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Abstract

Background: Large-scale single-cell transcriptomic datasets generated using different technologies contain batch-
specific systematic variations that present a challenge to batch-effect removal and data integration. With continued
growth expected in scRNA-seq data, achieving effective batch integration with available computational resources is
crucial. Here, we perform an in-depth benchmark study on available batch correction methods to determine the
most suitable method for batch-effect removal.

Results: We compare 14 methods in terms of computational runtime, the ability to handle large datasets, and
batch-effect correction efficacy while preserving cell type purity. Five scenarios are designed for the study: identical
cell types with different technologies, non-identical cell types, multiple batches, big data, and simulated data.
Performance is evaluated using four benchmarking metrics including kBET, LISI, ASW, and ARI. We also investigate
the use of batch-corrected data to study differential gene expression.

Conclusion: Based on our results, Harmony, LIGER, and Seurat 3 are the recommended methods for batch
integration. Due to its significantly shorter runtime, Harmony is recommended as the first method to try, with the
other methods as viable alternatives.
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Introduction
Technological advances in the recent years have increased
our ability to generate high-throughput single-cell gene
expression data. Single-cell data is often compiled from
multiple experiments with differences in capturing times,
handling personnel, reagent lots, equipments, and even
technology platforms. These differences lead to large vari-
ations or batch effects in the data, and can confound bio-
logical variations of interest during data integration. As
such, effective batch-effect removal is essential. Batch
effects can be highly nonlinear, making it difficult to cor-
rectly align different datasets while preserving key bio-
logical variations. To address these challenges, tools

developed for microarray data batch correction such as
ComBat [1] and limma [2] have been employed on single-
cell RNA-seq (scRNA-seq) data. However, single-cell
experiments suffer from “drop out” events due to the sto-
chasticity of gene expression, or failure in RNA capture or
amplification during sequencing [3]. This has prompted
efforts to develop workflows to handle data with such
characteristics [4–6].
A popular and successful approach, pioneered by

Haghverdi et al. [5], identifies cell mappings between
datasets and then reconstructs the data in a shared
space. The algorithm first identifies mutual nearest
neighbors (MNNs) to establish connections between two
datasets. The resulting list of paired cells (or MNNs) is
used to compute the translation vector to align the data-
sets into a shared space. The advantage of this approach
is that a normalized gene expression matrix is obtained,
which can be employed in downstream analysis.
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However, this approach is computationally demanding
in terms of CPU time and memory, due to the need to
compute the list of neighbors in a high dimension gene
expression space. As such, the developers introduced
fastMNN [5, 7], which applies the MNN scheme in the
subspace computed using principal component analysis
(PCA) [8], resulting in significant improvements in both
runtime and accuracy. Two other methods, Scanorama
[9] and BBKNN [10], also search for MNNs in dimen-
sionally reduced spaces and use them in a similarity
weighted manner to guide batch integration.
The Seurat MultiCCA method from the popular Seu-

rat package was developed in 2017 by the Satija lab [4].
It employs canonical correlation analysis (CCA) [11] to
reduce data dimensionality and capture the most
correlated data features to align the data batches. A
newer version, Seurat Integration (Seurat 3) [12], first
uses CCA to project the data into a subspace to identify
correlations across datasets. The MNNs are then com-
puted in the CCA subspace and serve as “anchors” to
correct the data. Another recently proposed method,
Harmony [13], first employs PCA for dimensionality re-
duction. In the PCA space, Harmony iteratively removes
batch effects present. At each iteration, it clusters simi-
lar cells from different batches while maximizing the di-
versity of batches within each cluster and then calculates
a correction factor for each cell to be applied. This
approach is fast and can accurately detect the true bio-
logical connection across datasets.
LIGER is a newly developed method to handle a per-

ceived shortcoming of other methods, which is the
assumption that differences between datasets are entirely
due to technical variations and not of biological origins,
thus aiming to remove all of them [14]. LIGER uses inte-
grative non-negative matrix factorization to first obtain a
low-dimensional representation of the input data. The
representation is composed of two parts: a set of batch-
specific factors and a set of shared factors. Thereafter,
clustering is performed and followed by a search for
shared clusters using a shared factor neighborhood
graph to connect cells with similar neighborhoods. With
the identified clusters, the factor loading quantiles are
then normalized to match a chosen reference dataset
(typically the set with the largest number of cells), thus
accomplishing batch correction.
The field of deep neural networks in machine learning

has experienced tremendous progress in recent years.
Taking advantage of these developments, researchers
have started to apply neural networks to batch alignment
problems, giving rise to alternate approaches in batch
correction. For example, Shaham et al. [15] trained re-
sidual neural networks for batch correction by minimiz-
ing the maximum mean discrepancy between the
distributions of source and target batches. This approach

uses the training data to learn a map from source data
to target data; as such, it has comparatively poorer per-
formance with small datasets. Lotfollahi et al. [16] devel-
oped scGen, where a variational autoencoder (VAE)
model is trained on a reference dataset before being used
to correct the actual data [17]. The VAE model com-
pared favorably against other models such as Generative
Adversarial Network in batch correction applications.
Similar to MNN Correct, scGen returns a normalized
gene expression matrix, which is useful for downstream
analysis.
Studies that comprehensively compare the perform-

ance of various batch correcting algorithms are currently
lacking. While publications describing new methods do
benchmark against existing approaches, these compari-
sons are often against a small number of methods in
limited scenarios with a small number of datasets [4, 5,
9–13, 16]. Furthermore, the comparisons are often made
by visual inspection, which itself is subject to different
interpretations. Assessment metrics such as average sil-
houette width (ASW) or adjusted rand index (ARI) are
sometimes used, but as demonstrated in our study, may
not give a full picture of batch correction result. As such,
our present study aims to comprehensively evaluate all
batch-effect correction approaches that have been devel-
oped for RNA-seq data to date in an objective manner
with the aid of multiple evaluation metrics. Specifically,
we test the following methods: MNN Correct [5],
fastMNN [5, 7], MultiCCA Seurat 2 [4], Seurat 3 [12],
MMD-ResNet [15], Harmony [13], Scanorama [9],
BBKNN [10], scGen [16], ComBat [1], LIGER [14],
limma [2], scMerge [18], and ZINB-WaVE [6]. We em-
ploy ten datasets with different characteristics in order
to test these methods under five different scenarios.
These scenarios are as follows: batches with identical cell
types but different sequencing technologies, batches
containing non-identical cell types, multiple batches, big
datasets with more than half a million cells, and simu-
lated datasets for differential gene expression analysis.
The last scenario explores the impact of batch correction
on differentially expressed genes.

Results
Comprehensive benchmarking of 14 methods on ten
datasets using five evaluation metrics
We evaluated the performance of batch correcting algo-
rithms in terms of their ability to integrate batches while
maintaining cell type separation (Fig. 1). The batch cor-
rection algorithms tested are either available in the R or
Python language environment. For Seurat 2, Harmony,
MNN Correct, fastMNN, and limma, the data prepro-
cessing steps of normalization, scaling, and highly vari-
able gene (HVG) selection were performed using the
Seurat 2 package. For Seurat 3 batch correction, the
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corresponding functions in the package were used. For
the other methods, their respective recommended pre-
processing pipelines were employed.
The algorithms were tested on ten datasets, covering a

diverse spectrum of cell types such as dendritic cells,
pancreatic cells, retinal cells, and peripheral blood
mononuclear cell (PBMCs), with datasets from both hu-
man and mouse. The technologies used also span a
broad range, including 10x, SMART-seq, Drop-seq, and
SMARTer. Dataset details and sources can be found in
Additional file 1: Table S1, while the breakdown on cell
counts per cell type is in Additional file 2: Table S2. We
organized the datasets into five relevant scenarios:
identical cell types with different scRNA-seq protocols,
non-identical cell types, multiple batches (> 2 batches),
big datasets, and simulated data. Scenario 1 consisted of
dataset 2 of murine tissues, and dataset 5 of human per-
pherial blood mononuclear cells (PBMCs). For each
dataset, all batches have the same cell types, though the
proportion within each batch can vary significantly. The
batches were sequenced with different technologies, thus
increasing the difficulty of batch correction. Datasets 1,
6, 7, and 10 formed scenario 2, where batches within
each dataset have non-identical cell types. The datasets
of this scenario encompassed a range of different tissue
samples: human dendritic cells, immortalized cell lines,
mouse retina cells, and mouse hematopoietic cells. For
scenario 3 of multiple batches, we used dataset 4, which
contains five batches of human pancreatic cell expres-
sion data acquired using four scRNA-seq technologies.
The distribution of cell types is also significantly differ-
ent between batches. Scenario 4 was composed of

datasets 8 and 9, where we tested the algorithms on big
datasets with more than half a million cells each. In the
final scenario, we used the Splatter package [19] to gen-
erate simulation datasets with different drop-out rates
and unbalanced cell counts across batches. The aim of
this scenario was to study the impact of batch correction
on downstream differential gene expression analysis. In
particular, we were interested in improving the recovery
of differentially expressed genes (DEGs) after batch cor-
rection. We compared changes in the detected differen-
tially expressed genes in terms of precision and recall
with the F-score. Coverage of different scenarios by the
different datasets can be found in Additional file 3: Table
S3.
To evaluate the batch correction results, we employed t-

Distributed Stochastic Neighbor Embedding (t-SNE) [20]
and Uniform Manifold Approximation and Projection
(UMAP) [21] visualizations in conjunction with the k-
nearest neighbor batch-effect test (kBET) [22], local in-
verse Simpson’s index (LISI) [13, 23], average silhouette
width (ASW) [24], and adjusted rand index (ARI) bench-
marking metrics [25]. The UMAP plots are shown here in
the main text, while the t-SNE plots are in the Add-
itional file 4: Figure S1–S11. The kBET metric measures
batch mixing on the local level using a predetermined
number of nearest neighbors, which are selected around
each data point by distance, to compute the local batch
label distribution. A small proportion of local distributions
deviating from the global batch label ratio (i.e., rejection
rate) denotes good batch mixing. Here, we computed the
kBET rejection rates for local sample sizes at 5%, 10%,
15%, 20%, and 25% to ensure that the assessment was not

Fig. 1 Benchmarking 14 methods on ten datasets using five evaluation metrics. a Benchmarking workflow. We evaluated the performance of 14
batch correcting algorithms in terms of their ability to integrate batches while maintaining accuracy in terms of cell type separation. We
employed t-SNE and UMAP visualizations in conjunction with the kBET, LISI, ASW, ARI, and DEG benchmarking metrics to evaluate the batch
correction results. b Description of the ten datasets on which the batch correction algorithms were tested
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subject to the choice of sample size. The LISI metric can
be used to measure the local cell type distribution (cLISI)
or batch distribution (iLISI), based on local neighbors
chosen on a preselected perplexity. Here, we used a per-
plexity of 40. Using the selected neighbors of a cell, the
LISI was then computed on the local cell type and batch
labels for the cLISI and iLISI indices respectively. For
comparison between methods, we took the median value
of the scores computed for all cells in the dataset, and
scaled such that 0 and 1 denote the worst and best pos-
sible scores respectively. We also used the ASW metric to
assess batch mixing and preserving cell type purity. For
ease of comparison, we plotted the scores as 1-ASWbatch

and ASWcell type, such that a higher value denotes better
performance. Similarly, we computed and plotted the ARI
scores in the same fashion, 1-ARIbatch and ARIcell type. To
compute the ARI scores, k-means clustering was first per-
formed to obtain cluster labels for comparison against
batch labels and cell type labels to obtain the ARIbatch and
ARIcell type scores respectively. All the batch mixing indices
were computed for common cell types only, while all cells
were used for cell type purity assessment. The computed
values of benchmarking metrics can be found in Add-
itional file 5: Table S4, while the statistical tests for signifi-
cance are in Additional file 6: Table S5. To summarize
these metrics, we summed the ranks of each method
across all metrics to obtain a rank sum that was used to

sort the methods. The rank sums are summarized in
Fig. 21a, with details in Additional file 8: Table S7.

Scenario 1: identical cell types, different technologies
In this scenario, we tested the methods against datasets
that contain the same cell types across all batches. How-
ever, different technologies were used to acquire the
scRNA-seq data for each batch. For dataset 2, the
visualization plots show that Seurat 2, Seurat 3, Harmony,
fastMNN, MNN Correct, scGen, Scanorama, scMerge,
and LIGER successfully mixed the common cells (Fig. 2).
There was minimal cell type mixing, except for the mixing
of NK and T cells, which may be attributed to the gene ex-
pression similarities of these cell types [26]. ComBat,
limma, MMD-ResNet, ZINB-WaVE, and BBKNN were
able to bring similar cell types across batches close, but
with little to no mixing.
Comparing the iLISI scores, scMerge was the top

method for batch mixing, and LIGER was a close second
(p = 0.015) (Fig. 3). All methods gave good cLISI scores
(1-cLISI > 0.96), which is congruent with the visualiza-
tions. For kBET, Harmony was top for batch mixing,
followed by LIGER and scGen (p < 0.001). Using the
ASW assessment, Seurat 3 and Harmony were the best
methods in balancing between performance in batch and
cell type, though all other methods also obtained good
scores in batch mixing (1-ASWbatch > 0.9). In the ARI

Fig. 2 Qualitative evaluation of 14 batch-effect correction methods using UMAP visualization for dataset 2 of mouse cell atlas. The 14 methods
are organized into two panels, with the top panel showing UMAP plots of raw data, Seurat 2, Seurat 3, Harmony, fastMNN, MNN Correct, ComBat,
and limma outputs, while the bottom panel shows the UMAP plots of scGen, Scanorama, MMD-ResNet, ZINB-WaVE, scMerge, LIGER, and BBKNN
outputs. Each panel contains two rows of UMAP plots. In the first row, cells are colored by batch, and in the second by cell type
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scores for batch mixing, all methods scored greater than
0.9, with Harmony obtaining the best ARI cell type score
of 0.67 (p < 0.001) and an ARI batch score of 0.97. In
most metrics, Harmony ranked high, and unsurprisingly,
it was also the best method based on the rank sum, with
MNN Correct and Seurat 3 tied at second place.
In dataset 5, there are two pairs of similar cell types,

CD4 and CD8, and monocytes CD14 and FCGR3A.
None of the methods were able to produce distinct clus-
ters of CD14 and FCGR3A, or CD4 and CD8 in the
visualization plots; the FCGR3A cells invariably formed
a sub-cluster attached to the CD14 cluster, while CD8
cells formed sub-clusters around CD4 cells (Fig. 4). Seu-
rat 2, Seurat 3, Harmony, fastMNN, and MNN Correct
evenly mixed the batches with minimal mixing be-
tween CD4 and CD8 sub-clusters. In these cases, some
separation of the CD4 and CD8 sub-clusters is visible,
especially in the t-SNE plot (Additional file 4: Figure S2).
scGen, MMD-ResNet, and LIGER also evenly mixed the
batches, but with greater mixing of CD4 and CD8 cells.

Scanorama, ZINB-WaVE, and scMerge not only mixed
the CD4 and CD8 cells, but also accomplished poorer
overall batch mixing. Finally, ComBat, limma, and
BBKNN brought the batches close but did not mix
them.
Using the cLISI metric, most methods had good scores

for cell type purity of greater than 0.98 (Fig. 5). As the
metric only measures local cell purity, the mixing at the
edges of cell type-specific sub-clusters were poorly cap-
tured by the metric. This resulted in methods with high
cLISI scores despite the mixing of CD4 and CD8 cells in
the visualization plots. In terms of batch mixing (iLISI),
LIGER was top (p < 0.001), followed by Seurat 2 and
Seurat 3. The computed kBET scores also showed
LIGER as the top method with Seurat 2 as a near sec-
ond, while Seurat 3 was third for batch mixing (p <
0.001). In terms of ASW metrics, the batch mixing
scores were greater than 0.95 for all methods, while Har-
mony and Seurat 3 was top in terms of cell type pur-
ity (p = 0.183), followed by MNN Correct. Similarly with

Fig. 3 Quantitative evaluation of 14 batch-effect correction methods using the four assessment metrics a ASW, b ARI, c LISI, and d kBET on
dataset 2 of mouse cell atlas. Methods appearing at the upper right quadrant of the ASW, ARI, and LISI plots are the good performing methods.
Methods with higher kBET acceptance rates are the better performing methods
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ARI, Harmony, was the best method in terms of cell type
purity, followed by fastMNN, Seurat 3, and MNN Cor-
rect as next best (p < 0.13). These four methods also had
high ARIbatch scores of greater than 0.97. Using the rank
sum, Harmony and Seurat 3 were tied as the best
methods overall, with LIGER at the third place.
For both datasets, Harmony was the top method, and

Seurat 3 ranked second and third once. Based on these
results, both methods are highly recommended for data-
sets with common cell types. Though LIGER was only
ranked third for dataset 5 and tied at fourth place with
fastMNN for dataset 2, it was a consistent performer
and thus also a competitive method worth considering.

Scenario 2: non-identical cell types
Dataset 1 poses an interesting challenge to batch correc-
tion algorithms due to the presence of two highly similar
cell types present in dissimilar batches. Examination of
the visualization plots shows that most methods were
able to mix both batches together (Fig. 6). limma
brought cell clusters of both batches close but did not
achieve mixing, while MMD-ResNet and BBKNN did
not bring any cell clusters of common type closer.
scGen, Harmony, LIGER, and scMerge were able to inte-
grate double negative and pDC cells from batches 1 and
2, while keeping CD141 and CD1C cells in separate clus-
ters, with minimal mixing of CD1C, CD141, and double

negative cells. The remaining methods produced higher
levels of cell type mixing; MNN Correct, fastMNN, Seu-
rat 3, and Seurat 2, and ZINB-WaVE produced single
well mixed clusters of CD141 and CD1C cells, while
ComBat and Scanorama brought CD1C and CD141 cells
close, which would be hard to distinguish as different
cell types in the case of unlabeled experimental data.
ZINB-WaVE produced a large loose cluster in both
tSNE and UMAP. While cell labels show segregation
into sub-clusters, these sub-clusters cannot be easily dis-
cerned visually without labels.
Most batch correction algorithms require at least one

identical cell type to be shared between any pair of data
batches, to guide the data alignment. MNN Correct [5],
fastMNN [5, 7], Seurat 3 [12], and Scanorama [9]
search for MNNs to find the shared populations be-
tween different datasets. When there are sub-
populations that are not shared between different
batches, false matching of the MNNs and incorrect
alignment can occur, especially if there are cell types
that are highly similar. This appears to be the reason
for the clustering of CD1C and CD141 cells together by
many methods. The same issue was also been reported
with Seurat 3 [12], where the researchers identified a
small number of incorrect matches.
In terms of kBET scores, LIGER and Seurat 2 were the

best in terms of batch integration for this dataset (Fig. 7).

Fig. 4 Qualitative evaluation of 14 batch-effect correction methods using UMAP visualization for dataset 5 of human peripheral blood
mononuclear cells. The 14 methods are organized into two panels, with the top panel showing UMAP plots of raw data, Seurat 2, Seurat 3,
Harmony, fastMNN, MNN Correct, ComBat, and limma outputs, while the bottom panel shows the UMAP plots of scGen, Scanorama, MMD-
ResNet, ZINB-WaVE, scMerge, LIGER, and BBKNN outputs. Each panel contains two rows of UMAP plots. In the first row, cells are colored by batch,
and in the second by cell type
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For the iLISI metric, LIGER and Seurat 2 again achieved
the highest scores. In terms of cLISI, most methods
posted high scores (1-cLISI > 0.96), except for Seurat 2
and ZINB-WaVE. By the ASW metrics, LIGER was the
leading method in both cell purity and batch mixing (p
< 0.001) . Except for ZINB-WaVE and MMD-ResNet,
the other methods gave excellent ASW batch integration
scores (1-ASWbatch > 0.95). For ARI assessment, most
methods gave good batch mixing, with the exception of
ZINB-WaVE, which was also the worst in terms of cell
type purity. Using the rank sum of the metrics, fastMNN
emerged as the best method, with LIGER and scMerge
ranking second and third respectively.
Dataset 6 contains only two cell types, with two out of

the three batches containing only one cell type that is
also only shared with the third batch. The t-SNE and
UMAP plots show that scGen, scMerge, and BBKNN
were able to produce two large cell type-specific clusters
(293T and Jurkat) that were well mixed with cells from

their respective batches (Fig. 8). Harmony also mixed
the batches well, but with the Jurkat cells divided into
two clusters. LIGER also produced two batch mixed
clusters, but with some cell type mixing. In Seurat 2’s
output, the batches were mixed, but the 293T and Jurkat
cell clusters were too closely positioned to be easily sep-
arated visually. fastMNN, Scanorama, ZINB-WaVE, and
MMD-ResNet batch mixed the 293T cells but not the
Jurkat cells, while Seurat 3 only mixed the Jurkat cells.
Finally, MNN Correct, ComBat, and limma incorrectly
mixed the Jurkat and 293T cells from different batches.
The LISI metrics also indicate that Harmony, scMerge,

and scGen were the best methods for this dataset in
terms of batch integration and cell type purity (Fig. 9).
Similarly, Harmony was top ranked in kBET, followed
by scGen and Scanorama, despite the relatively poor
batch mixing of Jurkat cells by Scanorama in the visuali-
zations. Using the ASW metrics, Harmony was the lead-
ing method, followed by scMerge, scGen, and

Fig. 5 Quantitative evaluation of 14 batch-effect correction methods using the four assessment metrics a ASW, b ARI, c LISI, and d kBET on
dataset 5 of human peripheral blood mononuclear cells. Methods appearing at the upper right quadrant of the ASW, ARI, and LISI plots are the
good performing methods. Methods with higher kBET acceptance rates are the better performing methods
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Scanorama, with Scanorama showing lower batch inte-
gration but higher cell type purity. With the ARI met-
rics, scGen, scMerge, ZINB-WaVE, Harmony, and
Scanorama were the top methods. Based on the rank
sum of the assessment metrics, Harmony was the top
method, followed by Scanorama and scGen. These re-
sults are quite consistent across all metrics, which gives
confidence on our assessment of the methods. Due to
the BBKNN’s output being a graph, assessment metrics
could not be computed. However, based on the UMAP
visualization, we consider BBKNN to be a competitive
method.
For dataset 7 (Fig. 10), the cell counts across cell types

are highly uneven with batch 1 predominantly made up
of bipolar cells (88%), and smaller numbers of amacrine,
Muller, cone, and rod cells. On the other hand, batch 2
contains more cell types with 66% being rod cells (see
Additional file 2: Table S2) and cell types such as gan-
glion, vascular endothelium, and horizontal that are not
found in batch 1. From the visualization plots, the batch
effect does not appear to be significant. In particular, the
Muller and bipolar cells already show substantial mixing.
Surprisingly, ComBat and limma separated the shared
cell types to form batch and cell type separated clusters
instead. ZINB-WaVE, scMerge, and MMD-ResNet clus-
tered most of the cells into a single large cluster, albeit
with intra-cluster segregation among the cell types. The

remaining methods were largely able to mix the com-
mon cells while maintaining cell type purity among clus-
ters, though Seurat 2 separated the Muller cells from
both batches.
Using the LISI metrics, we assessed batch integration

and cell type purity where LIGER was top for batch in-
tegration (p < 0.001) and the best method overall
(Fig. 11). On the other hand, the computed kBET
metric shows scMerge as the best for batch integra-
tion (p < 0.001). Meanwhile, the ASW metrics show no
clearly superior method, with methods showing tradeoff
between scores in batch mixing and cell type purity.
The metric also shows a high batch mixing score for
ComBat, despite the lack of batch mixing in the
visualization plots. In the case of ARI, trade-offs be-
tween batch and cell type metrics can be seen among
the methods, without a clearly superior method. Using
the rank sum to combine the assessment metric results,
LIGER was the top performing method with MNN Cor-
rect second and scMerge third. For this dataset, it is
difficult to determine a clearly superior method by vis-
ual inspection or evaluation metrics. While LIGER can
be concluded to be the best based on the metrics, the
visualizations of other methods such as Harmony, Seu-
rat 3, and scGen suggest that these methods were also
able to perform batch integration and preserve cell type
purity, despite their fairly low rankings in the rank sum.

Fig. 6 Qualitative evaluation of 14 batch-effect correction methods using UMAP visualization for dataset 1 of human dendritic cells. The 14
methods are organized into two panels, with the top panel showing UMAP plots of raw data, Seurat 2, Seurat 3, Harmony, fastMNN, MNN
Correct, ComBat, and limma outputs, while the bottom panel shows the UMAP plots of scGen, Scanorama, MMD-ResNet, ZINB-WaVE, scMerge,
LIGER, and BBKNN outputs. Each panel contains two rows of UMAP plots. In the first row, cells are colored by batch, and in the second by
cell type
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In dataset 10, batch 1 contains only CMP, GMP, and
MEP cells, while batch 2 contains all cell types. Based on
the cell type information, we can expect the clustering of
cells to reflect their developmental lineage, with GMP
and MEP forming their respective clusters that are also
close to CMP cells [5]. In the visualization plots, Seurat
2, Seurat 3, Harmony, Scanorama, and LIGER, were able
to batch mix the GMP and MEP cells, with the expected
mixing of other cell types (Fig. 12). fastMNN, MNN
Correct, scGen, and BBKNN brought the GMP and
MEP cells close with minimal batch mixing. ZINB-
WaVE and scMerge moved the cells closer to form a big
loose cluster, while ComBat and limma moved the
batches closer but no batch mixing occurred. Finally,
MMD-ResNet made almost no impact on the distribu-
tion of cells.
The iLISI metric computed shows that Seurat 2 was

the best for batch mixing, followed closely by LIGER (p
= 0.057), though LIGER's output is superior in cell type

purity (cLISI) with p value < 0.001 (Fig. 13). Harmony
and Seurat 3 ranked third and fourth respectively for
iLISI but with increasingly better cLISI scores. A similar
trend can be seen in the kBET results with LIGER as the
top result, followed by Seurat 2 and Harmony (p <
0.001). Based on the ASW metrics, Scanorama was the
top method for both batch mixing and cell type pur-
ity (p < 0.001). The ARI scores gave very different results
with scGen as the top method for cell type purity (p <
0.001) while having a batch mixing score comparable to
other methods with high ARIbatch scores (> 0.9). Using
the rank sum to summarize the evaluations, Harmony,
Scanorama, and LIGER were the top methods for this
dataset. While Harmony did not top any metric, it was
ranked second in three metrics (ASW, ARI, and LISI)
and third for kBET; the results highlight Harmony's effi-
cacy on this dataset.
In this scenario, we tested the batch correction

methods on four diverse datasets. While no method was

Fig. 7 Quantitative evaluation of 14 batch-effect correction methods using the four assessment metrics a ASW, b ARI, c LISI, and d kBET on
dataset 1 of human dendritic cells. Methods appearing at the upper right quadrant of the ASW, ARI, and LISI plots are the good performing
methods. Methods with higher kBET acceptance rates are the better performing methods
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the best for all datasets, LIGER was one of the top three
methods for three datasets (1, 7, 10), while scMerge was
ranked third for datasets 1, 6, and 7. Harmony ranked
first for datasets 6 and 10, while Scanorama ranked sec-
ond for datasets 6 and 10. Based on these results, LIGER
was the leading method in this scenario.

Scenario 3: multiple batches
This scenario tested batch correction abilities with mul-
tiple batches. Dataset 4 consists of five batches of hu-
man pancreatic cells sequenced with four technologies.
The t-SNE and UMAP plots show that Seurat 3, Har-
mony, scGen, and LIGER produced clusters that evenly
mixed with cells from different batches (Fig. 14). The
batch mixing was less even for Seurat 2, fastMNN, Sca-
norama, ZINB-WaVE, scMerge, and BBKNN. The
above methods also mixed the stellate and mesenchy-
mal cells to varying extents except for scGen, which
can be attributed to the supervised nature of the
method. Delta and gamma cells were also clustered
close by LIGER and Harmony, though better separation
can be seen in Harmony’s t-SNE plot (Additional file 4:
Figure S7). MNN Correct, ComBat, limma, and MMD-
ResNet brought cell-specific clusters from different
batches close, but without significant batch mixing. The
cell types were also broken up into multiple smaller
clusters by these methods.

From the LISI metrics, the cell type purity of the
method outputs was high (> 0.98), while Seurat 3 was
also top in batch integration (p < 0.001) (Fig. 15). Seurat
3 was also second in batch mixing by the kBET metric,
while LIGER was top (p < 0.001). Assessment by ASW
showed that ZINB-WaVE ranked top for batch integra-
tion (p < 0.001), though the earlier visual analysis shows
that it did not mix the batches well. The other methods
show poorer ASW batch scores but higher ASW cell
type scores with Scanorama as the best (p < 0.001). All
methods received high ARI batch integration scores (>
0.85), despite the lack of batch mixing by methods such
as ComBat and limma. However, the leading methods
(score > 0.99) of Seurat 3, Harmony, scGen, and LIGER
were largely similar to the results obtained with iLISI.
For ARI cell type assessment, ZINB-WaVE received the
highest score, though not significantly different (p value
> 0.05) compared to other methods except MMD-
ResNet and limma. Using the rank sum to summarize
the metrics, Seurat 3 was the leading method, followed
by scGen and scMerge. Returning to the analysis with t-
SNE and UMAP visualizations, we can concur with the
rankings. While dataset 6 was analyzed in scenario 2, the
dataset also contains more than two batches and there-
fore relevant to this scenario. For dataset 6, the top three
methods were Harmony, Scanorama, and scGen, with
scMerge ranked fourth. Taking the ranking results of
both datasets into consideration, for datasets with

Fig. 8 Qualitative evaluation of 14 batch-effect correction methods using UMAP visualization for dataset 6 of cell lines. The 14 methods are
organized into two panels, with the top panel showing UMAP plots of raw data, Seurat 2, Seurat 3, Harmony, fastMNN, MNN Correct, ComBat,
and limma outputs, while the bottom panel shows the UMAP plots of scGen, Scanorama, MMD-ResNet, ZINB-WaVE, scMerge, LIGER, and BBKNN
outputs. Each panel contains two rows of UMAP plots. In the first row, cells are colored by batch, and in the second by cell type
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labeled cell types, scGen is recommended based on its
performance. For unlabeled data, Seurat 3 and Harmony
are the recommended choices.

Scenario 4: big data
In this scenario, we tested the methods on two large
datasets with more than 100,000 cells each. BBKNN,
ComBat, Harmony, LIGER, limma, MMD-ResNet, Sca-
norama, scGen, Seurat 3, and ZINB-WaVE were able to
complete runs on the full datasets. The remaining four
methods were unable to complete the batch correction
runs due to memory or runtime requirements.
FastMNN, scMerge, and Seurat 2 required more than
2.27 TB of memory and caused excessive disk thrashing
from virtual memory usage, while MNN Correct was
able to run but took too long (> 48 h). The metrics and
visualizations shown were computed on the 10% down-
sampled data; however, our analysis here focuses on the
methods that could complete running on the large
datasets.

Dataset 8 consists of two batches of murine brain data
acquired using different technologies (Fig. 16). The cell
numbers are unevenly distributed across cell types, and
the bulk of the cells in batch 2 consist of astrocytes, neu-
rons, oligodendrocytes, and polydendrocytes. Only
LIGER appears to have maintained relatively good cell
type separation while achieving batch mixing. Seurat 3,
Harmony, ZINB-WaVE, scGen, and MMD-ResNet pro-
duced comparatively less even batch mixing. ComBat,
limma, Scanorama, and BBKNN fared even poorer with
little to no batch mixing. Employing the LISI metrics, all
methods maintained high local cell type purity with
good cLISI scores (1-cLISI > 0.8) (Fig. 17). Among the
methods that could complete running on the large datasets,
LIGER and Seurat 2 achieved the highest iLISI scores
among the methods (p value = 0.057), followed by Har-
mony and Seurat 3 (p < 0.001). Within the LISI metrics, we
can see some trade off between batch integration and cell
type purity among LIGER, Harmony, and Seurat 3. Surpris-
ingly, the kBET metric shows very different results, with

Fig. 9 Quantitative evaluation of 14 batch-effect correction methods using the four assessment metrics a ASW, b ARI, c LISI, and d kBET on
dataset 6 of cell lines. Methods appearing at the upper right quadrant of the ASW, ARI, and LISI plots are the good performing methods.
Methods with higher kBET acceptance rates are the better performing methods
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none of these methods achieving a good score. Instead,
fastMNN, scMerge, and MNN Correct were the top three
methods by kBET. The ASW metrics also paint a substan-
tially different picture with ZINB-WaVE being the best in
batch mixing, though most methods showed high batch
mixing scores (1-ASWbatch > 0.93) as well, while Harmony
produced the highest cell type purity (p < 0.001). The ARI
results also differ, most methods were also able to produce
high batch mixing scores greater than 0.95 (except for
limma). Overall, with scGen being the best method, being
top for batch mixing (p < 0.001), and tied with LIGER for
cell type purity (p = 0.34). In terms of ARI cell type purity,
scGen and LIGER were followed by Harmony. Combining
the ranking across all metrics with rank sum, Seurat 3
ranked first, followed by scGen and Seurat 2.
Dataset 9 is composed of two data batches, each de-

rived from different tissue. Due to the lack of available
cell type information, we could only assess batch mix-
ing capabilities. From the plots, the raw data shows
substantial mixing. Visually, most methods were able to
evenly mix the batches, except for scMerge, limma, and
Scanorama (Fig. 18). ComBat improved the mixing
slightly, but limma separated the batches instead. Har-
mony, LIGER, MMD-ResNet, Seurat 3, and ZINB-
WaVE produced iLISI scores above 0.45 (p < 0.05),
significantly better than the other methods (Fig. 19).
In terms of the kBET scores, MMD-ResNet was

consistently better than all other methods at all
sample sizes (p < 0.001). Batch mixing measured by
ASW shows that most methods achieved mixing
better than the raw data, except for limma, scMerge,
fastMNN, Scanorama, and Seurat 3. The ASWbatch

score for Seurat 3 is surprisingly poorer than com-
peting methods, given its visualization plots and
rankings in the other rankings. In the ARI batch
mixing assessment, most methods obtained high
scores (> 0.9). Surprisingly, limma had a high score
(> 0.99), which is comparable to other leading
methods while its performance measured by other
metrics was poor. Summarizing the various metrics,
the computed rank sum showed LIGER as the top
method, with ZINB-WaVE ranked second and
MMD-ResNet third.
Among the methods that ranked in the top three,

LIGER and Seurat 3 ranked top for one dataset each.
Visual examination of the plots also supports this result,
thus making both methods recommended for large
datasets.

Scenario 5: simulation
One of the uses of batch integration is to obtain a cor-
rected gene expression matrix for downstream analysis.
This is illustrated by several recent publications that

Fig. 10 Qualitative evaluation of 14 batch-effect correction methods using UMAP visualization for dataset 7 of mouse retinal cells. The 14
methods are organized into two panels, with the top panel showing UMAP plots of raw data, Seurat 2, Seurat 3, Harmony, fastMNN, MNN
Correct, ComBat, and limma outputs, while the bottom panel shows the UMAP plots of scGen, Scanorama, MMD-ResNet, ZINB-WaVE, scMerge,
LIGER, and BBKNN outputs. Each panel contains two rows of UMAP plots. In the first row, cells are colored by batch, and in the second by
cell type
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used batch-effect-corrected matrices for analyses, such
as pseudotime trajectory analysis [9, 18] and DEG ana-
lysis [5, 12]. However, these only compared a small
number of batch-effect removal methods and test cases.
Herein, we performed a comprehensive evaluation of
eight methods that return batch-corrected expression
matrices. We evaluated the methods in terms of detect-
ing differential gene expression, using the DEG analysis
workflow shown in Fig. 20a. Six different use cases were
designed using the Splatter simulation package [19] in
the R language environment to cover different scenarios
of cell population sizes and drop-out rates, including
small and large drop-out rates, balanced and unbalanced
cell counts in two batches, and also the case of small cell
numbers in one batch. The simulation details are shown
in Fig. 20b. The advantage of employing simulation data
generated with Splatter is that the true number of DEGs
is known, thus enabling us to study the impact of batch
correction on the fraction of true DEGs recovered.

For this study, we only considered the methods that
produce a batch-effect-corrected gene expression matrix:
Seurat 3, MNN Correct, ComBat, limma, scGen, Scanor-
ama, ZINB-WaVE, and scMerge. The simulated gene ex-
pression matrices with batch effects were used as input to
the batch-effect correction methods. We tested the batch-
effect removal methods with two cases for each expression
matrix, using all genes, and only highly variable genes
(HVGs). DEG detection was performed on the batch-
corrected matrices. We first detected DEGs between cell
type “Group 1” versus cell type “Group 2” and computed
the F-score of upregulated and downregulated genes in
“Group 1.” We then calculated the accuracy metrics of
true positive (TP), false positive (FP), false negative (FN),
and F-score to examine the accuracy of DEGs obtained
from each corrected matrix, as compared to the true
DEGs. The F-scores are summarized in Fig. 20c.
As seen in Fig. 20c, the median F-scores of MNN Cor-

rect, ComBat, and limma were 0.73, 0.71, and 0.76 for

Fig. 11 Quantitative evaluation of 14 batch-effect correction methods using the four assessment metrics a ASW, b ARI, c LISI, and d kBET on
dataset 7 of mouse retinal cells. Methods appearing at the upper right quadrant of the ASW, ARI, and LISI plots are the good performing
methods. Methods with higher kBET acceptance rates are the better performing methods
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upregulated genes in the case of all genes, and 0.94, 0.91,
and 0.94 for upregulated genes in the case of HVGs. Sta-
tistically, there was no performance difference between
these methods (Wilcoxon p value > 0.05, Additional file 7:
Table S6B). We also see a similar trend in the F-score
results for downregulated genes in the case of all genes.
However, if we considered only downregulated HVGs,
limma was not able to remove batch effects and resulted
in lower F-score than MNN Correct and ComBat with
statistical significance (Wilcoxon p value < 0.01, Fig. 20c,
Additional file 7: Table S6E). The median F-scores of
ZINB-WaVE and scMerge were 0.71 and 0.70 for upreg-
ulated genes (all genes), and 0.96 and 0.9 for upregulated
genes (HVGs), with no statistically significant differences
(Wilcoxon p value > 0.05, Additional file 7: Table S6B).
Finally, in the case of Seurat 3, scGen, and Scanorama,
the median F-scores were 0.42, 0.29, and 0.17 in upregu-
lated genes (all genes), and 0.92, 0.88, and 0.22 in upreg-
ulated genes (HVGs). Statistical tests showed no
significant difference between Seurat 3 and scGen, but
there was a significant difference between the results of
Seurat 3 and Scanorama (Wilcoxon p value < 0.05), and
between scGen and Scanorama (Wilcoxon p value <
0.01). In particular, Scanorama’s F-score was lower than
the raw, implying that the method removed most of the
cell type variation between “Group 1” and “Group 2.”
This is a crucial point, as the goal of batch correction is

to remove variations due to data acquisition under dif-
ferent conditions and technologies, while preserving var-
iations of biological origin. Therefore, the F-score results
of DEG analysis applied on corrected results should have
higher accuracy compared to the raw data. For most
methods, the F-scores of the batch-corrected data were
higher than those of the raw data, except for scGen and
Scanorama. This shows that the batch-effect removal
methods were effective in removing the technical vari-
ance between data batches of our simulated data. Based
on the F-scores, MNN Correct, ZINB-WaVE, ComBat,
and scMerge were the top performing methods (Fig. 20c,
Additional file 7: Table S6).
The proportion of correctly detected upregulated

genes was higher for the HVG set than for the all genes
set. This is unsurprising, since HVGs are more likely to
retain their cell type variations than genes with lower
variability. Therefore, applying batch-effect correction
on selected HVGs will give better precision, but restricts
the study. If it is necessary to perform batch correction
on the full gene dataset, then one should be careful of
erroneous conclusions that may arise from the false pos-
itives and negatives.
Next, we examined the accuracy metrics of the

methods (Additional file 7: Table S6). MNN Correct,
ComBat, and limma produced corrected matrices with
high TP and low FP rates in DEG analysis. This was

Fig. 12 Qualitative evaluation of 14 batch-effect correction methods using UMAP visualization for dataset 10 of mouse hematopoietic stem and
progenitor cells. The 14 methods are organized into two panels, with the top panel showing UMAP plots of raw data, Seurat 2, Seurat 3,
Harmony, fastMNN, MNN Correct, ComBat, and limma outputs, while the bottom panel shows the UMAP plots of scGen, Scanorama, MMD-
ResNet, ZINB-WaVE, scMerge, LIGER, and BBKNN outputs. Each panel contains two rows of UMAP plots. In the first row, cells are colored by batch,
and in the second by cell type
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followed by ZINB-WaVE and scMerge with slightly
lower TP. The TP and FP numbers were further lower
for the case of Seurat 3, while scGen and Scanorama
gave the worst results with the lowest TP and highest
FP. Based on these metrics, ComBat, limma, and MNN
Correct were the best methods, followed by ZINB-
WaVE and scMerge. Conversely, scGen and Scanorama
were the worst performing methods, with Scanorama re-
moving biologically important gene expression differ-
ence between cell groups.
When creating the test cases, we used different

drop-out rates and sample sizes. As seen in Fig. 20
and Additional file 7: Table S6, with the same batch
size and different drop-out rate (case 1 compared to
2, and case 3 compared to 4), the TP and FP counts
were on average similar between the case of a high
drop-out rate compared to a low drop-out rate, ex-
cept for scGen. For scGen, there was a big difference
in the FP count between low and high drop-out rates,

especially in the downregulated genes (FP = 722 in
case 3 vs FP = 2763 in case 4, and FP = 92 in case 5
vs FP = 1926 in case 6). Therefore, the drop-out rate
had minimal impact on most methods. We also ob-
served slightly higher TP and FP numbers when there
was an unbalanced number of cells in the batches
(500 cells in batch 1 and 900 cells in batch 2,
Fig. 20b), as opposed to balanced cell numbers (500
cells in batch 1 and 450 cells in batch 2, Fig. 20b,
Additional file 7: Table S6). However, with a greater
imbalance in cell numbers (simulations 5 and 6, with
80 cells in batch 1 and 400 cells in batch 2), the
number of TP was instead significantly lower com-
pared to other simulations. Overall, within the tested
range of drop-out rates and cell counts, the dropout
rate had little impact on the results (TP and FP),
while the effect of cell count balance was mixed. An-
other noteworthy observation is that scGen is prone
to FP errors compared to the other methods.

Fig. 13 Quantitative evaluation of 14 batch-effect correction methods using the four assessment metrics a ASW, b ARI, c LISI, and d kBET on
dataset 10 of mouse hematopoietic stem and progenitor cells. Methods appearing at the upper right quadrant of the ASW, ARI, and LISI plots are
the good performing methods. Methods with higher kBET acceptance rates are the better performing methods
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In conclusion, ComBat, MNN Correct, ZINB-WaVE,
and scMerge are the recommended methods to obtain a
batch-effect-corrected matrix for downstream analysis.

Discussion
Batch-effect correction methods
In the first four scenarios, we tested the batch correction
methods’ abilities to mix batches while preserving cell
type purity. For each dataset and scenario tested, differ-
ent methods emerged top. Using the rank sums as sum-
mary (Fig. 21a), Harmony, LIGER, and Seurat 3 were the
top methods overall. Examination of results for individ-
ual datasets shows that Harmony, LIGER, and Seurat 3
were highly ranked in at least four datasets. Harmony
was the top method for two datasets in the second sce-
nario on non-identical cell types, and the top method for
both datasets in scenario 1 with different technologies.
Its performance was poorer in the other scenarios, espe-
cially with the large datasets in scenario 4, ranking
fourth in only dataset 8. LIGER ranked in the top three
in scenario 2 datasets 1, 7, and 10; it also ranked third in
dataset 5 and first in dataset 9. Seurat 3 ranked third for
dataset 2 and second for dataset 5 in scenario 1, and first
for datasets 4 and 8. These three methods were also able
to complete runs on the large datasets, making them the
best and most promising methods, as scRNA-seq data-
sets are expected to continue to grow in size. On the

other end of the spectrum, ComBat, MMD-ResNet, and
limma were the worst performing methods. In particu-
lar, limma ranked in the bottom three methods in seven
datasets, while MMD-ResNet was in the bottom three
for five datasets (Additional file 8: Table S7). Although
ComBat was ranked in the bottom three for only two
datasets, it was in the bottom half of the rankings in
most cases. ZINB-WaVE also featured among the bot-
tom three methods for five datasets with an overall rank-
ing of fourth last.
To recover DEGs from batch-corrected data, we found

ComBat, MNN Correct, ZINB-WaVE, and scMerge to
be the best methods. Unfortunately, none of these coin-
cide with the top methods for the other four scenarios,
since Harmony and LIGER do not return corrected gene
expression matrices, while Seurat 3’s DEG recovery was
comparatively poorer. While ComBat’s DEG recovery
was among the best, it was also one of the worst per-
forming methods in the first four scenarios. Due to the
relatively small dataset sizes and in silico simulation
which well-defined noise distributions, it is perhaps un-
surprising that ComBat performed well. However, it is
also unfortunate that method such as Seurat 3 was less
successful than older and less sophisticated methods
when handling such well-behaved input. Taking into
consideration their batch correction performance in the
first four scenarios, scMerge is the only leading method

Fig. 14 Qualitative evaluation of 14 batch-effect correction methods using UMAP visualization for dataset 4 of human pancreatic cells. The 14
methods are organized into two panels, with the top panel showing UMAP plots of raw data, Seurat 2, Seurat 3, Harmony, fastMNN, MNN
Correct, ComBat, and limma outputs, while the bottom panel shows the UMAP plots of scGen, Scanorama, MMD-ResNet, ZINB-WaVE, scMerge,
LIGER, and BBKNN outputs. Each panel contains two rows of UMAP plots. In the first row, cells are colored by batch, and in the second by
cell type
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for DEG recovery which also gives acceptable batch cor-
rection results.

Batch integration assessment methods
Evaluating batch integration is commonly performed by
visually inspecting t-SNE or UMAP plots. While a clear
batch integration of small datasets with only a few cell
types is easy to evaluate, the assessment can become
subjective when the comparison is made between differ-
ent competitive algorithms on large complicated data-
sets. The difficulty increases when the batches are not
clearly segregated or when similar cell types are mixed.
In this study, we used four metrics to help us assess the
batch correction methods in terms of batch mixing and
cell type purity. Though the assessment metrics may be
more objective than visual analysis, the visual plots are
still important in experimental applications of exploring
newly acquired data and identifying new cell types. Thus,

we combined the metrics and visualizations in our
analysis.
In the first four scenarios, the assessment metrics did

not always agree with each other, nor did the metrics al-
ways agree with our visual inspections of t-SNE and
UMAP plots. The agreements between iLISI and kBET
were generally higher, which can be attributed to their
nature of computing based on local neighborhoods. For
ARI and ASW, the scores are computed on a more glo-
bal scale, which can produce significantly different re-
sults. Accuracy of the ARI is highly dependent on the
clustering labels, which in turn is dependent on the clus-
tering algorithm and number of clusters. For example in
dataset 6, the top methods were Scanorama, Harmony,
scGen, and scMerge. This was consistent among the
metrics and visualizations. However, in the case of
MMD-ResNet, it had an excellent ARIbatch score, despite
its failure to mix Jurkat cells from batches 2 and 3. In
this case, the clustering results placed the Jurkat cells in

Fig. 15 Quantitative evaluation of 14 batch-effect correction methods using the four assessment metrics a ASW, b ARI, c LISI, and d kBET on
dataset 4 of human pancreatic cells. Methods appearing at the upper right quadrant of the ASW, ARI, and LISI plots are the good performing
methods. Methods with higher kBET acceptance rates are the better performing methods
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the same cluster, which resulted in the high ARIbatch
score. Similarly for dataset 1, MMD-ResNet again ob-
tained a good ARIbatch score despite the lack of batch in-
tegration by visual inspection, and poor ASWbatch and
iLISI scores. The ASW metric also occasionally gave in-
congruent results. In dataset 4, ZINB-WaVE obtained
the highest ASWbatch score. However, the visualizations
show poor batch mixing, along with poor performance
in iLISI and kBET assessments. Nevertheless, the metrics
show broad consensus in most cases and remain useful
in assessing specific characteristics of batch-corrected
outputs. To smooth out disagreements and obtain an ag-
gregate picture of the metric results, we used the rank
sum approach. We also employed the evaluation metrics
in conjunction with the visualizations to arrive at a more
accurate assessment.
Notably, the currently available metrics only measure

batch mixing or cell type purity, e.g., iLISI vs cLISI,
ASWbatch vs ASWcell type, and ARIbatch vs ARIcell type. To
combine batch and cell type assessment, one current ap-
proach is to compute a harmonic mean (F1 score). By
default, this assumes equal importance on both traits
and gives equal weightage, which may not be always ap-
propriate. While it is a challenge to combine different
types of assessment methods into a unique evaluation
score index, a single integrated index that accounts for
both batch mixing and cell type mixing will be better to
evaluate the batch-corrected output.

Runtime and memory requirements
The current state-of-art scRNA-seq experiments are able
to generate expression datasets of more than a million
cells [27]. Batch correction tools that can scale to such
large datasets are needed to meet the challenge of inte-
grating these datasets for large-scale analyses. As part of
this benchmarking study, we tested the batch correction
methods on dataset 8 with 833,206 cells, and we col-
lected and compared their runtime and memory usage.
All runs were conducted on a server equipped with 2x
Intel® Xeon® Platinum 8160 CPUs at 2.10 GHz, 1 TB of
DDR4 memory, and 1.27 TB of swap memory.
Ten out of 14 methods (BBKNN, ComBat, Harmony,

LIGER, limma, MMD-ResNet, Scanorama, scGen, Seurat
3, and ZINB-WaVE) were able to complete runs on
datasets 8 and 9, while the remainder did not complete
due to insufficient memory or excessively long runtime.
In the memory benchmark, BBKNN and MMD-ResNet
had the lowest peak memory usage (≤ 170 GB), while
Scanorama and LIGER peaked at 250 GB, and the
remaining methods consumed more than 500 GB
(Fig. 21b). These peak memory usages were observed for
fairly small fraction of time process runtimes, which can
help reduce resource hogging when running on shared
computing resources. However, the peak memory usage
does set the overall memory requirement. Drive-based
virtual memory can help alleviate system memory short-
age, but may increase program runtime.

Fig. 16 Qualitative evaluation of 14 batch-effect correction methods using UMAP visualization for dataset 8 of mouse brain. The 14 methods are
organized into two panels, with the top panel showing UMAP plots of raw data, Seurat 2, Seurat 3, Harmony, fastMNN, MNN Correct, ComBat,
and limma outputs, while the bottom panel shows the UMAP plots of scGen, Scanorama, MMD-ResNet, ZINB-WaVE, scMerge, LIGER, and BBKNN
outputs. Each panel contains two rows of UMAP plots. In the first row, cells are colored by batch, and in the second by cell type

Tran et al. Genome Biology           (2020) 21:12 Page 18 of 32



Fig. 17 Quantitative evaluation of 14 batch-effect correction methods using the four assessment metrics a ASW, b ARI, c LISI, and d kBET on
dataset 8 of mouse brain. Methods appearing at the upper right quadrant of the ASW, ARI, and LISI plots are the good performing methods.
Methods with higher kBET acceptance rates are the better performing methods

Fig. 18 Qualitative evaluation of 14 batch-effect correction methods using UMAP visualization for dataset 9 of human cell atlas. The 14 methods
are organized into two panels, with the top panel showing UMAP plots of raw data, Seurat 2, Seurat 3, Harmony, fastMNN, MNN Correct, ComBat,
and limma outputs, while the bottom panel shows the UMAP plots of scGen, Scanorama, MMD-ResNet, ZINB-WaVE, scMerge, LIGER, and BBKNN
outputs. Cells are colored by batch
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Memory was the most common barrier to run comple-
tion on the large datasets, namely for fastMNN,
scMerge, and Seurat 2 (Fig. 21b). While Seurat 3 and
ZINB-WaVE also used more than 1 TB of memory, the
disk virtual memory available allowed the two methods
to finish, albeit with some speed penalty. For fastMNN,
scMerge, and Seurat 2, the additional virtual memory
usage (1.27 TB) was still insufficient and prevented run
completion. MNN Correct required an excessive amount
of time, which was also evident in the time required (>
24 h) for downsampled versions of datasets 8 and 9.
Therefore, it is unlikely for runs on the full datasets to
complete within a reasonable time frame (Fig. 21c).
For the methods that could complete runs on the large

datasets, there were significant variations in program
runtime (Fig. 21c). Harmony, ComBat, limma, Scanor-
ama, MMD-ResNet, and BBKNN required less than 2 h
to complete. ZINB-WaVE required less than 10 h for
dataset 8, while the time required for LIGER, scGen, and
Seurat 3 ranged from 11.7 h (LIGER on dataset 9) to

more than 24 h (Seurat 3 on dataset 8). Among the top
performing methods of LIGER, Harmony, and Seurat 3,
Harmony was the fastest method, requiring less than 1 h
for the big datasets. This makes Harmony a good choice
for initial data exploration. If the results are not satisfac-
tory, LIGER is the best alternative. Seurat 3, due to its
long runtime, can then be employed if both Harmony
and LIGER fail to deliver good results.

Conclusion
In this study, we designed five testing scenarios with ten
datasets to address the problem of removing batch ef-
fects. We tested 14 state-of-the-art batch correction al-
gorithms designed to handle single-cell transcriptomic
data. We found that each batch-effect removal method
has its advantages and limitations, with no clearly super-
ior method. Based on our results, we found LIGER, Har-
mony, and Seurat 3 to be the top batch mixing methods.
Harmony performed well on datasets with common cell
types, and also different technologies. The comparatively

Fig. 19 Quantitative evaluation of 14 batch-effect correction methods using the four assessment metrics a ASW, b ARI, c LISI, and d kBET on
dataset 9 of human cell atlas. Methods appearing at the upper right quadrant of the ASW, ARI, and LISI plots are the good performing methods.
Methods with higher kBET acceptance rates are the better performing methods
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low runtime of Harmony also makes it suitable for initial
data exploration of large datasets. Likewise, LIGER per-
formed well, especially on datasets with non-identical
cell types. The main drawback of LIGER is its longer
runtime than Harmony, though it is acceptable for its
performance. Seurat 3 is also able to handle large data-
sets, however with 20–50% longer runtime than LIGER.
Due to its good batch mixing results with multiple
batches, it is also recommended for such scenarios. To
improve recovery of DEGs in batch-corrected data, we
recommend scMerge for batch correction.

Methods and materials
Table 1 summarizes the key characteristics of the 14
batch correction methods tested. Most of these methods,
except scMerge and scGen, utilize unsupervised learning
to find the shared subspace of the datasets. The un-
supervised methods do not require cell type information
as inputs. scMerge supports both unsupervised and su-
pervised modes, and the unsupervised mode produces
reasonably good results. scGen also supports both
modes, but the supervised mode gives much better re-
sults. In this study, we ran scGen in the supervised mode
with cell type information, and all other methods in the
unsupervised mode without cell type information. We
briefly describe the individual methods below.

Matching MNN for batch correction (MNN Correct)
MNN Correct searches for mutual nearest neighbors
(MNNs) between batches, where cells of similar types
across batches share the same neighbors within batches
[5]. These identified pairs are then used to compute the
batch effect for subsequent correction. The algorithm
first pre-filters and scales single-cell gene expression
data using cosine normalization, which is robust to data
noise. Next, Euclidean distances are computed between
cell pairs to identify MNNs. Expression differences be-
tween identified cell pairs are next used to compute the
batch correction vector, which is then applied to all cells,
not just participating cell pairs. The algorithm succes-
sively corrects each pair of batches. MNN Correct re-
quires that all batches share at least one cell type with
another, which is easy to fulfill. The method also as-
sumes that the batch effects present are smaller and or-
thogonal to biological variations, which may not always
hold true. The published software has the functionality
to check whether these assumptions hold true. We first
employed the preprocessing functions available in the
Seurat package to filter, normalize, and scale the raw
data. Based on the MNN tutorial, 5000 highly HVGs
were identified and used as input to the mnnCorrect
function for batch correction. PCA was then performed
on the output matrix to obtain principle components
(PCs) for visualization and evaluation.

Fig. 20 Evaluation of eight batch-effect correction methods using simulated datasets and differential gene expression analysis. a Evaluation
workflow: six sets of simulation data with predefined batch effect and differential gene expression profiles were generated using the Splatter
package with varied parameters. The eight methods that return corrected expression matrices were applied to the simulated data, and the batch-
corrected output were subsequently subjected to differential gene expression analysis with the Seurat package. Differentially expressed genes
(DEGs) identified from the batch-corrected matrices were compared to the ground truth DEGs, and accuracy metrics including precision, recall,
and F-score were calculated. b Description of the six simulated datasets. Different combinations of parameters were used to cover different
scenarios of cell population sizes and drop-out rates. c F-score boxplot for the eight methods using all genes or HVGs
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Fast matching mutual nearest neighbors for batch
correction (fastMNN)
The MNN Correct algorithm demonstrates the effi-
cacy of using MNNs to align data batches [5]. How-
ever, the distance computation for nearest neighbor
identification is done in the gene expression space
and thus computationally demanding. fastMNN [7] is
a newer version of MNN Correct where nearest
neighbors are determined in the PCA dimensionally

reduced space. In our analysis, we employed the Seu-
rat preprocessing workflow to first filter, normalize,
and scale the data. Based on the examples provided
by fastMNN authors, 5000 HVGs were identified and
used as input for projection into the cosine space,
followed by multi-sample PCA dimension reduction
using the multiBatchPCA function from the Scran
package [28] to obtain 50 principal components.
Finally, the fastMNN function was used to batch

Fig. 21 Efficacy and efficiency of the 14 batch-effect correction methods. a Rank sum of the assessment metrics. Methods were ranked based on
each of the ASW, ARI, LISI, and kBET metrics, and the rankings were then combined across all metrics using the rank sum approach. The height of
the ridgelines represents the rank sum scores across different datasets, with a lower rank sum score denoting better performance. Methods are
ordered from bottom to top by increasing sum of rank scores across all ten datasets. Thus, methods appearing at the bottom are the best. b
Memory usage of ten methods on dataset 8. c Runtime of 14 methods on ten datasets. Color represents log10(time in seconds), node size
represents log10(cell number)
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correct the principal component output from the previous
step. Visualization and evaluations were performed using
the batch-corrected output in PCA space.

Panorama stitching of single-cell RNA-seq data
(Scanorama)
Scanorama also seeks to correct for batch effects
through similar cells identified across batches [9]. Ap-
proximate singular value decomposition (SVD) is first
used to transform the original gene expression data into
a dimensionally reduced subspace. An approximate
nearest neighbor search is performed using hyperplane
locality sensitive hashing and random projection trees to
speed up the identification of mutually linked (i.e., near-
est neighbor) cells across batches. Unlike MNN Correct
that searches for similar cells across batch pairs to com-
pute the correction, Scanorama searches across all
batches and determines the priority of dataset merging

based on the percentage of matching cells in the batch.
Data batches are merged into panoramas using a
weighted average of vectors between local matching cells
in a fashion similar to MNN Correct. In our analysis, if
the gene expression matrix contained raw read counts,
we scaled the data by dividing the read counts by the
median value of read count sum per cell, followed by
log2 transform. If the data was already in normalized
form, we used it directly as input to the Scanorama
function. The batch correction by Scanorama was per-
formed in conjunction with the Scanpy workflow [29].
Finally, the top 20 principal components were extracted
from the corrected gene expression matrix and used as
input to the assessment methods.

Batch balanced k-nearest neighbors (BBKNN)
BBKNN is another method that first computes the k-
nearest neighbors in a dimensionally reduced principal

Table 1 Description of the 14 batch-effect correction methods

Tools Programming
language

Batch-effect-corrected output Methods Reference package version

Seurat 2 (CCA,
MultiCCA)

R Normalized canonical components
(CCs)

Canonical correlation analysis and dynamic
time warping

Butler et al. [4], Seurat
package
version 2.3.4

Seurat 3
(Integration)

R Normalized gene expression matrix Canonical correlation analysis and mutual
nearest neighbors-anchors

Stuart et al. [12], Seurat
package version 3.0.1

Harmony R Normalized feature reduction vectors
(Harmony)

Iterative clustering in dimensionally
reduced space

Korsunsky et al. [13],
Harmony version 0.99.9

MNN Correct R Normalized gene expression matrix Mutual nearest neighbor in gene
expression space

Haghverdi et al. [5], Scran
package version 1.12.0

fastMNN R Normalized principal components Mutual nearest neighbor in dimensionally
reduced space

Haghverdi et al. [5], Lun
ATL [7], Scran package
version 1.12.0

ComBat R Normalized gene expression matrix Adjusts for known batches using an
empirical Bayesian framework

Johnson et al. [1]

limma R Normalized gene expression matrix Linear model/empirical Bayes model Smyth et al. [2], limma
version 3.38.3

scGen Python Normalized gene expression matrix Variational auto-encoders neural network
model and latent space

Lotfollahi et al. [16], 2019,
scGen
version 1.0.0

Scanorama Python/R Normalized gene expression matrix Mutual nearest neighbor and panoramic
stitching

Hie et al. [9], Scanorama
version 1.4.

MND-ResNet Python Normalized principal components Residual neural network for calibration Shaham et al. [15] updated
code to Python 3

ZINB-WaVE R Normalized feature reduction vectors
(ZINB-WaVE)/normalized gene expression
matrix

Zero-inflated negative binomial model,
extension of RUV model

Risso et al. [6], ZINB-WaVE
version 1.6.0

scMerge R Normalized gene expression matrix Stably expressed genes (scSEGs) and RUVIII
model

Lin et al. [18], scMerge
version 1.1.3

LIGER R Normalized feature reduction vectors
(LIGER)

Integrative non-negative matrix
factorization (iNMF) and joint clustering +
quantile alignment

Welch et al. [14], liger version
1.0

BBKNN Python/R Connectivity graph and normalized
dimension reduction vectors (UMAP)

Batch balanced k-nearest neighbors Polański et al. [10], bioRxiv.
BBKNN
version 1.3.2
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component space [10]. The nearest neighbors are identi-
fied in a batch-balanced manner using Euclidean dis-
tances. BBKNN then transforms the neighbor
information into connectivities to construct a graph that
links together all cells across batches. The resulting
graph is usable for clustering and visualization within
the Scanpy workflow. In this study, we used the latest
version of BBKNN (version 1.3.2) to perform the ana-
lysis. We also tested all of the input options that the
BBKNN developers suggest to obtain the best output.
We computed UMAP vectors using the Scanpy single-
cell analysis platform to project the graph of connectivi-
ties into a low dimensionality space for evaluation.

Seurat alignment CCA, multiCCA (Seurat 2)
Seurat multiCCA uses canonical correlation analysis
(CCA) to first compute the linear combinations of genes
with maximum correlation between batches [4]. These
vectors are then aligned with dynamic time warping to
account for population density changes, resulting in a
single low-dimensional subspace with all input data sets.
In our analysis, following the Seurat tutorial, we first
employed the preprocessing functions from the Seurat
package (v2.3.4) to filter, normalize, and scale the raw
data. Two thousand HVGs were then identified for fur-
ther use. Next, we used the CCA and multiCCA func-
tions, for two batches and more than two batches
respectively, to transform the data into CCA space. This
was followed by the AlignSubSpace function to perform
batch-effect correction. The output was then trans-
formed into PCA space for further evaluation and
visualization.

Seurat Integration (Seurat 3)
Seurat Integration (Seurat 3) is an updated version of
Seurat 2 that also uses CCA for dimensionality reduction
[12]. Unlike Seurat 2, Seurat 3 first identifies MNNs (re-
ferred to as “anchors”) of similar cell states across
batches in the normalized CCA subspace. To avoid aber-
rant anchors between dissimilar cells, the shared nearest
neighbor graphs are used to assess cell type similarity.
Similar to MNN, a correction vector is computed using
the difference in expression profiles between cells to per-
form the data transformation. To handle more than two
batches, a guide tree hierarchy based on pair-wise data
similarities guides the batch integration order. In our
analysis, we used the Seurat package version 3.0.1 in the
R language environment to perform batch-effect correc-
tion. Adhering to the suggested integration workflow, we
first scaled each dataset, selected 2000 HVGs as input to
compute the integration anchors (FindIntegrationAn-
chors), and then integrated (IntegrateData) the batches
using the anchors. The output was finally transformed
into PCA space for further evaluation and visualization.

Unsupervised joint embedding method (Harmony)
Harmony uses an iterative clustering approach to align
cells from different batches [13]. The algorithm first
combines the batches and projects the data into a di-
mensionally reduced space using PCA. Harmony then
uses an iterative procedure to remove the multi-dataset-
specific effects. Each iteration consists of four steps: the
algorithm first groups the cells into multiple-dataset
clusters using a novel variant of soft k-means clustering
that allows fast and flexible cell clustering. In the second
step, Harmony computes a global centroid for each clus-
ter and a centroid for each specific dataset. Thirdly,
using the centroids, Harmony calculates a correction
factor for each dataset. Finally, the correction factor is
used to correct each cell with a cell-specific factor. This
procedure is applied repeatedly until convergence. In
our analysis, following examples provided in the Har-
mony package in R language environment, we ran Har-
mony within the Seurat 2 workflow with the maximal
number of clusters (50) and the maximal number of iter-
ations (100). The top 20 normalized Harmony vectors in
PCA space were used as input to the assessment
methods.

Distribution-matching residual networks (MMD-ResNet)
Shaham et al. proposed a deep learning approach for re-
moving batch effects based on the residual neural net-
work algorithm, or “MMD-ResNet” in 2016 [15]. This
approach is based on the assumption that the difference
between the distributions of the two datasets is moder-
ate. Under this assumption, the key idea is to train a re-
sidual network to learn a map from one distribution to
another. This map is then used to calibrate the source
dataset to target dataset. Deciding which dataset serves
as the source and which one serves as the target affects
the result of batch-effect correction. In our analysis, we
tested both orientations and compared the outputs to
find the better option. Following the suggested pipeline,
we first computed 50 principal components and used
the reduced feature to train a network using 100 epochs
with the batch size set to 30 for the small datasets (less
than 1000 cells) and 50 for the larger datasets.

scGen
scGen is a transfer learning method that combines vari-
ational auto-encoders (VAEs) and latent space vector
arithmetic to model and predict single-cell expression
data [16]. scGen first uses deep neural networks with
VAEs to build a model that learns the distribution of
cells in the reference dataset. Thereafter, the trained net-
work is used to predict the distribution of the query
dataset. The specific network architecture allows scGen
to efficiently correct batch effects. In our analysis, we
used scGen version 1.0.0 within the Scanpy pipeline in
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the Python environment. We trained a scGen network
in 100 epochs with the batch size set to 30 for small
datasets (less than 1000 cells) and 50 for larger datasets.
Finally, we extracted 20 PC vectors from the corrected
gene expression matrix and used them as input to the
assessment and visualization methods.

Adjust for batch effects using an empirical Bayes
framework (ComBat)
ComBat was originally developed for microarray gene
expression data [1], but had been successfully employed
on scRNA-seq data [6]. Expression data is first standard-
ized so that all genes have similar means and variances.
Thereafter, the standardized data is fitted to standard
distributions using a Bayesian approach to estimate the
batch effects present. The computed batch-effect estima-
tors are then used to correct the original expression
matrix. There are two modes to run ComBat, which are
parametric and non-parametric adjustments to correct
for batch effects. Parametric mode includes scale adjust-
ments whereas non-parametric mode only corrects the
mean of the batch effect. In our benchmarking, we
tested both modes, compared the results, and selected
the better output from the two modes for comparison
with other methods. In most cases, the parametric mode
gave better output than the non-parametric mode. In
our analysis, we computed the median value of sum of
gene expression per cell, then used this median value to
scale the data and then performed log2 transform. The
scaled data was subsequently used as input to the Com-
Bat function. Finally, we calculated 20 PC vectors from
the corrected expression matrix as input to the assess-
ment methods.

Linear models for RNA-seq and microarray data (limma)
Similar to ComBat, limma was initially designed to work
with microarray data [2]. limma fits the input data to a
linear model with a blocking term to capture the batch
effects. The batch effect captured in the term is then
subtracted from the original data to obtain the batch-
corrected expression matrix. In our work, we employed
the preprocessing workflow in Seurat 2 to filter,
normalize, and scale the data. Subsequently, the scaled
data was used as input to the limma batch-effect re-
moval function. Finally, 20 PCs were computed from the
limma normalized matrix as input to the assessment
methods.

Zero-inflated negative binomial model for RNA-seq data
(Zinb-WaVE)
Risso et al. [6] proposed an extension of the remove un-
wanted variation (RUV) model to use the zero-inflated
negative binomial (ZINB) regression to model data with
technical and biological effects. The resulting model is

able to estimate zero inflation (dropouts), over-
dispersion, and distribution of the data. ZINB-WaVE fits
a ZINB model to the data, resulting in a factor model
similar to PCA. Batch effect present is then removed
from the raw data to produce a corrected gene expres-
sion matrix. In this study, we employed the Seurat pre-
processing workflow to first filter, scale, and normalize
the raw data. Thereafter, we extracted HVGs from the
log transformed data for use as input to batch correc-
tion. Due to speed issues with the zinbwave function on
our datasets, we used the zinbsurf function, which em-
ploys an approximate strategy that uses only a random
subset of cells to infer the distribution for projecting the
full dataset. For the DEG study with dataset 3, we used
the corrected gene expression matrix output for further
analysis. For other datasets, we obtained the reduced fea-
tures vectors of ZINB, and computed PC vectors from
them. The PC vectors were then used for evaluation and
visualization.

Merging multiple batches of scRNA-seq data (scMerge)
scMerge first searches for mutual nearest clusters in data
batches using batch-specific HVGs to construct a graph
that links cell clusters between batches [18]. Stably
expressed genes (SEGs) are also identified for use as
negative controls to estimate unwanted factors. The
RUV model is then used to capture unwanted variations
between datasets for removal. In the semi-supervised
mode, cell type information is used to merge identified
cell clusters according to type. In our benchmarking, we
ran scMerge in the unsupervised mode because cell type
information is often unavailable in experimental data,
and most of the other batch correction methods were
designed to function in an unsupervised manner. For the
preprocessing step, we normalized the input data by log2
transform. For datasets 2 and 4, the cosine
standardization was performed separately on each batch
due to the different sequencing platforms used for data
acquisition and the resulting large variance in gene ex-
pression across batches.

A platform for integration of gene expression, epigenetic
regulation, and spatial relationships across single-cell
datasets (LIGER)
LIGER employs an iterative learning approach to
characterize batch data for correction [14]. The method
uses integrative non-negative matrix factorization
(iNMF) to first learn a low-dimensional space where
each gene is characterized by two sets of factors. The
first set contains dataset-specific factors, and the second
contains shared factors. The shared factor space is then
used to identify similar cell types across datasets by first
constructing a shared factor neighborhood graph to con-
nect cells with similar factor loading patterns. Joint
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clusters are then identified using the Louvain commu-
nity detection. Thereafter, the factor loading quantiles
are normalized using the largest data batch as refer-
ence to achieve batch-correction. In our work, we
followed the LIGER documentation. For preprocessing,
we used the LIGER preprocessing functions, where we
first selected genes with high variance. We then per-
formed iNMF-based factorization using an alternating
least squares algorithm (with number of factors k = 20
and the penalty parameter λ = 5), followed by data align-
ment using joint clustering and quantile alignment.

Datasets
In this paper, we used experimentally derived and
computer-simulated datasets to evaluate the perform-
ance of each batch correction method. Data sources,
data batches, cell counts, and acquisition technology are
listed in Additional file 1: Table S1, and the cell counts
per cell type are listed in Additional file 2: Table S2. The
ten datasets are described below:

Dataset 1: human dendritic cells
Dataset 1 consists of human blood dendritic cell (DC)
scRNA-seq data from Villani et al. [30]. Villani et al.
sorted CD1C DC, CD141 DC, plasmacytoid DC (pDC),
and double negative cells, and then analyzed each popu-
lation using Smart-Seq2 in two batches. We extracted
the transcript per million (TPM) values of these four cell
populations from GSE94820_raw.expMatrix_DCnMono.-
discovery.set.submission.txt.gz downloaded from https://
www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE94820.
Cell type and batch information were extracted using the
cell ID which is formatted as “Cell.Type”_“Plate.ID”_“sin
gle.cell.ID.” Plates “P7”, “P8”, “P9”, and “P10” were run as
batch 1, and “P3”, “P4”, “P13”, and “P14” as batch 2. The
data batches have low sparsity (zero counts) and contain
well-known cell types. We then removed CD1C DC in
batch 1 and CD141 DC in batch 2 such that the two
batches have non-identical cell types. Both of the resulting
batches consist of 288 cells and 16,594 genes each. The
first batch has 96 pDC, 96 double negative, and 96 CD141
cells. The second batch has 96 pDC, 96 double negative,
and 96 CD1C cells. Notably, both batches only share two
cell types (pDC and double negative), and each batch has
one unshared type (CD141 and CD1C respectively) that
are also biologically similar. This data characteristic cre-
ates an interesting challenge for batch correction algo-
rithms to integrate the common cell types across batches
while maintaining separation between highly similar cell
types in different batches.

Dataset 2: mouse cell atlas
Two independent mouse cell atlas datasets were gener-
ated by Han et al. [31] using Microwell-Seq, and by the

Tabula Muris Consortium [32] using 10x Genomics and
Smart-Seq2 protocols. For the dataset generated by Han
et al., the Digital Gene Expression (DGE) matrix was
extracted from MCA_Figure2batchremoved.txt.tar.gz
downloaded from https://ndownloader.figshare.com/
files/10351110?private_link=865e694ad06d5857db4b; cell
type information was extracted from MCA_Figure2bat-
chremoved.txt.tar.gz downloaded from https://ndown
loader.figshare.com/files/10760158?private_link=865e694
ad06d5857db4b. The Tabula Muris Consortium gener-
ated both 10x Genomics and Smart-Seq2 data, but only
the Smart-Seq2 data was used in our study. Read counts
were extracted from FACS.zip downloaded from https://
ndownloader.figshare.com/files/10038307; cell type in-
formation was extracted from annotations_FACS.csv
downloaded from https://ndownloader.figshare.com/
files/10039267. Only cells with cell type labels and genes
that were detected in both Microwell-seq and Smart-
Seq2 data were retained for further processing. We se-
lected 11 cell types with high cell numbers that were
present in both batches. The selected cell types originate
from nine organ systems: urinary, digestive, respiratory,
circulatory, muscular, immune, nervous, endocrine, and
lymphatic. The resulting first batch contains 4239 cells,
and the second batch consists of 2715 cells, with 15,006
genes in both gene count tables. This dataset evaluates
the removal of batch effects induced by using different
scRNA-seq technologies.

Dataset 3: simulation
Due to the large variance in gene expression values
found in experimentally obtained scRNA-seq data from
different batches, the true differentially expressed genes
(DEGs) are difficult to be determined. Therefore, we
employed simulated data with known ground truth
DEGs to assess the impact of batch-effect correction on
DEG detection. We simulated 6 sets of single-cell read-
count data using the Splatter package [19]. Each set con-
tains two batches with balanced or unbalanced numbers
of cells (Fig. 20b). Both batches contain 5000 genes. Due
to the low capture efficiency common in scRNA-seq
data, 5 or 25% of the cells were simulated to experience
“drop out” events.

Dataset 4: human pancreas
Dataset 4 was constructed using human pancreatic data
from five different sources [33–37]. The data batches
were downloaded in the form of homogeneously pre-
pared Single Cell Experiment (SCE) R objects featuring
standardized annotations from https://hemberg-lab.
github.io/scRNA.seq.datasets/human/pancreas/. For the
data batches generated by Baron et al. and Segerstolpe
et al., counts were extracted from the SCE R objects and
used for further processing. For datasets generated by
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Muraro et al., Wang et al., and Xin et al., normcounts
were extracted from the SCE R objects and further
processed. Only genes that were detected in all five
experiments were kept. Cell type information was also
extracted from the SCE R objects. Cells annotated as
“unclear,” “co-expression,” “not applicable,” “unclassified,
” “unclassified endocrine,” “dropped,” “alpha.contami-
nated,” “beta.contaminated,” “delta.contaminated,” or
“gamma.contaminated” were removed. “activated_stellate,”
“PSC (Pancreatic Stellate Cell,” and “quiescent_stellate”
cells were renamed to “stellate.” “mesenchymal” and “mes-
enchyme” cells were renamed to “mesenchymal.” The
resulting dataset consists of five batches acquired using
four different scRNA-seq technologies, with 15 different
cell types for a total of 14,767 cells with 15,558 genes each.
This dataset was used to assess batch-effect correction
across multiple (> 2) data batches.

Dataset 5: human peripheral blood mononuclear cell
(PBMC)
Dataset 5 is made up of human PBMC scRNA-seq
data [38]. The 3′ and 5′ 10x Genomics protocols
which capture different regions of mRNA were used to
generate the two data batches. Unique Molecular Iden-
tifiers (UMI) counts of both batches were downloaded
from the 10x Genomics website. The 3′ data was ob-
tained from https://support.10xgenomics.com/single-
cell-gene-expression/datasets/2.1.0/pbmc8k. For this
data batch, PBMCs of a healthy donor were analyzed
using the Chromium Single Cell 3′ v2 chemistry in the
experiment, and UMI counts were extracted using
CellRanger 2.1.0. After filtering in CellRanger, 8381
cells were detected. The 5′ data was obtained from
https://support.10xgenomics.com/single-cell-vdj/data-
sets/2.2.0/vdj_v1_hs_pbmc_5gex. In this data batch,
PBMCs of a healthy donor were analyzed using the
Chromium Single Cell 5′ paired-end chemistry, and
UMI counts were extracted using CellRanger 2.2.0.
After CellRanger-based filtering, 7726 cells were de-
tected. The cells were annotated using the annotation
published in Polański et al. [10]. Polański et al. se-
lected cells each with the number of unique genes be-
tween 500 and 7000, and a total UMI count above
2000, and then annotated the cells in k-nearest neigh-
bor clusters based on canonical markers. The cell type
information by Polański et al. was downloaded from
ftp://ngs.sanger.ac.uk/production/teichmann/BBKNN/
PBMC.merged.h5ad and read using the script down-
loaded from https://nbviewer.jupyter.org/github/Tei
chlab/bbknn/blob/master/examples/pbmc.ipynb. Cells
that were not annotated by Polański et al. were re-
moved from our analysis. The resulting dataset con-
sists of 8098 cells for the 3′ batch and 7378 cells for

the 5′ batch, each with 17,430 genes. Integration of
these two batches measures the integration capacity
of the methods when encountering protocol-driven
biological differences.

Dataset 6: cell line
The cell ranger output files of the cell line experiment
were obtained from the 293t_jurkat subfolder of the data
downloaded from http://scanorama.csail.mit.edu/data.
tar.gz [9, 38]. We used the Read10X function of the Seu-
rat package to extract the UMI count table from the Cell
Ranger output files. Cell type information was extracted
from the 293t_jurkat_cluster.txt file in the cell_labels
subfolder. The dataset is composed of three batches,
where batch 1 contains only 293T cells (2885 cells),
batch 2 contains only Jurkat cells (3258 cells), and batch
3 consists of a 50/50 mixture of Jurkat and 293T cells
(3388 cells). The gene expression data contains 16,602
genes acquired using the 10x Genomics platform. This
dataset is suitable for assessing batch correction as the
population of each cell type is monoclonal and the pop-
ulations biologically dissimilar.

Dataset 7: mouse retina
Dataset 7 is composed of mouse retina data generated
using the Drop-seq technology by two unassociated
laboratories [39, 40]. The data batches were downloaded
in the form of homogeneously prepared Single Cell
Experiment (SCE) R objects featuring standardized an-
notations from https://hemberg-lab.github.io/scRNA.seq.
datasets/mouse/retina/. Cell type information and
counts were first extracted from the SCE R objects.
Genes detected in both batches were retained, and cells
of unknown type were removed. The resulting first data
batch (Shekhar et al. [39]) has 26,830 cells, and the sec-
ond batch (Macosko et al. [40]) has 44,808 cells, both
with 12,333 genes. While the tissue of origin is the same
for both batches, the cell types are not identical between
batches. This dataset evaluates batch correction of a
fairly large dataset with non-identical cell types.

Dataset 8: mouse brain
We combined two different mouse brain datasets from
Saunders et al. [41] and Rosenberg et al. [42] to test the
batch correction methods on a big dataset [9]. The two
data batches were generated using different technologies,
the Drop-seq and SPLiT-seq protocols respectively.
There are 691,600 cells in batch 1, and 141,606 cells in
batch 2, with 17,745 common genes. This dataset was
used to evaluate the removal of batch effects induced by
using different scRNA-seq technologies on a big dataset.
We downloaded the data by Saunders et al. from http://
dropviz.org/ and extracted the Digital Gene Expression
(DGE) matrices of cells from the .raw.dge.txt.gz files
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found under the “DGE By Region” section. Cells were
first assigned to clusters and sub-clusters according to
the .cell_cluster_outcomes.RDS files also downloaded
from the “DGE By Region” section, and cell type annota-
tion was then incorporated based on the assigned
clusters and sub-clusters found in the BrainCellAtlas_
Saunders_version_2018.04.01.RDS file downloaded from
https://storage.googleapis.com/dropviz-downloads/static/
annotation.BrainCellAtlas_Saunders_version_2018.04.01.
RDS. We removed cells with unknown cell type informa-
tion and renamed “Endothelial_stalk” and “Endothelial_
tip” cells to “Endothelial.” We downloaded the data by
Rosenberg et al. from https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSM3017261. Digital gene expression
(DGE) matrices and cluster information were extracted
from GSM3017261_150000_CNS_nuclei.mat.gz using the
script made available by the author, at https://gist.github.
com/Alex-Rosenberg/5ee8b14ea580144facad9c2b87cebf1
0. We then renamed the clusters with cell type informa-
tion from Fig. 2 in Rosenberg et al.: clusters 1–54 were
renamed to “Neuron,” 55–60 to “Oligodendrocytes,” 61 to
“Polydendrocytes,” 62 to “Macrophage,” 63 to “Microglia,”
64 to “Endothelial,” 65 to “Mural,” 66–67 to “Vascular and
leptomeningeal cells,” 68–71 to “Astrocyte,” 72 to “Epen-
dymal,” and 73 to “Olfactory ensheathing cells.”

Dataset 9: human cell atlas
This is a large dataset with 321,463 bone marrow cells in
batch 1 and 300,003 cord blood-derived cells in batch 2
[43]. Both data batches were generated using the 10x
Genomics protocol with 18,969 genes acquired for each
cell. Unfortunately, no appropriate cell type annotation
was available. This dataset was used to gauge the assimi-
lation power on big datasets of different tissue type gen-
erated with one scRNA-seq technology. The raw count
matrices were downloaded from https://preview.data.
humancellatlas.org/ (cord blood: https://s3.amazonaws.
com/preview-ica-expression-data/ica_cord_blood_h5.h5;
bone marrow: https://s3.amazonaws.com/preview-ica-ex
pression-data/ica_bone_marrow_h5.h5).

Dataset 10: mouse hematopoietic stem and progenitor cells
The two data batches of this dataset were acquired by
Nestorowa et al. [44] using the SMART-seq2 protocol
(GSE81682, 1920 cells), and Paul et al. [45] using the
MARS-seq protocol (GSE72857, 10,368 cells). We repli-
cated the preprocessing and filtering workflow for the
two datasets as described by Haghverdi et al. [5]. Of the
10,368 cells in the MARS-seq generated dataset, the
2729 well-annotated cells were extracted. We also modi-
fied the “ESLAM” cell type labels to “HSPC,” “LT-HSC”
to “LTHSC,” and “ERY” to “MEP.” The genes were also
filtered as per the published workflow; the list of HVGs
from Nestorowa et al. was downloaded and compared

with the dataset from Paul et al. The resulting common
list of 3467 genes was retained in both datasets for fur-
ther use. This dataset tests the ability of batch correction
methods to eliminate batch effects due to different se-
quencing technologies in data batches with non-identical
cell types.

Evaluation functions
To help guide the assessment of batch correction algo-
rithm efficacy, we employed five different methods,
kBET, LISI, ASW, ARI, and DEG analysis. After obtain-
ing the batch-corrected outputs, we computed the PCA
vectors and used the top 20 PC as inputs to calculate
the respective kBET, LISI, ASW, and ARI scores. For
LISI, ASW, and ARI, we first calculated the metrics for
assessing cell type purity and batch mixing separately,
and then combined the assessments into a F1 score, as
described in the following subsections. To summarize
the metrics for comparison, we computed their rank
sum. For DEG analysis, we used the normalized gene ex-
pression matrix obtained from each batch-effect removal
method as input.

k-Nearest neighbor batch-effect test (kBET)
The first metric employed is the kBET [23], which mea-
sures batch mixing at the local level. After SVD-based
dimension reduction, the k-nearest neighbors around
each data point are selected to compute its local batch
label distribution. Then, 10% of the data points are ran-
domly selected to test the local batch label distribution
against the global distribution. The null hypothesis of all
batches being well mixed is not rejected if the local dis-
tribution is sufficiently similar to the global distribution.
The fraction of rejections ranges from 0 to 1. If the frac-
tion of rejections is close to zero, this signifies that the
batches are well mixed. In this work, we generated PCs
from the corrected gene expression matrix, or from the
corrected dimensionally reduced cell embeddings. Then,
we used top 20 vectors as input to the kBET function.
Because the number of nearest neighbors k as input has
a big impact on the results of kBET, we ran kBET using
a predefined list of k values. Following the example in
the kBET paper, we chose the k input value equal to 5%,
10%, 15%, 20%, and 25% of the sample size and ran
kBET to get the median of all kBET rejection rates to
produce the final kBET result for each method. Finally,
the Wilcoxon statistical test with the Benjamini and
Hochberg correction was performed on the kBET results
to identify if the integrated output of a method is statis-
tically significantly better than other methods.

Local inverse Simpson’s index (LISI)
Another local level metric is the LISI proposed by Kor-
sunsky et al. [13, 22], which can be used to assesses
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batch and cell type mixing. Instead of a fixed number of
nearest neighbors as in the case of kBET, LISI selects
the nearest neighbors based on the local distribution of
distances with a fixed perplexity. The selected neighbors
are then used to compute the inverse Simpson’s index
for diversity, which is the effective number of types
present in this neighborhood. In the case of LISI integra-
tion (iLISI) to measure batch mixing, the index is com-
puted for batch labels, and a score close to the expected
number of batches denotes good mixing. The iLISI score
is only computed for cells whose type appears in all
batches. For cell type LISI (cLISI), the index is computed
for all cell type labels, and a score close to 1 denotes that
the clusters contain pure cell types. We computed the
iLISI and cLISI scores for each cell in the dataset, and
then determined the median values. To scale the median
scores, we used the respective maximum and minimum
scores. For combined assessment of cell type purity and
batch mixing, the harmonic mean of cLISI and iLISI was
computed to obtain the F1 score as described by Lin
et al. [18]:

F1LISI ¼ 2ð1−cLISInormÞðiLISInormÞ
1−cLISInormþiLISI norm:

A higher F1 score indicates superior batch correction.
Finally, Wilcoxon statistical test with Benjamini and
Hochberg correction was performed on the iLISI and
cLISI results to identify if any method(s) is statistically
significantly better than others.

Average silhouette width (ASW)
We employed the ASW [16, 24] in conjunction with
cell type and batch labels to assess batch correction.
The silhouette score of a data point is computed by
subtracting its average distance to other members in
the same cluster from its average distance to all
members of the neighboring clusters, and then divid-
ing by the larger of the two values. The resulting
score ranges from − 1 to 1, where a high score de-
notes that the data point fits well in the current clus-
ter, while a low score denotes a poor fit. The average
score of all data points is used to measure overall cell
type purity or batch mixing through the choice of
labels.
In our work, we first randomly subsampled our

datasets to 80% of the original number of cells. We
then used the first 20 PCs of the downsampled data-
sets as input to calculate the distances between data
points to obtain the ASW scores. To ensure the sta-
bility of ASW scores, we repeated this process 20
times to obtain 20 ASW scores each for batch mixing
and cell type mixing. The median values for batch
and cell type mixing were then used for further com-
putation. We reversed the batch ASW score (higher
is better) and then normalized both ASW scores to

between 0 and 1. For combined assessment of cell
type purity and batch mixing, we calculated the har-
monic mean of batch and cell type ASW scores to
obtain the F1 score:

F1ASW ¼ 2 1−ASWbatch normð Þ ASWcell type norm
� �

1−ASWbatch norm þ ASWcell type norm

A higher F1 score (that is, smaller ASW score for
batch and higher ASW score for cell type) indicates su-
perior batch correction. Finally, the Wilcoxon statistical
test with Benjamini and Hochberg correction was per-
formed on the ASW results to identify if any method(s)
is statistically significantly better than others.

Adjusted rand index (ARI)
The ARI [25] can also be employed to evaluate batch
correction methods in terms of cell type purity and
batch mixing. The ARI measures the percentage of
matches between two label lists, corrected for chance. In
our work, we first subsampled our datasets to 80% of
their original number of cells. We then used 20 PCs of
the subsampled corrected data to perform k-means clus-
tering using the k-means function from the stats package
in the R language environment (where k is the number
of unique cell types). To assess cell type purity using
ARI, the cell type labels were compared against the k-
means clustering results using the adjustedRandIndex
function of the mclust R package [46]. A high ARI score
corresponds to high cell type purity. For batch mixing
assessment, only cells whose types are present in all
batches were considered. Their respective batch labels
were compared to the k-means clustering labels, and a
low ARI score denotes superior mixing. Similar to the
silhouette coefficient, to produce stable results, the com-
putations for batch and cell type assessments were re-
peated 20 times each with random subsampling. The
median ARI scores were then normalized to range be-
tween 0 and 1, and a combined F1 score was obtained
for each batch correction method by computing the har-
monic mean of the ARI scores:

F1ARI ¼
2 1−ARIbatch normð Þ ARIcell type norm

� �

1−ARIbatch norm þ ARIcell type norm

A higher F1 score will result from a lower ARI batch
mixing score, and a higher ARI cell type mixing score.
Finally, the Wilcoxon statistical test with the Benjamini
and Hochberg correction was performed on the ARI re-
sults to test if a method is statistically significantly better
than other methods.
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Identification of highly variable genes for simulated
dataset 3
Highly variable genes enable us to highlight biological
significance in downstream analysis. Consequently,
batch-effect removal methods mainly focus on the cor-
rection of these HVGs. Using simulated data, we investi-
gated the capacity of each method in two cases: using all
genes, or only HVGs as input. The HVGs were selected
based on dispersion and mean of expression. We
employed the commonly used FindVariableGenes func-
tion in Seurat 2.3. [4] with 0.0125 as the low cutoff for
mean of expression, 3.0 as the high cutoff for mean of
expression, and an expression dispersion cutoff of 0.5.

Differential gene expression analysis (DEG)
To perform DEG analysis, we used the FindMarkers
function from the Seurat 2 package [4], with the
likelihood-ratio test for single-cell gene expression (bi-
modal test). p value adjustment was performed using the
Bonferroni correction with an adjusted p value less than
0.05 as the threshold. We performed DEG analysis on
the gene expression matrix of raw data, which contains
batch effects, and on the batch-corrected expression
matrices (Seurat 3, MNN Correct, ComBat, limma,
scGen, Scanorama, ZINB-WaVE, and scMerge).

Accuracy metric of identification of DEGs
DEGs detected in the batch-corrected expression matri-
ces of all genes or HVGs were compared to the ground
true DEGs, and evaluation metrics including TP, FP, FN,
TN, precision, and F-score were calculated. True posi-
tives (TP) is the number of genes which were detected
as significant and are also true DEGs. False positives
(FP) is the number of genes which were detected as sig-
nificant but not true DEGs. False negatives (FN) is the
number of genes which are true DEGs but detected as
non-significant. True negatives (TN) is the number of
genes that are not true DEGs and were detected as non-
significant. Precision is defined as TP/(TP + FP), and F-
score (measuring accuracy) is defined as (TP + TN)/
(TP + TN + FP + FN). TP, FP, FN, TN, precision, and F-
score were computed for each simulated dataset, and the
median F-score over 6 simulated datasets was used to
rank the batch correction methods.

t-Distributed stochastic neighbor embedding (t-SNE)
visualization
We employed t-SNE [20] to visualize our batch correc-
tion results. We ran t-SNE with a perplexity of 30 using
the Scanpy package in the Python environment to
visualize the raw data and batch-corrected output.

Uniform manifold approximation and projection (UMAP)
visualization
We employed UMAP [21] to visualized our batch cor-
rection results. We ran UMAP with the default number
of neighbors using the Scanpy package in the Python en-
vironment to visualize the raw data and batch-corrected
output.

Assessment of memory usage
Memory usage becomes more and more of a critical
challenge as the input data size increases. We assessed
the memory usage of the 14 methods with dataset 8,
which is the largest. We ran the assessment on our ser-
ver with 1 TB of RAM and recorded the memory usage
every 5 s. We then visualized the memory usage in the
form of violin plots (Fig. 21b). Some methods were un-
able to complete the batch correction runs due to mem-
ory (> 1 TB) or runtime (> 48 h) requirements. Only
BBKNN, ComBat, Harmony, limma, ResNet, Scanorama,
scGen, LIGER, and Seurat 3 were able to complete the
runs, and we recorded their memory usage during the
entire run; fastMNN, scMerge, Seurat 2, and ZINB-
Wave were terminated halfway because they consumed
more than 1 TB of memory, and MNN Correct was also
terminated because its runtime was too long.

Computation evaluation of runtime
We captured the runtime of each method using the time
function available in R and Python environments. We
did not take into account the pre-filtering steps, and
only measured the runtime of the main function in each
method. All jobs were run on a Linux server with 2x
Intel® Xeon® Platinum 8160 CPUs at 2.10GHz, 1 TB of
DDR4 memory, and 1.27 TB of swap memory.
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