of interest and
performed linear regressions with mutation load (as de-
scribed above in the “Gene expression associations” sec-
tion). Finally, for each p value in the original group, we
calculated the FDR by dividing the percentage of p
values of equal or lower value in all permuted regres-
sions by the percentage of p values of equal or lower
value in the original regressions. For example, if 0.1% of
permuted regressions reached p < 0.001, compared to
1% of unpermuted regressions, the FDR at p < 0.001
would be 0.1/1 = 10%.
Lastly, to calculate FDR for the enrichment of individ-

ual genes across all tissues, we used a similar strategy as
the FDR calculation for gene pathways described in the
previous paragraph. We first obtained the p values of in-
dividual linear regression of a given gene across all tis-
sues. We then created a permuted set of p values from
the regressions of one gene from each of the 10,000 per-
muted groups in all tissues. Finally, we calculated the
FDR of the p values in the original group (one across all
tissues) by dividing the percentage of p values of equal
or lower p value in all permuted regressions by the per-
centage of p values of equal or lower value in the ori-
ginal regressions.

Chromatin analysis
To address the influence of chromatin on somatic muta-
tions, we first manually mapped tissues from GTEx to
tissues of the Roadmap Epigenomics Project [27]. We
were able to do such mapping for 18 tissues (Add-
itional file 10: Table S7). For each tissue, on a per-exon
basis, we calculated both mutation rates and signal for
H3K36me3, H3K4me1, H3K4me3, H3K27me3, and
H3K9me3.
To account for sequencing depth (expression) of an

exon when calculating mutation rates, we assigned exons
to 100 bins based on their sequencing depth, where each
bin contains 1% of exons. We then calculated the me-
dian number of mutations observed in each bin, and fi-
nally, the mutation rate per exon was obtained by
subtracting expected number of mutations (the median
for all exons in that bin) from the observed number for
that exon.
Chromatin signal for each exon was obtained from

Roadmap ChIP-seq data. We calculated the average
base-pair ratios of IP/input obtained from the Roadmap
bigwig files.
Significance of the association between each histone

modification and mutation rate was assessed by applying
a linear regression on the mutation rate using all histone
modifications as features and assessing the significance
(p value) of each coefficient (histone modification).
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Individual effect sizes (r) for each histone modification
were obtained as follows: for each histone modification,
a linear regression was performed using the rest of the
histone modifications as features. The residuals of those
regressions were then used in a separate linear regres-
sion with mutation rate as the response variable, from
which the variance explained (r2) was then obtained.

Mutation enrichment in COSMIC cancer mutations
We downloaded the entire set of cancer mutations from
COSMIC [35] v86, and we further filtered them to only
keep single nucleotide variants without indels. For each
sample, we calculated the percentage (overlap) of their
mutations that are present in COSMIC mutations, and
we calculated the significance of the overlap using the
integral of the upper tail from a hypergeometric distribu-
tion, that is p(X > k), where X follows a hypergeometric
distribution with parameters K (number of mutations in
sample), n (number of COSMIC mutations whose posi-
tions were covered by ≥ 40 reads in the RNA-seq sam-
ple), N × 3 (the total number of base pairs covered by ≥
40 reads in the RNA-seq sample multiplied by the three
possible alternate alleles that any reference can have),
and k (the overlap of mutations, K and n). As a control,
for each sample, this calculation was repeated using a
permuted set of mutations. This set was constructed by
randomly selecting genomic positions that were covered
by ≥ 40 reads in the sample and then mutations were
simulated in those positions. We preserved the number
of reference alleles and their corresponding alternate al-
leles from the original mutations in this permuted set.

dN/dS analysis
To calculate dN/dS ratios, we applied a previously de-
scribed method [36] that uses a Poisson distribution to
model the number of mutations with different impacts
(i.e., synonymous vs non-synonymous). Briefly, the Pois-
son distribution is based on the relative content of a mu-
tation type (e.g., C>T) across all types, the total content
of that mutation type, and the density of mutations per
site. For non-synonymous mutations, an extra parameter
represents the effect of selection (dN/dS), and
maximum-likelihood estimates are calculated by Poisson
regression for all parameters. This framework accounts
for different substitution rates across different genes as
well as sequence composition. We used dndsloc, which
is the implementation of this method in R [9] (https://
github.com/im3sanger/dndscv).

Mutation analyses on cancer driver genes
We downloaded the list of genes known to contain at
least one cancer driver mutation, based on the latest
TCGA publication on cancer driver genes [2] (Add-
itional file 13: Table S10). Since we did more in depth

analysis in this set of genes, we further removed poten-
tial false-positive mutation calls that could bias gene-
level analysis but are not necessarily an issue for
genome-wide analysis. For some of these genes, we ob-
served a high number of total mutations but low number
of unique mutations; in other words, some mutations
accounted for most of the unique mutated sites, which
may be artifactual [9]. To flag these events, for each mu-
tation, we calculated a metric t as the ratio of the counts
of that mutation divided by the unique number of muta-
tions found in the gene-of-origin. Mutations with high t
values account for most of the unique mutated sites in
their gene-of-origin, leading to a low diversity in muta-
tions of a given gene. These mutations may be artifacts
and can bias dN/dS ratios [9]. The distribution of t
values for mutations in this set of genes was bimodal
(Additional file 9: Note S11b), and we therefore excluded
mutations with r > 3.5.
To assess the mutation load on these genes and their

significance, for each tissue, we calculated the mutation
rate of these genes and then calculated whether this mu-
tation rate was higher or lower than expected from the
overall mutation rate of these genes across all tissues
(Fig. 5b). To do so, we calculated the overall mutation
rate in cancer driver genes across all tissues (k) and then
for each tissue we calculated the probability of the num-
ber of observed mutations (n) in these genes using the
binomial distribution [X ~ binom(n,k)]. For tissues show-
ing more mutations than expected, we used the integral
of the right tail of the binomial distribution to calculate
the probability of observing n mutations, and conversely,
for tissues showing fewer mutations, we used the inte-
gral of the left tail of the distribution. FDR was calcu-
lated using Benjamini-Hochberg method on the p
values.
We annotated the oncogenic status for the mutations

in these driver genes using the oncokb [37] tool
MafAnnotator.py.
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1186/s13059-019-1919-5.
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