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Within-species contamination of bacterial
whole-genome sequence data has a
greater influence on clustering analyses
than between-species contamination
Arthur W. Pightling* , James B. Pettengill, Yu Wang, Hugh Rand and Errol Strain

Abstract

Although it is assumed that contamination in bacterial whole-genome sequencing causes errors, the influences of
contamination on clustering analyses, such as single-nucleotide polymorphism discovery, phylogenetics, and multi-
locus sequencing typing, have not been quantified. By developing and analyzing 720 Listeria monocytogenes,
Salmonella enterica, and Escherichia coli short-read datasets, we demonstrate that within-species contamination
causes errors that confound clustering analyses, while between-species contamination generally does not.
Contaminant reads mapping to references or becoming incorporated into chimeric sequences during assembly are
the sources of those errors. Contamination sufficient to influence clustering analyses is present in public sequence
databases.
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Main text
Whole-genome sequence (WGS) analysis is valuable for
studying bacteria in many disciplines, including genetics,
evolutionary biology, ecology, clinical microbiology, and
microbial forensics [1–5]. Researchers cluster genomes
with phylogenetic analyses and by counting nucleotide
or allele differences. Contamination of eukaryotic data
can cause misleading results [6, 7]. For prokaryotes, it is
assumed that contamination causes error [8], and tools
are available to detect it [9–13], but evidence supporting
this assumption is lacking. To measure the influences of
contamination on clustering analyses, we generated 720
sets of simulated Listeria monocytogenes, Salmonella
enterica, and Escherichia coli Illumina MiSeq reads.
These datasets include from 10 to 50% of within-species
(at 0.05, 0.5, and 5% genomic distances) and between-
species contamination. We also identified 24 sets of
closely related bacteria (clusters) within which the

contamination datasets can be analyzed. With these
tools, we found that within-species contamination
caused substantial errors in single-nucleotide poly-
morphism (SNP) and multi-locus sequence typing
(MLST) pipelines, while between-species contamination
resulted in fewer errors. Read mapping and assembly be-
havior explains this observation—reads from the same
species are mapped to references or incorporated into
the same contiguous sequences (contigs) as subject
reads, while reads from different species usually are not.
We measured SNP and allele distances between sub-

jects and closely related isolates (“nearest neighbors”)
with the CFSAN SNP Pipeline and core-genome MLST
(cgMLST) workflows [14–16] (Additional file 1: Table
S1). We also performed phylogenetic analyses to provide
bootstrap supports for the monophyly of subjects and
their nearest neighbors. Importantly, only the subject
data are simulated; all other data are real (Add-
itional file 1: Figure S1). This approach provides as real-
istic a dataset as possible that produces results that
apply to real-world situations.
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We observed increased SNP counts for all three spe-
cies at 40 and 50% levels of contamination with 0.5 and
5% distant genomes (median 5–154) relative to controls
(median 1–3; Fig. 1a–c, Additional file 1: Tables S2 and
S3). For S. enterica and E. coli, there were smaller but
significant increases at 50% contamination with 0.05%
distant genomes (median 12–14) and for one of the two
between-species contaminants (median 7–13). Bootstrap
support at 40 and 50% levels of within-species contamin-
ation decreased for L. monocytogenes and E. coli (median
0.63–0.88 and 0.00–0.92, respectively) compared to con-
trols (median 0.91–0.92 and 0.97), although not all de-
creases were significant (Fig. 1d–f). For S. enterica, we
saw small decreases with 50% contamination by 0.05
(median 0.86) and 0.5% (median 0.96) distant genomes
relative to controls (median 1.00 for each). For L. mono-
cytogenes and S. enterica, between-species contamination

caused no decreases in bootstrap support (median 0.92–
0.93 and 1.00, respectively), and support only slightly de-
creased for E. coli (median 0.92–0.99). With the MLST
workflows, each type of contamination influenced allele
counts. Still, the 0.5 and 5% distant genomes had the great-
est influence (median 3–294 and 14–418) when compared
to controls (median 2–5; Fig. 2a–c, Additional file 1: Tables
S2 and S3). The numbers of missing and partial alleles were
also greatest for the 0.5 and 5% contaminants (median 1–
463) relative to controls (median 0–6; Fig. 2d–f). Errors at
lower levels for the MLST are likely due to the absence of
filtering steps commonly found in SNP pipelines.
To gain insight into these results, we examined the per-

cent of reads mapped to references. Median values were
highest for 0.05 and 0.5% within-species contamination
(median 96–100%) and lowest for between-species (me-
dian 50–91%), while 5% within-species contamination

Fig. 1 Results of SNP and phylogenetic analyses for contaminated datasets. We contaminated simulated Listeria monocytogenes (Lm), Salmonella
enterica (Se), and Escherichia coli (Ec) MiSeq data with reads from themselves as controls (Self); genomes from the same species at 0.05, 0.5, and
5% genetic distances; and genomes from different species (e.g., we contaminated Lm with Se and Ec, and we contaminated Se with Lm and Ec)
at 10–50% levels. For each contamination type at each level, results for 8 datasets are shown. Panels a-c show SNP distances, d-f bootstrap
supports, and g-i percent reads mapped
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yielded intermediate results (median 76–98%; Fig. 1g–i,
Additional file 1: Tables S2 and S3). For between-species
contamination, there is an inverse relationship between
contamination levels and the percent of reads mapped to
references. For example, at 10% contamination, approxi-
mately 90% of reads mapped. It appears that the more dis-
tant mapped contaminant reads are, the higher the SNP
counts. Contaminant reads that are similar enough to the
reference to be mapped but distant enough from the sub-
ject to introduce variation will generate errors. In turn,
these errors may reduce bootstrap support. A similar rela-
tionship exists between allele distances and assembly
lengths. Median assembly lengths for 0.05 and 0.5%
within-species data are similar to controls (median 3.0–
5.6 and 3.0–5.3 megabases [Mb], respectively), while
between-species contaminants yielded larger assemblies
(median 4.1–9.9Mb) and the 5% within-species

contamination dataset yielded intermediate assemblies
(median 3.1–9.1Mb; Fig. 2g–i).
To measure contamination in public sequence data-

bases, we used ConFindr [13] to analyze 10,000 randomly
selected fastq datasets for each of L. monocytogenes, S.
enterica, and E. coli (Additional file 2: Table S4). We de-
tected contamination in 8.92, 6.38, and 5.47% of the data,
respectively (Additional file 1: Table S5). We detected
between-species contamination (1.23, 0.29, and 0.15%) less
often than within-species contamination (7.69, 6.09, and
5.33%), consistent with Low et al. [13]. We also analyzed
the simulated data with ConFindr and used that informa-
tion to estimate levels of contamination in the databases
that may confound SNP and MLST workflows (Add-
itional file 1: Figure S2 and Table S5). Approximately 1.48
(L. monocytogenes), 2.22 (S. enterica), and 0.87% (E. coli)
of the data are contaminated at levels that are likely to

Fig. 2 Results of MLST analyses and assembly lengths for contaminated datasets. We contaminated simulated Listeria monocytogenes (Lm),
Salmonella enterica (Se), and Escherichia coli (Ec) MiSeq data with reads from themselves as controls (Self); genomes from the same species at
0.05, 0.5, and 5% genetic distances; and genomes from different species (e.g., we contaminated Lm with Se and Ec, and we contaminated Se
with Lm and Ec) at 10–50% levels. For each contamination type at each level, results for 8 datasets are shown. Panels a-c show allele counts, d-f
numbers of missing and partial alleles, and g-i assembly lengths
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influence SNP analyses. Roughly 2.26 (L. monocytogenes),
5.06 (S. enterica), and 1.26% (E. coli) of the data are con-
taminated at levels that may influence MLST analyses.
In summary, we show that within-species contamin-

ation (especially by 0.5 and 5% distant genomes) causes
more errors in SNP counts, allele counts, and phylogen-
etic analyses of bacterial genomes [17] than between-
species contamination. While other workflows may not
yield the exact numbers measured here, the observation
that contaminant reads are mapped to references and in-
cluded in contigs of the same species, resulting in errors,
is likely to hold. This study also shows that contamin-
ation that may cause errors in clustering analyses is
present in public sequence databases. Therefore, it is im-
portant that studies include steps to detect within-
species contamination.

Methods
We searched the National Center for Biotechnology In-
formation’s (NCBI’s) database for closed Listeria mono-
cytogenes, Salmonella enterica, and Escherichia coli
genomes (e.g., “Listeria monocytogenes”[Organism] AND
(“complete genome”[filter] AND all[filter] NOT anoma-
lous[filter])) and downloaded all assemblies. We identi-
fied those that are 0–9 SNPs distant to other genomes
(“nearest neighbors”) using the “min_dist_same” and
“min_dist_opp” measurements in the NCBI metadata
files [18–20]. We used the NCBI’s Isolates Browser [21]
to identify closed genomes with closely related isolates
that are part of NCBI SNP trees with at least 5 taxa [22].
We assembled 16,839 L. monocytogenes, 127,357 S. enter-
ica, and 33,821 Escherichia coli Illumina datasets with
SPAdes v3.12.0 (spades.py --careful -1 forward.fastq -2
reverse.fastq) [23]. We removed contigs that were less
than 500 nucleotides. We aligned closed and draft as-
semblies with NUCmer v3.1 (nucmer --prefix=ref_qry
closed.fna draft.fna) and estimated SNP distances with
show-snps (show-snps -Clr ref_qry.delta > ref_qry.snps)
[24]. We selected closed genomes for further analyses
that are approximately 0.05, 0.5, and 5% from draft ge-
nomes of the same species (based upon closed assembly
length estimates calculated with QUASTv4.5 [25]). For
most subjects, within-species contamination represents
(i) closely related genomes of the same serotype and
clonal complex, with 0–2 locus differences (average 0.22;
as measured with the program mlst; 0.05%) [26–28]; (ii)
distantly related genomes of the same serotype but dif-
ferent clonal complex and 2–6 locus variants (average
4.1; 0.5%); and (iii) genomes of a different serotype and
clonal complex with 7 locus variants (average 7; 5%;
Additional file 1: Table S1). When unavailable, we pre-
dicted serotypes for S. enterica with SeqSero [29] and E.
coli with SerotypeFinder [30]. We generated simulated
reads using closed subject assemblies, within-species

draft contaminant assemblies, and between-species draft
contaminant assemblies, with ART_Illumina v2.5.8 (art_
illumina -ss MSv1 -i assembly.fasta -p -l 230 -f 20 -m
295 -s 10 -o paired_data) [31]—all assemblies were gen-
erated from real sequencing data. Contamination fastq
files were made by randomly selecting subject and con-
taminant reads at indicated levels (in this case 10–50%
contamination) and combining them into paired read
files with 20-fold depth of coverage (github.com/apigh-
tling/contamination; e.g., select_reads.pl subject_1.fq
subject_2.fq 10 contaminant_1.fq contaminant_2.fq out-
put_prefix).
We identified SNP clusters that contain subject gen-

ome sequences with the NCBI’s Isolates Browser. If SNP
clusters had more than 20 taxa, counting the subjects
and their nearest neighbors, we randomly selected sub-
sets for further analyses. We also ensured that the sub-
jects and nearest neighbors formed monophyletic groups
in phylogenetic trees. We generated SNP matrices with
the CFSAN SNP Pipeline v1.0, using the subject assem-
bly as a reference to minimize errors [32]. Alignments of
SNPs that were detected by mapping reads to the refer-
ence were phylogenetically analyzed with GARLI
v2.01.1067 [33] (100 replicates, K80 and HKY). We re-
ported supports for monophyly of subjects and nearest
neighbors; if the they were no longer monophyletic, we
recorded a support of 0.
We assembled simulated data with SPAdes v3.12.0 and

measured assembly statistics with QUAST v4.5. We ana-
lyzed Listeria monocytogenes assemblies with the
LmCGST core-genome multi-locus sequence typing
(cgMLST) tool and Salmonella enterica assemblies with
an S. enterica cgMLST tool described in Pettengill et al.
[15]. We analyzed E. coli assemblies with a cgMLST de-
veloped using the same approach. Partial alleles are
those loci whose lengths are less than 60% of the pre-
dicted lengths, and missing alleles are those loci that are
less than 60% of predicted lengths and less than 80%
identical to the reference.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s13059-019-1914-x.

Additional file 1: Figure S1. Phylogenetic tree of 9 Listeria
monocytogenes genomes with study subject and nearest neighbor
labeled. Figure S2. Results of ConFindr analysis of contamination
datasets generated for this study. Table S1. Contextual information for
genome sequences used for this study. Table S2. Results of SNP pipeline
and core-genome multi locus sequence typing analyses. Table S3. P-
values for results of clustering analyses. Table S5. Percent of contamin-
ation detected in data from NCBI. Table S6. NCBI accession numbers for
data generated during this study.

Additional file 2: Table S4. ConFindr results from analysis of 10,000
Listeria monocytogenes, Salmonella enterica, and Escherichia coli fastq
datasets. (XLS 7913 kb)
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