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Abstract

High-throughput DNA sequencing enables large-scale metagenomic analyses of complex biological systems. Such
analyses are not restricted to present-day samples and can also be applied to molecular data from archaeological
remains. Investigations of ancient microbes can provide valuable information on past bacterial commensals and
pathogens, but their molecular detection remains a challenge. Here, we present HOPS (Heuristic Operations for
Pathogen Screening), an automated bacterial screening pipeline for ancient DNA sequences that provides detailed
information on species identification and authenticity. HOPS is a versatile tool for high-throughput screening of
DNA from archaeological material to identify candidates for genome-level analyses.
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Background
High-throughput DNA sequencing enables large-scale
metagenomic analyses of environmental samples and
host tissues and provides an unprecedented understand-
ing of life’s microbial diversity. Examples of coordinated
efforts to quantify this diversity include the Human
Microbiome Project [1], the Tara Ocean Project [2], and
the Earth Microbiome Project [3]. Metagenomic data
from human archaeological remains (e.g., bones, teeth,
or dental calculus) provide a window into the individ-
uals’ metagenomic past and are an unprecedented tem-
poral dimension added to the wide landscape of
microbial diversity now being explored. While many an-
cient DNA (aDNA) studies focus on the analysis of hu-
man endogenous DNA isolated from ancient specimens
[4–8], co-recovery of metagenomic aDNA permits quer-
ies that provide information related to endogenous mi-
crobial content at death, with applications ranging from
characterizing the natural constituents of the microbiota
to identifying infectious diseases [9, 10].

Genome-level investigations of ancient bacterial patho-
gens have provided valuable information about the evo-
lution of Yersinia pestis [11–18], Mycobacterium leprae
[19, 20], Mycobacterium tuberculosis [21, 22], pathogenic
Brucella species [23, 24], Salmonella enterica [25, 26],
and Helicobacter pylori [27], with others surely on the
horizon. Notably, most studies to date have leveraged
paleopathological evidence or historical context to pin-
point a priori involvement of a specific bacterial patho-
gen. However, the vast majority of infectious diseases do
not lead to the formation of distinct and characteristic
bone lesions, and most remains are found in contexts
that lack clear associations with a particular disease.
Consequently, studies of ancient pathogens must con-
sider a long list of candidate microbes. Given the sizes
and availability of current aDNA datasets, there is clear
benefit for the development of an automated computa-
tional screening tool that both detects and authenticates
true pathogen genetic signals in ancient metagenomic
data. Ideally, this tool also is able to distinguish patho-
gens from the dominant and diverse microbial back-
ground of archaeological and other decomposed
material, a consideration typically not required for tools
developed for clinical applications.
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To save computational time and effort, most available
metagenomic profiling tools focus only on individual
genes, such as the 16S rRNA gene used by QIIME [28],
or panels of marker genes, such as those used by
MetaPhlAn2 [29] and MIDAS [30], that are easy to re-
trieve and sufficiently specific. However, these genes
make up only a small proportion of a bacterial genome
(the 16S rRNA gene, for example, accounts for only ~
0.2% of a bacterial genome and is usually present in
multiple copies), and if a pathogen is present at low
abundance compared to host and environmental DNA,
these genes are likely to be missed in routine metage-
nomic sequencing screens. Although these tools can
have high specificity, they lack the sensitivity required
for ancient pathogen screening from shallow but highly
complex metagenomic datasets. Screening techniques
that accommodate queries of whole genomes are of clear
benefit for archaeological studies since alignment to a
full reference genome offers greater chances for detec-
tion when data for a given taxon are sparse [25]. While
some algorithms, such as Kraken [31], have been devel-
oped to query databases that contain thousands of
complete reference genomes using k-mer matching, this
approach does not produce the alignment information
necessary to further evaluate species identification accur-
acy or authenticity.
In addition to taxonomic classification [32], it is also

helpful to distinguish ancient bacteria from modern con-
taminants as early as the initial screening [9, 10]. Genu-
ine aDNA, especially pathogen bacterial DNA, is usually
only present in small amounts and can be distinguished
from modern DNA contamination by applying an estab-
lished set of authenticity criteria [9, 10], the most im-
portant of which is the assessment of DNA damage. In
ancient DNA, cytosine deamination accumulates over
time at DNA fragment termini [9, 10, 33, 34], thus lead-
ing to a specific pattern of nucleotide misincorporation
during amplification. The evaluation of additional au-
thenticity criteria such as edit distances (number of mis-
matches between read and reference) and the
distribution of mapped reads across the reference are
also recommended to circumvent database bias artifacts
and to further validate taxonomic assignments [9, 10].
While manual evaluation of species identification and
aDNA authenticity using standalone tools might be feas-
ible for a small sample set, it is impractical for the large
sample sizes typical of recent ancient DNA investiga-
tions. The increasing throughput of the ancient DNA
field warrants an automated high-throughput solution
for pathogen detection in metagenomic datasets.
Successful ancient pathogen detection is reliant upon

three criteria: (i) specificity of species-level detection
against a diverse metagenomic background, (ii) high sen-
sitivity that allows detection even with a weak signal

when only trace amounts of species-specific DNA are
present, and (iii) authentication of its ancient origin. No
software currently exists that fulfills all requirements for
reliable screening of metagenomic aDNA. Here, we
introduce HOPS (Heuristic Operations for Pathogen
Screening), an automated computational pipeline that
screens metagenomic aDNA data for the presence of
bacterial pathogens and assesses their authenticity using
established criteria. We test HOPS on experimental and
simulated data and compare it to common metagenomic
profiling tools. We show that HOPS outperforms avail-
able tools, is highly specific and sensitive, and can per-
form taxonomic identification and authentication with
as few as 50 species-derived reads present.

Results
HOPS workflow
HOPS consists of three parts (Fig. 1): (i) a modified ver-
sion of MALT [25, 35] that includes optional PCR dupli-
cate removal and optional deamination pattern tolerance
at the ends of reads; (ii) the newly developed program
MaltExtract that provides statistics for the evaluation of
species identification as well as aDNA authenticity cri-
teria for an arbitrarily extensive user-specified set of bac-
terial pathogens, with additional functionality to filter
the aligned reads by various measures such as read
length, sequence complexity, or percent identity; and
(iii) a post-processing script that provides a summary
overview for all samples and potential bacterial patho-
gens that have been identified.

MALT
MALT (Megan Alignment Tool) [25, 35] is an alignment
and taxonomic binning tool for metagenomic data that
aligns DNA reads to a user-specified database of refer-
ence sequences. Reads are assigned to taxonomic nodes
by the naïve Lowest Common Ancestor (LCA) algorithm
[36, 37] and are thus assigned to different taxonomic
ranks based on their specificity. The default version of
MALT is intended for the analysis of metagenomic data-
sets derived from modern DNA, and thus, it was not de-
signed to accommodate the specific requirements of
aDNA analyses. In particular, aDNA damage that mani-
fests as misincorporated nucleotides in sequenced prod-
ucts can lead to an increased number of mismatches,
and extensive damage has the potential to prevent align-
ment or alter taxonomic assignment. Loss of target reads
due to DNA damage can hamper species detection since
aDNA studies usually begin with shallow sequence data
for initial evaluations of sample quality. In addition,
archaeological remains often have low DNA yields, and
library amplification can result in a high number of PCR
duplicates that can falsely inflate quantitative estimates
of taxa.
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To accommodate such established phenomena, we
introduce a new version of MALT that is specifically tai-
lored to the analysis of aDNA data. In this modified ver-
sion, PCR duplicates are removed by eliminating reads
identical to those already aligned. In addition, reads are
optionally filtered for a minimum Wootton and Feder-
hen complexity [38] in order to remove reads with low
sequence complexity. Furthermore, C>T substitutions
are ignored in the first five positions from the 5′-end
and G>A in first five positions from the 3′-end, thus re-
moving the influence of aDNA damage on alignment
scores.

HOPS’ authentication strategy
The core of HOPS is formed by the newly developed
MaltExtract module. Without MaltExtract, the result
files produced by MALT (RMA6 format) can only be
evaluated manually with the metagenomic analysis tool
MEGAN [39]. Such analysis becomes infeasible when
working with large data sets, wherein each sample must
be separately searched for a long list of candidate organ-
isms, a process that is both laborious and prone to sub-
jectivity. MaltExtract provides an automated approach
for the assessment of the alignment information stored
in RMA files generated by MALT. It automatically re-
trieves and assesses information on various evaluation

criteria for all taxonomic nodes that match a given list
of target species.
MaltExtract obtains information on edit distance dis-

tribution, read length distribution, coverage distribution
and alignment mismatch patterns in order to identify
and authenticate the presence of species-specific aDNA.
Furthermore, MaltExtract allows data filtering for max-
imum read length, minimum percent identity, minimum
complexity, and aDNA damage pattern.
Accuracy in taxonomic read assignment is evaluated in

a three-step procedure that includes ancient authentica-
tion criteria (Fig. 2). The first step evaluates the read as-
signment to a taxonomic node. Incorrect read
assignments can occur when databases are incomplete:
many species in a metagenomic sample may have no
representative reference genome in the database, and
hence their individual reads may become erroneously
assigned to the taxon showing the closest genetic match,
which could belong to a different species or genus. Map-
ping to an incorrect species generally results in an in-
creased number of mismatches across the read that is
evident in the edit distance distribution (Fig. 2a). By con-
trast, if the sequenced reads are assigned to the correct
reference species, the edit distance distribution should
continuously decline, with most of the reads showing no
or only a few mismatches that mostly resulted from

Fig. 1 Schematic depiction of HOPS workflow. First, MALT aligns the metagenomic data against its reference database and has an optional mode
for processing aDNA reads. MaltExtract then processes the MALT output with various filters and produces various statistics. Finally, post-
processing procedures provide a comprehensive visualization of the output that can be evaluated to identify putatively positive hits
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aDNA damage or evolutionary divergence of the modern
reference from the ancient genome. We summarize the
shape of the edit distance distribution by a score we
term the negative difference proportion (−Δ%), which
leverages the difference in sequencing read counts be-
tween neighboring mismatch categories (Additional file 1:
Figure S1). The −Δ% takes values between 0 and 1,
where 1 indicates a strictly declining edit distance distri-
bution. While true positives have a −Δ% of 1 when
enough endogenous species-specific sequencing reads
are present, we use a threshold of −Δ% > 0.9 to account
for possible perturbations due to stochasticity in the edit
distance distribution when few reads (~ 10–20) are
present. As such, this permits the detection of very low
abundant taxa.
In a second step, the ancient origin of the DNA is

evaluated through analysis of DNA miscoding lesion pat-
terns (Fig. 2b). The most prominent modification ob-
served is deamination of cytosine into uracil, which is
read as a thymine by the polymerase. This leads to an
overrepresentation of C>T substitutions at the 5′ end
and correspondingly G>A substitutions at the 3′ end [9,
10, 34, 40]. Evaluation of damage patterns is mandatory
in any ancient DNA study. MaltExtract reports the rates
of substitutions for the leading and trailing 10 positions
of the read alignment. The default post-processing set-
tings require only a single miscoding lesion to be present
in at least one read for the assigned taxon to qualify as
exhibiting damage. This maximizes sensitivity and allows
authentication to function largely independently of read
depth.
As a third and final criterion, we evaluate the accuracy

of taxonomic assignment for all aligned reads exhibiting
aDNA damage. For this, we assess again the edit dis-
tance distribution using the −Δ% score, but now this is
only performed for damaged reads (Fig. 2c) and thus all
reads harbor by definition at least one mismatch. In this
step, a greater number of assigned reads (> 100) is

required for reliable edit distance evaluation due to the
fact that not all ancient reads are expected to exhibit
damage.
The MaltExtract output is saved in a structured output

folder with a summary file of the processed input and
subfolders for each evaluation criterion. The post-
processing tool generates a summary highlighting which
of the target species passed one or more evaluation cri-
teria for each sample, as well as detailed diagnostic plots
displaying the evaluation criteria for each supported tar-
get species (Additional file 1: Figure S2). Using the ver-
satile MaltExtract output additional post-processing
scripts can be developed to extract user-defined criteria,
as for instance the GUI-based MEx-IPA (https://github.
com/jfy133/MEx-IPA).

Assessment of taxonomic assignment on simulated data
The naïve LCA algorithm [36], which is part of HOPS,
assigns reads to different taxonomic levels depending on
the specificity of sequence matches. Taxonomic assign-
ment thus depends on the structure of the underlying
reference database, and it is critical to understand the
expected taxonomic placement of sequenced reads from
each microbial pathogen in order to successfully identify
them.
To analyze the taxonomic placement of a test set of 33

bacterial pathogens and to assess the performance of
HOPS, we simulated sequencing reads that included
artificial DNA damage and spiked them into dentine,
dental calculus, bone, and soil metagenomic back-
grounds (see Table 1).
Applying the HOPS pipeline, we recovered 98% of the

simulated reads for 32 of the 33 bacterial taxa of interest
(Fig. 3). The one exception was Mycobacterium avium
subsp. paratuberculosis K10 for which 23% of simulated
reads were assigned to a different Mycobacterium avium
subsp. paratuberculosis strain. Our analysis shows that
in most cases the vast majority of the simulated

Fig. 2 Post-processing steps in HOPS. Three hierarchical post-processing steps are used in HOPS. a First, the edit distance distribution is required
to show a decline. b Second, the alignments are assessed for C>T and G>A mismatches typical for aDNA; by default, any such damage is
considered sufficient. c Third, the edit distance distribution of reads showing damage is evaluated
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pathogen reads are assigned to the taxonomic levels
“species” and “complex” (e.g., Mycobacterium tubercu-
losis complex and Yersinia pseudotuberculosis complex).
Noteworthy exceptions were Brucella abortus, Brucella
melitenis, and Bordetella pertussis. Upon further investi-
gation, we found that many species within the genera
Brucella and Bordetella show a high degree of sequence
similarity, thus causing the majority of the reads deriving
from these pathogens to be assigned at the genus level.
By contrast, read assignment was found to be very spe-
cific for five taxa (Treponema denticola ATCC 35405,
Clostridium tetani E89, Clostridium botulinum E3 str.
Alaska E43, Streptococcus gordonii str. Challis substr.
CH1 and Clostridium botulinum BKT015925), resulting
in the majority of reads deriving from these taxa to be
assigned at the strain level. For Salmonella enterica
subsp. enterica, most reads were assigned at the subspe-
cies level. The results of this test provide a guide for the
levels of taxonomic identification that should be consid-
ered when searching for any of the 33 queried bacterial
species in experimental ancient datasets. Further, it

provides a framework to assess taxonomic placement
and subsequent identification for other ancient
microbes.

Optimization of MALT for aDNA
Because MALT was designed for taxonomic binning of
modern genetic data, adapting it to be used on aDNA re-
quired altering the original MALT implementation to toler-
ate terminal substitutions consistent with aDNA damage so
that they would not interfere with the percent identity filter.
To evaluate the efficacy of this modification, we compared
the performance of the modified, damage tolerant version
of MALT to the default version using simulated Y. pestis
data with high terminal damage (~ 40%) and three different
percent identity filters: 85%, 95%, and 99% (Fig. 4).
As expected, the greatest difference was observed when

applying the stringent 99% identity filter, for which the
damage tolerant MALT version recovered ~ 20% more
reads than the standard MALT version. Additionally, only
the modified version was able to recover reads with simu-
lated damage under these parameters. At 95% identity,

Fig. 3 Assignment of simulated reads to taxonomic levels for 33 bacterial pathogens. The fraction of simulated reads (red gradient) per reference
(y-axis) assigned to a specific node across different levels of the taxonomy (x-axis). The levels of taxonomy not defined for a species are shown
in gray

Table 1 Metagenomic backgrounds used for simulated data sets

ID Source Age (Period) Treatment Reference

KT31calc Calculus Medieval No UDG [41]

LP39.10 Dentine 2920–2340 BCE No UDG [42]

MK5.001 Dentine 3348–3035 BCE 3619–3366 BCE UDG half [43]

TÖSM_1a Bone 6000–5500 BCE UDG half [44]

Soil Soil – No UDG [25]

Hübler et al. Genome Biology          (2019) 20:280 Page 5 of 13



only a small difference could be observed between the two
MALT versions, while results were almost identical at an
85% identity level. Taken together, the damage tolerant
MALT version provides an advantage when searching for
a given pathogen using stringent filtering criteria.

Performance comparison of HOPS, Kraken, SPARSE,
MIDAS, and metaBIT on simulated data
We evaluated the performance of HOPS by compar-
ing it to four metagenomic profiling tools: MIDAS
[30], a marker gene-based taxonomic classifier, Kra-
ken [31], which performs taxonomic classification
based on k-mer matching to a database of complete
genomes, metaBIT [45], a pipeline designed for the
assessment of ancient metagenomes, and SPARSE
[46], which uses a reduced, structured database and
a probabilistic model for accurate species assign-
ment. The marker gene database of MIDAS lacked
representation for Yersinia pseudotuberculosis, Borde-
tella pertussis, and Brucella melitensis. Therefore,
MIDAS could only be evaluated for 30 of the 33
bacterial pathogens in the simulated data sets. For
Kraken, we downloaded the bacterial database, which
lacked a reference genome to Clostridium sporogenes.
HOPS consistently detected all 33 pathogens in all

backgrounds and among replicates with as few as 50
reads (see Fig. 5a). However, for 15 species, authentica-
tion could not be performed in all cases due to the low
number of reads. With 50 species-derived reads, HOPS
could positively authenticate species assignment in 90%
of all tests. For 500 reads, authentication succeeded for
all species except for Streptococcus gordonii, S. pneumo-
nia, Neisseria gonorrhoeae and N. meningitidis. These
species were found in all data sets but authentication
was not possible in dental calculus due to a strong back-
ground of other Streptococcus and Neisseria species. Kra-
ken failed to identify Brucella abortus and

Mycobacterium tuberculosis in some replicates with only
50 simulated pathogen reads, resulting in a sensitivity of
94%; however, it was prone to a high false positive rate
(see below). SPARSE only sporadically detected species
represented by 50 reads (sensitivity of 35%) with only
three species consistently identified across all back-
grounds (B. melitensis, C. tetani, and T. denticola). How-
ever, SPARSE showed a sensitivity of 100% when 500 or
5000 simulated species-derived reads were present. The
sensitivity of MIDAS and metaBIT were far lower than
for Kraken, SPARSE, and HOPS. Even with 500 simu-
lated pathogen reads, most species were only sporadic-
ally detected (i.e., not in all backgrounds/replicates) or
were not detected at all. With 5000 simulated reads,
however, MIDAS detected 29 of the 30 possible bacterial
pathogens. metaBIT, which integrates MetaPhlAn2 [29],
detected 26 pathogens under the same conditions. This
can be explained by the lower sensitivity of marker
gene-based approaches, which require relatively high se-
quencing coverage in order to ensure adequate represen-
tation of the genes needed for identification. This is
further evident since MIDAS’ and metaBIT’s sensitivities
are correlated with an increase in the number of simu-
lated reads, which has less of an influence for Kraken,
SPARSE, and HOPS.

Negative controls
To assess false positive assignments, we queried all five
metagenomic datasets prior to the addition of simulated
pathogen reads for detectable signatures of the 33 test
bacterial pathogens using Kraken, SPARSE, MIDAS,
metaBIT, and HOPS. Kraken showed the highest suscep-
tibility to false positives (see Fig. 5b; Additional file 1:
Table S1). Of the 33 pathogens considered, Kraken de-
tected 24 (73%) in calculus, 19 (58%) in dentine, 13
(39%) in bone, and 18 (55%) in soil. Most problematic-
ally, Mycobacterium tuberculosis and Bordetella pertussis

Fig. 4 Comparison of the number of successfully recovered Y. pestis reads using standard (SD) and damage-tolerant (DT) MALT with minimum
percent identities of a 99%, b 95%, and c 85%. Shown are the recovered reads from the “default” (all reads) and “ancient” (reads with damage)
modes in MALT, with the same 500 reads being spiked into the metagenomic backgrounds. Error bars show the standard error of five
independent technical replicates for each analysis
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were detected by Kraken in every metagenomic
background.
SPARSE detected oral streptococci, Tannerella for-

sythia, Treponema denticola, and Porphyromonas gingi-
valis as well as Haemophilus influenzae and Neisseria
meningitidis in the calculus background. Furthermore,
Clostridium botulinum was detected in dentine and
Clostridium tetani in soil.
MIDAS and metaBIT detected only oral streptococci,

Tannerella forsythia, Treponema denticola, and Porphyr-
omonas gingivalis in the calculus background. Overall,
both tools produced fewer identifications than Kraken
and SPARSE, but such a result is expected given their
reliance on marker gene-based detection, which limits
identification to only abundant taxa.
HOPS detected and authenticated four test pathogens

in the metagenomic background datasets: Clostridium
tetani (soil), Streptococcus mutans (calculus, dentine),
Treponema denticola (calculus, dentine), and Porphyro-
monas gingivalis (calculus only). Because C. tetani is ubi-
quitous in soil, and all other detected bacteria are
commensals of the human oral cavity, their identification
likely reflects true positives. In addition to these four
pathogens, there was a weak detection of Neisseria
meningitidis in dentine. Compared to Kraken, HOPS,
SPARSE, MIDAS, and metaBIT all produce only few
false positive assignments. Kraken’s increased vulnerabil-
ity for aberrant assignments likely relates to the absence

of an alignment step, which is necessary for reliable spe-
cies evaluation in both modern and ancient contexts.

Positive controls
In addition to performing tests using simulated data, we
also tested HOPS, Kraken, SPARSE, metaBIT, and
MIDAS on 25 ancient metagenomic datasets known to
be positive for bacterial pathogens (Table 2). They con-
sisted of both shotgun and capture data and they varied
in sequencing depth in accordance with experimental
conditions and method of data generation.
HOPS and Kraken share 100% sensitivity for the de-

tection of target bacterial pathogens in every sample.
SPARSE only failed to detect Y. pestis in the sample
RT6. By contrast, MIDAS and metaBIT only detected
the correct bacterial pathogen in 22 and 14 out of 25
samples, respectively. Again, their sensitivity was likely
reduced due to the marker gene-based approach. These
results highlight the advantage of whole-genome based
approaches like MALT, SPARSE, and Kraken that take
advantage of every sequenced read.

Runtimes
To calculate the runtime for each program, we used five
million simulated metagenomic sequencing reads (see
“Methods”). For each file, HOPS required an average of
3307 ± 820 s for the MALT step, 16 ± 1 s for the MaltEx-
tract step, and 1 ± 0 s for post processing, for a total of

Fig. 5 Performance comparison of HOPS, Kraken, SPARSE, metaBIT, and MIDAS. a Number of species that have been correctly identified in the
simulated data sets by each of the programs. The bar plot on the upper left shows the percentage of data sets with 50 simulated reads for which
the correct species has been identified. The other bar plots show the number of species that have been correctly identified in data sets with 50,
500, and 5000 simulated reads, respectively. b Number of target species identified in the metagenomic background (negative controls) without
any spiked-in species-derived data for each of the tested programs
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approximately 55 min of analysis time per file. Kraken
took on average 72 ± 16 s to run Kraken_alignment and
22 ± 3 for Kraken_translate, for a total of 1.5 min. The
SPARSE analysis took on average 5653 ± 1293 s (about
94 min) for each sample. The MIDAS pipeline processed
each file in an average of 73 ± 4 s, and metaBIT needed
on average 10 s per sample. HOPS and SPARSE by far
required the highest runtimes of the tested tools, but
most of this time was required for sequence alignment, a
step that, although time consuming, increases detection
sensitivity, reduces false positives, and enables the au-
thentication of aDNA reads.
For these tests HOPS, Kraken, SPARSE, MIDAS, and

metaBIT were run with 450 GB, 100 GB, 100 GB, 1 GB,
and 10 GB of main memory, respectively.

Discussion
The field of archaeogenetics faces several challenges,
such as the low amount of endogenous target DNA, the
highly degraded molecules, and unknown and diverse
metagenomic backgrounds that accumulate during

decomposition and centuries spent in a depositional en-
vironment. These factors complicate reliable identifica-
tion and authentication of genuine ancient DNA,
particularly when the targeted bacterial DNA is present
in small amounts. Furthermore, many bacterial patho-
gens have close relatives in soil, which necessitates care-
ful selection of reference sequences as well as
meticulous care when making pathogen identifications
(see [9, 10] for reviews discussing these challenges).
HOPS provides an automated pipeline for high-

throughput ancient bacterial species detection and au-
thentication from metagenomic sequencing data. We
compare HOPS to Kraken, SPARSE, metaBIT, and
MIDAS, several widely used methods that estimate both
the presence and abundance of bacterial taxa in metage-
nomic data. Aside from metaBIT and SPARSE, these
tools have limited application to the specific challenges
of aDNA in terms of degradation and chemical modifi-
cations that manifest as misincorporated nucleotides.
Our analyses highlight the need for a pathogen identifi-
cation pipeline that accommodates qualities of aDNA

Table 2 Metagenomic samples used as positive controls

ID Reconstructed Bacteria Sequencing reads Data type Detected Reference

10C Salmonella enterica 1,017,400 Shotgun HP, KA, MB, MI, SP [25]

35C Salmonella enterica 986,908 Shotgun HP, KA, MI, SP [25]

RK1001.C0101 Yersinia pestis 7,023,370 Shotgun HP, KA, MI, SP [17]

GEN_72 Yersinia pestis 7,663,408 Shotgun HP, KA, MB, SP [17]

549_O Yersinia pestis 1,520,471 Shotgun HP, KA, MI, SP [16]

JK3031UDG Yersinia pestis 4,059,016 Shotgun (UDG) HP, KA, MI, SP [16]

JK2370UDG Yersinia pestis 52,858,027 Shotgun (UDG) HP, KA, MB, MI, SP [16]

RT6 Yersinia pestis 6,706,316 Shotgun (UDG) HP, KA [18]

1343UnTal85 Yersinia pestis 3,462,216 Shotgun HP, KA, MB, MI, SP [17]

6Post Yersinia pestis 2,546,695 Shotgun HP, KA, MB, MI, SP [17]

KunilaII Yersinia pestis 1,007,417 Shotgun HP, KA, MB, MI, SP [17]

RISE00 Yersinia pestis 6,000,000 Shotgun HP, KA, MI, SP [13]

RISE139 Yersinia pestis 6,000,000 Shotgun HP, KA, MB, MI, SP [13]

RISE386 Yersinia pestis 6,000,000 Shotgun HP, KA, MI, SP [13]

RISE397 Yersinia pestis 6,000,000 Shotgun HP, KA, SP [13]

RISE505 Yersinia pestis 6,000,000 Shotgun HP, KA, MB, MI, SP [13]

RISE509 Yersinia pestis 6,000,000 Shotgun HP, KA, MB, MI, SP [13]

RISE511 Yersinia pestis 6,000,000 Shotgun HP, KA, SP [13]

54 Mycobacterium tuberculosis 70,897 Shotgun HP, KA, MI, SP [21]

58 Mycobacterium tuberculosis 114,555 Shotgun HP, KA, MI, SP [21]

64 Mycobacterium tuberculosis 160,310 Shotgun HP, KA, MB, MI, SP [21]

54 Mycobacterium tuberculosis 5,000,000 Capture (UDG) HP, KA, MB, MI, SP [21]

58 Mycobacterium tuberculosis 5,000,000 Capture (UDG) HP, KA, MB, MI, SP [21]

64 Mycobacterium tuberculosis 5,000,000 Capture (UDG) HP, KA, MB, MI, SP [21]

P1P2 Helicobacter pylori 5,000,000 Capture (UDG) HP, KA, MB, MI, SP [27]

HP HOPS, KA KRAKEN, MB metaBIT, MI MIDAS, SP SPARSE
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data and includes an essential and robust authentication
for all ancient read assignments. HOPS provides a reli-
able and user-friendly solution to these established
limitations.
HOPS was tested on simulated ancient pathogen DNA

reads, and it detected all targeted species and success-
fully authenticated 90% of all cases in various metage-
nomic backgrounds with as few as 50 species-derived
reads, representing less than 0.001% of the total dataset.
In this context, our modified version of MALT, which
tolerates mismatches resulting from DNA degradation,
prevents a decrease in sensitivity even in cases of heavily
damaged aDNA. For 500 reads, authentication was not
possible for two Streptococcus and two Neisseria species
in dental calculus. This is due to a strong background of
similar species that is frequently found in this mater-
ial. Oral streptoccoci were in fact identified in the
calculus background by all programs. Thus, for these
species, more reads are required for a successful
authentication.
We demonstrate that the marker gene-based metage-

nomic profiling tools MIDAS and metaBIT have lower
sensitivities for pathogen detection compared to HOPS,
especially for low coverage data, which is typical of an-
cient DNA screening datasets. Although the sensitivity
of Kraken was similar to HOPS, and while Kraken’s
alignment-free k-mer matching is considerably faster
than the precise alignments used in HOPS, Kraken is in-
capable of validating species assignment and aDNA au-
thenticity, and thus has a lower specificity. This is most
clearly demonstrated by our analysis of a metagenomic
soil sample in which Kraken detected numerous false
positives, including Mycobacterium tuberculosis and Bor-
detella pertussis (whooping cough). This is likely due to
many soil-dwelling bacteria that harbor genetic similar-
ities to these pathogens, such as diverse mycobacterial
species and Bordetella petrii, a close relative to B. pertus-
sis that is a common constituent of environmental data-
sets. These effects are further compounded by the fact
that many environmental microbes have not been geno-
mically characterized and are not part of any reference
database, which only increases the potential of false
assignments to well-sequenced pathogens. The
alignment-based validation procedure implemented in
HOPS minimizes such false positive assignments and
thus offers greater accuracy in pathogen identification
during screening when environmental backgrounds
comprise the dominant molecular signal.
As a pipeline for the assessment of archaeogenetic

data, metaBIT implements a variety of methods for the
detailed assessment of metagenomic composition that
also includes validation of aDNA damage patterns. meta-
BIT is based on MetaPhlAn2 [29], which employs a
marker gene-based approach in the initial detection step

similar to MIDAS. Pathogens in low abundance are thus
frequently missed in its initial steps when applied to
shallow sequencing data as demonstrated by our com-
parative benchmarking. SPARSE employs a hierarchic-
ally structured database and a probabilistic model in
order to avoid false positive species detections. These
features led to its high specificity in our test setting. For
our simulated data, SPARSE is much more sensitive than
MIDAS and metaBIT. However, when the number of
pathogen reads is very low, the correct detection is fre-
quently missed. In this context, HOPS can offer a higher
sensitivity and can additionally provide details about all
evaluated authenticity criteria. An integrated approach
combining HOPS and SPARSE or metaBIT might be a
promising future strategy for a detailed characterization
of complete microbiomes while at the same time provid-
ing a high level of sensitivity for the detection and au-
thentication of pathogen DNA. In particular, the analysis
of ancient samples that preserve their original micro-
biome signature, such as dental calculus [47] or copro-
lites [48], would benefit from a combined application of
methodologies by using SPARSE and/or metaBIT to as-
sess the microbial make-up and HOPS for additional in-
depth species authentication.
For all taxonomic classifiers, correct assignment of

metagenomic reads is strongly dependent on the quality
of the underlying reference sequences. Currently, we use
a curated database for MALT that contains completed
reference sequences and assemblies for bacteria from
RefSeq (December 2016). Database sizes are constantly
increasing, but much of this growth derives from the
addition of redundant sequence data from model organ-
isms, which also creates biases. In this context, SPARSE
aims to mitigate the influence of database redundancy
by hierarchically structuring reference sequences, which
could be employed to further improve HOPS.
In addition, analysis of our simulated dataset allowed

for evaluation of the taxonomic placement of each of the
bacterial pathogens in our target list. It became apparent
that for some targets the taxonomic species level is not
sufficient for identification. This applies to historically
important pathogens such as Y. pestis or M. tuberculosis.
Here, evaluation of a higher taxonomic level such as
“complex” is more reliable, while in the case of Salmon-
ella typhi (typhoid fever) a lower level (subspecies) is fa-
vorable. Therefore, our simulations provide a valuable
resource for optimization of pathogen screening ap-
proaches in general and a guideline to develop it for
additional microbes.
Here, HOPS was evaluated for its success in screening

for bacterial pathogens. Because the reference database
is user defined and can be amended to include, for ex-
ample, the NCBI full nucleotide collection [49] or hand-
curated sets of reference genomes, tremendous flexibility
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exists in molecular detection, which could extend to vi-
ruses, fungi, and eukaryotic parasites.

Conclusions
We present a reliable and user-friendly computational
pathogen screening pipeline for ancient DNA that has
the flexibility of handling large datasets. HOPS success-
fully identifies both simulated and actual ancient patho-
gen DNA within complex metagenomic datasets,
exhibiting a higher sensitivity than MIDAS, metaBIT, or
SPARSE and with fewer false positives than Kraken.
HOPS provides a high level of automatization that al-
lows for the screening of thousands of datasets with very
little hands-on time, and it offers detailed visualizations
and statistics at each evaluation step, enabling a high
level of quality control and analytical transparency.
HOPS is a powerful tool for high-throughput pathogen
screening in large-scale archaeogenetic studies, produ-
cing reliable and reproducible results even from remains
with exceptionally low levels of pathogen DNA. Such
qualities make HOPS a valuable tool for pathogen detec-
tion in the rapidly growing field of archaeogenetics.

Methods
Implementation of MaltExtract
MaltExtract is implemented in Java. It integrates parts of
MEGAN’s [39] source code for accessing the RMA file
structure and functions from forester (https://github.
com/cmzmasek/forester) for traversing the taxonomic
tree.

Simulating data to analyze read assignment using the
MALT LCA algorithm
Depending on the database structure and sequence simi-
larity between reference sequences, the naïve LCA [36]
algorithm will assign reads to different taxonomic units.
To inquire how reads are assigned to the taxonomic tree
for 33 bacterial pathogens (Additional file 1: Table S2),
we simulated ancient pathogen DNA reads using gar-
gammel [50] and spiked them into five ancient metage-
nomic background datasets obtained from bone,
dentine, dental calculus, and soil (Table 1). The simu-
lated reads carry a unique identifier in their header in
order to differentiate them from metagenomic back-
ground sequences, which exhibit either full damage pat-
terns or attenuated damage patterns following UDG-half
treatment [51]. To simulate aDNA damage in the patho-
gen sequences, we applied damage profiles obtained
from previously published ancient Yersinia pestis ge-
nomes with [13] and without UDG-half [18] treatment.
Simulated reads were processed with the NGS data pro-
cessing pipeline EAGER [52] and spiked into the meta-
genomic backgrounds in different amounts (50, 500, or
5000 reads). For each metagenomic background, a

typical screening sequencing depth of five million reads
was used.

Evaluation of the damage-tolerant version of MALT
To preserve damage patterns when mapping reads with
MALT, we modified the source code and compared the
performance of the modified and default versions.
We therefore created with gargammel [50] test sam-

ples that show twice the amount of damage (~ 40%) usu-
ally found in ancient samples [13]. Here, we compare
both MALT versions for the bacterial pathogen Yersinia
pestis (CO92 reference). Both versions of MALT were
tested with 85%, 95%, and 99% minimum percent iden-
tity filtering, to investigate the effects of percent identity
filtering on the read alignment of aDNA reads.

Comparison of HOPS to Kraken, SPARSE, MIDAS, and
metaBIT
HOPS was compared to four metagenomic taxonomic
classification tools: Kraken (v 0.10.6) [31], SPARSE (v
2019-05-31) [46], MIDAS (v 1.3) [30], and metaBIT (v
1.0.1) [45]. We only executed the first step of MIDAS
that matches reads to the marker gene database to deter-
mine species abundance. This step was executed on 24
cores with default parameters. The first step is sufficient,
as any species undetected in this step would not be de-
tected in the remaining ones. Kraken was set to use 32
cores to align the sample data against its reference data-
base with the preload parameter to load the entire data-
base into memory before starting k-mer alignment. In a
second step, kraken-translate was executed to transform
taxonomy IDs into proper species names.
For SPARSE, we reserved the default number of 20

cores, we used default parameters except for changing
minFreq to 0.000001 and minNum to 5 which are the
recommended settings for aDNA analysis.
SPARSE was only tested on the first replicate of the

simulated data.
metaBIT was executed with default parameters and a

total of 64 cores available.
For Kraken, metaBIT, MIDAS, and SPARSE, we

judged a pathogen as correctly identified if at least one
read matched to the correct species to account for the
differences in the database contents, methodologies, and
output formats.
For HOPS to judge a pathogen detected by MALT as

authentic, it had to fulfill at least the first of the three
hierarchical authenticity criteria, which is a declining
edit distance distribution. HOPS version 1.0 and MaltEx-
tract version 0.9 were used for this analysis.

Databases
In our study, HOPS uses a database containing all
complete prokaryotic reference genomes obtained from
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NCBI (December 1, 2016) with entries containing
“multi” and “uncultured” removed (13 entries). In total,
6249 reference genomes are included in the database, in-
cluding all major bacterial pathogens scrutinized here.
For Kraken, we downloaded the bacterial database with
Kraken’s kraken-build script (June 1, 2017). The Kraken
database contains no strain references for Clostridium
sporogenes. Otherwise, it contains at least one reference
for all of the simulated bacterial pathogens (Add-
itional file 1: Table S2). For MIDAS, we used the default
reference database (May 24, 2016), which contained no
representation of Yersinia pseudotuberculosis, Bordetella
pertussis, and Brucella melitensis.
MIDAS was tested on all data with version 1.3 and the

MIDAS database version 1.2.
metaBIT used the MetaPhlAn2 [29] database (version

biobakery-metaphlan2-27f7e0c86785)
For SPARSE, we built a representative database by

running
sparse index --dbname refseq --update
sparse query --dbname refseq --default representative |

sparse mapDB --dbname refseq --seqlist stdin --mapDB
representative
That resulted in a database containing bacteria and

archea with an average nucleotide identity (ANI) of 98%.

Positive controls
We compare the sensitivity and specificity of HOPS,
MIDAS, SPARSE, metaBIT, and Kraken using 27 metage-
nomic datasets previously shown to be positive for one of
four microbial pathogens: Yersinia pestis, Mycobacterium
tuberculosis, Salmonella enterica, and Helicobacter pylori
(Table 2). These positive control samples represent real
metagenomic data and therefore contain an unknown
number of modern species in addition to the actual recov-
ered bacterial pathogen. Read counts across all samples
ranged from 70,897 to 52,858,027 reads. While most data-
sets were generated by shotgun library screening, four
datasets were enriched for pathogen DNA prior to se-
quencing using DNA capture methods. For all captured
datasets and a subset of shotgun datasets, DNA was
treated with UDG prior to library construction to remove
DNA damage. Both types of datasets were included to
evaluate the performance of HOPS on samples with differ-
ent levels of DNA damage and pathogen abundance.

Runtimes
To calculate the runtimes for HOPS, Kraken, SPARSE,
metaBIT, and MIDAS, we used a subset of the simulated
files. The subset consisted of all metagenomic back-
ground datasets spiked with 5000 reads without tech-
nical replicates resulting in a total of 330 metagenomic
files. HOPS, Kraken, and metaBIT had 64 cores avail-
able, MIDAS 24, and SPARSE 20.
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