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Abstract

Background: Human tissue is increasingly being whole genome sequenced as we transition into an era of genomic
medicine. With this arises the potential to detect sequences originating from microorganisms, including pathogens
amid the plethora of human sequencing reads. In cancer research, the tumorigenic ability of pathogens is being
recognized, for example, Helicobacter pylori and human papillomavirus in the cases of gastric non-cardia and cervical
carcinomas, respectively. As of yet, no benchmark has been carried out on the performance of computational
approaches for bacterial and viral detection within host-dominated sequence data.

Results: We present the results of benchmarking over 70 distinct combinations of tools and parameters on 100
simulated cancer datasets spiked with realistic proportions of bacteria. mOTUs2 and Kraken are the highest
performing individual tools achieving median genus-level F1 scores of 0.90 and 0.91, respectively. mOTUs2
demonstrates a high performance in estimating bacterial proportions. Employing Kraken on unassembled
sequencing reads produces a good but variable performance depending on post-classification filtering parameters.
These approaches are investigated on a selection of cervical and gastric cancer whole genome sequences where
Alphapapillomavirus and Helicobacter are detected in addition to a variety of other interesting genera.

Conclusions: We provide the top-performing pipelines from this benchmark in a unifying tool called SEPATH, which
is amenable to high throughput sequencing studies across a range of high-performance computing clusters. SEPATH
provides a benchmarked and convenient approach to detect pathogens in tissue sequence data helping to
determine the relationship between metagenomics and disease.

Keywords: Metagenomics, Pipeline, Taxonomy, Classification, SEPATH, Cancer, Pathogens, Bioinformatics, Bacteria,
Viral

Background
The estimated incidence of cancer attributed to infec-
tion surpasses that of any individual type of anatomi-
cally partitioned cancer [1]. Human papillomavirus (HPV)
causes cervical carcinoma, and Helicobacter pylori facili-
tates gastric non-cardia carcinoma induction [2, 3]. The
role of HPV in tumorigenesis is understood and has clin-
ical implications: HPV screening programs have been
adopted and several vaccines exist, targeting a wide range
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of HPV subtypes [4]. The amount of whole genome
sequencing data generated from tumor tissue is rapidly
increasing with recent large-scale projects including The
Cancer Genome Atlas (TCGA) Program [5], International
Cancer Genome Consortium (ICGC) [6] (including the
Pan-Cancer Analysis of Whole Genomes, PCAWG [7]),
Genomic England’s 100,000 Genomes Project [8], and at
least nine other large-scale national sequencing initia-
tives emerging [9]. When such samples are whole genome
sequenced, DNA from any pathogens present will also
be sequenced, making it possible to detect and quantify
pathogens, as recently shown in cancer by Feng et al. [10]
and Zapatka et al. [11]. Protocols for these projects do
not typically encompass negative control samples and do
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not use extraction methods optimized for microbiome
analysis, yet careful consideration of contamination and
correlation of output results with clinical data could gen-
erate hypotheses without any additional cost for isolated
metagenomics projects. The scope of potential benefits
from analyzing cancer metagenomics is broad and could
benefit multiple prominent research topics including can-
cer development, treatment resistance, and biomarkers of
progression. It is therefore important to consider the per-
formance of pathogen sequence classification methods in
the context of host-dominated tissue sequence data.
Traditionally, the identification of microbiological enti-

ties has centered around culture-based methodologies.
More recently, there has been an increase in taxonomic
profiling by using amplicon analysis of the 16S riboso-
mal RNA gene [12]. Whole genome sequencing how-
ever presents an improved approach that can interro-
gate all regions of every constituent genome whether
prokaryotic or not and provides a wider range of possible
downstream analyses. The increasingly widespread use
of whole genome sequencing technologies has resulted
in an explosion of computational methods attempting
to obtain accurate taxonomic classifications for metage-
nomic sequence data [13]. Typically, these tools rely on
references of assembled or partially assembled genomes
to match and classify each sequencing read or assembled
contig. One issue with this approach is that there exists
an uneven dispersion of interest in the tree of life, ren-
dering some clades underrepresented or entirely absent.
Furthermore, sequence similarity between organisms and
contamination in reference genomes inhibit the perfect
classification of every input sequence [14–16]. A recent
study has shown that the increasing size of databases such
as NCBI RefSeq has also resulted in more misclassified
reads at species level with reliable classifications being
pushed higher up the taxonomic tree [17]. Because of
this species-level instability, we initially select to carry
out metagenomic investigations at a genus level, prior
to investigating lower taxonomic levels, particularly for
experiments with low numbers of non-host sequences.
Computational tools for metagenomic classification can

be generalized into either taxonomic binners or taxo-
nomic profilers [13]. Taxonomic binners such as Kraken
[18, 19], CLARK [20], and StrainSeeker [21] attempt to
make a classification on every input sequence whereas
taxonomic profilers such as MetaPhlAn2 [22, 23] and
mOTUs2 [24, 25] typically use a curated database of
marker genes to obtain a comparable profile for each sam-
ple. This generally means that taxonomic profilers are
less computationally intensive in comparison with binners
but may be less effective with low amounts of sequences.
Although there is a large number of tools available purely
for sequence classification, at the time of writing, there is a
limited selection of computational pipelines available that

process data optimally with high-throughput and produce
classifications from raw reads with all appropriate steps
including quality control. Examples of these include Path-
Seq [26–28] which utilizes a BLAST-based [29] approach
and IMP [30] which utilizes MaxBin [31] for classification.
Community-driven challenges such as Critical Assess-

ment of Metagenome Interpretation (CAMI) provide one
solution to independently benchmark the ever-growing
selection of tools used formetagenomic classification [13].
CAMI provides a useful starting point for understanding
classification tools on samples with differing complex-
ity, but it is unlikely to provide an accurate comparison
for more niche areas of taxonomic classification such
as ancient microbiome research [32] or for intra-tumor
metagenomic classification dominated by host sequences.
Classifying organisms within host tissue sequence data

provides an additional set of challenges. In addition to
the limitations in the tool performance, there is also a
low abundance of pathogenic sequences compared to the
overwhelming proportion of host sequence data as well
as high inter-sample variability. Cancer sequences are also
known to be genetically heterogeneous and unstable in
nature providing a further cause for caution when clas-
sifying non-host sequences and rendering the accurate
removal of host reads difficult [33–35].
Here, we present and discuss the development of

SEPATH, template computational pipelines designed
specifically for obtaining classifications from within
human tissue sequence data and optimized for largeWGS
studies. This paper provides rationale for the constituent
tools of SEPATH by analyzing the performance of tools
for quality trimming, human sequence depletion, metage-
nomic assembly, and classification. We present the results
of over 70 distinct combinations of parameters and post-
classification filtering strategies tested on 100 simulated
cancer metagenomic datasets. We further assess the util-
ity of these pipelines by running them on a selection of
whole genome cancer sequence data. We analyze a selec-
tion of samples from cervical cancer, where it is expected
thatAlphapapillomaviruswill be frequently identified and
gastric cancer where it is expected that Helicobacter will
be identified. A selection of 10 pediatric medulloblas-
toma samples is also analyzed for which it is expected
that not many if any taxa at all will be identified due
to the historically noted sterility of the brain, although
this is currently a subject of debate within the scientific
community [36].

Results
The process of obtaining pathogenic classifications from
host tissue reads can be broken down into a few key com-
putational steps: sequence quality control, host sequence
depletion, and taxonomic classification. For these com-
putational steps, a series of tools and parameters
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were benchmarked on simulated metagenomes (see the
“Methods” section). These genomes emulate empirical
observations from other cancer tissue sequence data [11],
with the percentage of human reads ranging from 87 to
> 99.99%. Genomes from 77 species were selected as con-
stituents for the metagenomes [37]. These species were
identified from Kraal et al. [38] with additional bacterial
species associated with cancer, e.g., Helicobacter pylori
[2] (see Additional file 1 for a full description of each
simulation).

Human sequence depletion
A large proportion of sequence reads from tumor
whole genome sequencing datasets are human in ori-
gin. It is essential to remove as many host reads as
possible—firstly, to limit the opportunity for misclassi-
fication and, secondly, to significantly reduce the size
of data thereby reducing the computational resource
requirement.
Three methods of host depletion were investigated

on 11 simulated datasets (2 × 150 bp Illumina reads).
Two of these methods were k-mer-based methods: Kon-
taminant [39, 40] and BBDuk [41]. The third method
involved extracting unmapped reads following BWA-
MEM [42] alignment, an approach that is facilitated
by the likelihood that data will be available as host-
aligned BAM files in large-scale genomic studies. BWA-
MEM is used as a baseline, and parameters were
set to be as preservative as possible of any potential
non-human reads.

All methods retained the majority of bacterial reads
(median of > 99.9% bacterial reads retained for all con-
ditions; Additional file 2: Figure S1), but the num-
ber of human reads remaining in each dataset varied
(Fig. 1). Using default parameters, BBDuK and Kontam-
inant retained a median of 15.4 million reads, compared
to 259 million from BWA-MEMwith intentionally lenient
filtering parameters. We investigated BBDuK further,
establishing default BBDuK performance following BWA-
MEM depletion which demonstrated no tangible differ-
ence in human read removal (Fig. 1a). BBDuK parameters
were also adjusted from the default setting of a single k-
mer match to the reference database (Fig. 1b, c). It was
found that removing a read when 50% ormore of the bases
have k-mer matches to the human reference (MCF50)
provided an approach that removed near-identical pro-
portions of human and bacterial sequences to the default
parameters.
In an attempt to capture k-mers specific of cancer

sequences, a BBDuK database was generated containing
human reference genome 38 concatenated with coding
sequences of all cancer genes in the COSMIC database
[43]. With the additional cancer sequences, a near-
identical performance was obtained when compared with
just the human reference database (Fig. 1b, c). There-
fore, including extra cancer sequences did not alter the
retention of pathogen-derived reads, providing an oppor-
tunity for increased human sequence removal on real
data without sacrificing bacterial sensitivity. To investi-
gate using a BBDuK database capturing a higher degree of

Fig. 1 Human read depletion performance. a Human read removal using BBDuK, BWA-MEM, and Kontaminant. The remaining numbers of human
reads were near identical for BBDuK and Kontaminant (median values of 15,399,252 and 15,399,928 for BBDuK and Kontaminant, respectively.) All
conditions retained bacterial reads with near-identical performance (Additional file 2: Figure S1). BBDuK was selected for parameter optimization (b,
c). This analysis was performed on raw untrimmed reads of n = 11 simulated datasets. b, c BBDuk parameter optimization in terms of the remaining
human reads (b) and remaining bacterial reads (c). Default BBDuK settings were used along with alterations of MKF and MCF parameters. The
default parameters of BBDuK remove a sequencing read in the event of a single k-mer match, whereas MCF50 requires 50% of the bases in a read to
be covered by reference k-mers for removal and MKF50 requires 50% of k-mers in a read to match the reference for removal. MCF50-Cancer
indicates that BBDuK was ran with a database consisting of GRCh38 human reference genome and a collection of known mutations in human
cancer from the COSMIC database. MCF50_Cancer_A denotes a database consisting of human reference genome 38, COSMIC cancer genes, and
additional sequences from a recent African “pan-genome” study [44] (b). Default and both MCF50 parameters (with and without cancer sequences)
showed the highest removal of human reads
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human sequence variation, we also investigated the inclu-
sion of additional human sequences from a recent analysis
into the African “pan-genome” [44]. Including these extra
sequences removed slightly more bacterial reads but this
had a very minor effect (Fig. 1c).

Taxonomic classification: bacterial datasets
We compared the performance of 6 different taxonomic
classification tools by applying them after filtering and
host depletion on 100 simulated datasets. Performance
was measured in terms of presence/absence metrics at
the genus level: positive predictive value (PPV/precision),
sensitivity (SSV/recall), and F1 score (the harmonic mean
of precision and recall). Sequences were classified using 3
taxonomic profilers (mOTUs [25], MetaPhlAn2 [22, 23],
and Gottcha [45]) and 3 taxonomic binners (Kraken [18],
Centrifuge [46], and Kaiju [47]) (Fig. 2a–c). In our analysis,

Kraken and mOTUs2 delivered the best median genus F1
of 0.90 (IQR = 0.083) and 0.91 (IQR = 0.10), respectively,
with median genus PPV scores of 0.97 (IQR = 0.084) and
0.95 (IQR = 0.080), and median genus sensitivity scores of
0.86 (IQR = 0.123) and 0.88 (IQR = 0.126) for Kraken and
mOTUs2, respectively.
Kraken utilizes over 125 times the RAM requirement

of mOTUs2 (Fig. 2d; median 256 GB vs 2 GB RAM
for Kraken and mOTUs2, respectively; p = 2.2 ×
10−16 Mann-Whitney U test); Kraken was ran with the
database loaded into RAM to improve runtime. Histori-
cally, alignment-based taxonomic classification tools have
been slow, but by using the reduced 40 marker gene
database, mOTUs2 has much lower run times. CPU time
was on average marginally higher for mOTUs2 compared
to Kraken (Fig. 2d), but we noticed the elapsed time was
actually lower (data not shown).
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Fig. 2 Performance estimates for taxonomic classification tools. Methods were applied to quality filtered and human-depleted sequencing reads on
100 metagenome simulations. Performance is summarized at the genus level in terms of sensitivity (a), positive predictive value (b), and F1 score (c).
Computational resources in terms of CPU time and RAM is also shown for the top two performing tools: Kraken and mOTUs2 (d). Kraken utilized 20
threads for most datasets whereas mOTUs2 utilized 17. mOTUs2 output was unfiltered, whereas Kraken had a confidence threshold of 0.2 and a
subsequent read threshold of 500 applied to determine positive classifications. Parameters for each tool in this graphic were selected from the
top-performing parameters observed for multiple tests with varying parameters
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Bacterial proportion estimation
Analyzing population proportions can provide a deeper
understanding of microorganism community structure.
Therefore, it is important to assess the performance of
tools in predicting proportions. For each true-positive
result from the top-performing pipelines using Kraken
and mOTUs2, the output number of reads was com-
pared against the true number of reads in the simulations
(Fig. 3). ThemOTUs2 pipeline obtained accurate rankings
of read estimates (R2 = 0.91; Spearman’s rank-order corre-
lation) whereas our Kraken pipeline predicted the number
of reads with Spearman’s rank-order correlation value of
R2 = 0.69.

Bacterial classification followingmetagenomic assembly
The data above demonstrates that mOTUs2 and Kraken
have comparable performances. However, Kraken, in con-
trast to mOTUs2, can classify non-bacterial sequences.
When ran on raw reads, Kraken typically requires post-
classification filtering strategies in order to obtain high
performance [25] (Additional file 3: Figure S2). Post-
classification filtering involves applying criteria to remove
low-quality classifications from taxonomic results. Apply-
ing a metagenomic assembly algorithm to quality-
trimmed non-host reads might provide a rapid filtering
approach that reduces the need for read-based thresholds.
MetaSPAdes [48] was employed on high-quality non-

human reads from 100 simulated datasets. An F1 score of
0.83 was obtained without any read threshold, which was
an improvement over Kraken on raw reads without any
filtering strategies (F1 = 0.54) but lower than Kraken with
filtering (F1 = 0.9). The F1 score was increased to 0.89
when a requirement for a minimum of 5 classified con-
tigs for classification was applied (Fig. 4a). Filtering out

contigs with lower coverage made little difference on the
performance with the parameters tested (Additional file 4:
Figure S3, Additional file 5: Figure S4).
Filtering these datasets by number of contigs is non-

ideal, as it would remove classifications from taxa that
assembled well into a small number of contigs. An evolu-
tion of Kraken, KrakenUniq [19], was run on these contigs
to further illuminate the relationship between taxa detec-
tion and more advanced metrics than Kraken 1, including
the coverage of the clade in the reference database and
the number of unique k-mers (Fig. 4d, Additional file 6:
Figure S5). This analysis reveals that on our challenging
datasets, no set of filtering parameters could obtain per-
fect performance. Upon investigation of a single dataset,
it was observed that 13 out of 17,693 contigs assign-
ing to different genera were responsible for false-positive
classifications resulting in a drop of PPV to 0.83 (Addi-
tional file 7: Figure S6). These contigs were extracted
and used as input for NCBI’s MegaBLAST with standard
parameters. Of the 13 false-positive contigs, 3 were cor-
rectly reclassified, 3 were incorrectly classified, and the
remaining 7 obtained no significant hits. This highlights
that these contigs may suffer from misassembly or non-
uniqueness that is not improved by use of a tool with a
different approach.

Taxonomic classification: viral datasets
We established the performance of viral classification in
the presence of bacterial noise by spiking a selection of
our host-bacterial datasets with 10,000 viral reads for each
10 species. As mOTUs2 does not make viral classifica-
tions, Kraken was run on either quality-trimmed reads
or contigs following metaSPAdes [48] assembly (see the
“Methods” section). Kraken correctly identified 8/10 virus
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species from reads as input with post-classification fil-
tering. When using contigs and no filtering strategies,
7/10 species were detected with no viral false-positive
results (Fig. 5b). Filtering by minimum number of contigs
removed the majority of viral classifications. The effect of
filtering on viral species classification was not reflected in
the classification of bacterial genera (Fig. 5a).

Bacterial consensus classification
Using distinct methods of classification and combining
the results have been shown to improve metagenomic
classification performance [49]. The Kraken/mOTUs2
pipelines outlined here were compared with the BLAST-
based [29] PathSeq [27, 28] on a reduced selection of 11
simulated bacterial datasets (Fig. 6). A smaller selection
of datasets was used due to local resource limitations in
terms of storage and computational time of aligning our

simulations to the human genome to produce the required
input for PathSeq. It was found that using an intersection
of classifications between any two tools obtained a perfect
median PPV score but caused a small drop in sensitiv-
ity and resulted in similar F1 scores compared with using
single tools. Sensitivity increased to 0.905 when using a
consensus approach between all three tools (whereby clas-
sifications made by at least 2/3 tools is taken as true). This
rise in sensitivity for the consensus approach resulted in
a median genus-level F1 score of 0.95, which was a bet-
ter score than any other single tool or intersection of two
tools.

Real cancer whole genome sequence data
SEPATH pipelines using Kraken and mOTUs2 were ran
on quality-trimmed, human-depleted sequencing files
(Fig. 7). Kraken identified Alphapapillomavirus to be
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Fig. 7 The application of SEPATH pipelines on a range of cancer types. Output genera from Kraken (left) and mOTUs2 (right) human-depleted,
quality-trimmed reads from whole genome sequencing files. n = 10 for each of cervical cancer (a, b), stomach cancer (c, d), and medulloblastoma
(e, f). For display purposes, mOTUs2 results were filtered to show taxa that occurred in at least 3 samples. Kraken results were filtered for taxa that
were in a minimum of 5 samples, or had a mean read count of over 5,000

present in 9/10 cervical squamous cell carcinoma sam-
ples, with a high average number of sequencing reads
compared to other taxa (Fig. 7a). Interestingly, Treponema
was identified as present in two samples by both tech-
niques (taxa detected in ≥ 3 samples displayed in
Fig. 7b), and both tools report high quantitative mea-
sures. This may well represent an interesting diagnostic
finding, although follow-up would be required to ascer-
tain the clinical utility. In stomach cancer, both mOTUs2
and Kraken identified Helicobacter in 4 and 5 samples,
respectively, as anticipated; Kraken reported Lymphocryp-
tovirus in 6/10 samples with a high number of reads in
addition to a variety of other genera (Fig. 7c). Despite
human read depletion, care should be taken to ensure
the true-positive nature of Lymphocryptovirus as has been

reported [50, 51]. It is noteworthy that the classification
is not prominent in either cervical cancer or medulloblas-
toma and has previously been associated with gastric
oncogenesis [3, 52].
In both cervical and gastric cancers, expansion of these

pipelines to larger datasets would help to characterize
the role of many other reported genera. Medulloblastoma
samples are expected to be mostly sterile, and this is well
reflected with only very low number of genera at low read
counts (number of genera: total reads in all samples 75:
11,213,997; 102: 16,269,893; 27: 138,712 for cervical, gas-
tric, and medulloblastoma, respectively.). Kraken appears
to be more sensitive, making a greater number of classifi-
cations overall and classifying the same taxa as present in
a higher number of samples than mOTUs2.
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SEPATH template pipelines
The top-performing algorithms and parameters for each
of the stages have been combined in a unifying tem-
plate pipeline implemented in snakemake [53]: SEPATH
(Fig. 8, https://github.com/UEA-Cancer-Genetics-Lab/
sepath_tool_UEA). SEPATH provides three blocks of
functionality: (1) conversion of host-aligned BAM files
to FASTQ files that is intentionally preservative of
pathogenic reads, (2) mOTUs2 bacterial classification ran
on trimmed and filtered sequencing reads, and (3) Kraken
ran on quality-trimmed reads or metagenomic-assembled
contigs. All blocks can be run together or separately
and uses either BAM of FASTQ input files. All soft-
ware dependencies for SEPATH can easily be installed via
conda.

Discussion
We have demonstrated pipelines for detecting bacte-
rial genera and viral species in simulated and real
whole genome sequence data from cancer samples. These

pipelines perform well in terms of sensitivity and PPV
and utilize computational resources effectively. The two
top-performing classification tools, Kraken and mOTUs2,
have very different underlying mechanics despite achiev-
ing similar performance. Kraken builds a database by
minimizing and compressing every unique k-mer for each
reference genome. Kraken begins the analysis by break-
ing down each input read into its constituent k-mers
and matching each of these to the user-generated refer-
ence database. The sequence is classified probabilistically
by the leaf in the highest weighted root to leaf path
in a taxonomic tree [18]. In comparison with Kraken,
mOTUs2 uses a highly targeted approach by analyzing 40
universal phylogenetic bacterial marker genes for classi-
fication. Overall, mOTUs2 uses 7726 marker gene-based
operational taxonomic units (mOTUs). Classifications are
obtained by an alignment to this database using BWA-
MEM with default parameters [25, 42].
mOTUs2 has been developed with quantitative abun-

dance in mind. It intuitively estimates the proportion

Fig. 8 SEAPTH template computational pipeline. The top-performing pipelines from this benchmark are provided as a template for users to adjust
according to their own job scheduling systems and resource availability. SEPATH provides two main pathways: a bacterial pipeline using mOTUs2
classifications on raw sequencing reads and a bacterial and viral pipeline employing Kraken on metagenomic contigs assembled using non-human
reads with MetaSPAdes

https://github.com/UEA-Cancer-Genetics-Lab/sepath_tool_UEA
https://github.com/UEA-Cancer-Genetics-Lab/sepath_tool_UEA
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of sequences estimated to originate from unknown taxa
(denoted by “− 1” in mOTUs2 reports) and adjusts abun-
dance values from detected clades accordingly to account
for this. Kraken read distribution can be improved by
using a Bayesian framework to redistribute the assigned
reads using Bracken [54]. A comparison of relative
abundance between mOTUs2 and Bracken was carried
out during the production of mOTUs2 as reported in
Milanese et al. [25], which demonstrated that mOTUs2
appeared to provide more accurate predictions. We
therefore recommend our Kraken pipelines for accu-
rate representations of presence/absence and suggest that
using abundance weighted β-diversity metrics from these
pipelines should be interpreted with caution. A further
caveat of the assembly Kraken pipeline is that it requires
successful metagenomic assembly. While MetaSPAdes
worked well on our simulations, idiosyncrasies of differing
technologies and datasets may hinder a successful assem-
bly. In this event, we would recommend running Kraken
classification on quality-trimmed and human-depleted
sequencing reads without assembly.
The data in this paper supports the use of mOTUs2

for quantitative bacterial measurements, which together
with the high classification performance on simulated
data suggests that both binary and non-binary β-diversity
measures would be representative of the true values of
the dataset, suggesting a conferred accuracy in bacterial
community profiling. Furthermore, mOTUs2 differs from
the current methods that rely purely on bacterial refer-
ence sequences by incorporating data from metagenome-
assembled genomes, suggesting that mOTUs2 captures a
differing scope of classifications to our Kraken database,
which was developed using reference genomes. Although
both tools are state-of-the-art at the time of writing, they
are likely to contain biases in terms of what they are able to
classify, which pertains to previous sequencing efforts of
the sampling site. The human gut microbiome for exam-
ple is currently believed to be better characterized than
other body sites [25].
For bacterial classification, we noted a higher per-

formance at taxonomic levels above genus level, but
performance appears to drop at species level (Addi-
tional file 3: Figure S2). We urge caution when working
at the species level on this type of data due to this com-
bined with the instability of species-level classification.
At lower taxonomic levels, the retention of BAM files
from mOTUs2 could theoretically allow for subsequent
investigations at more specific taxonomic nodes (such as
strain level) by investigating single-nucleotide variation.
Kraken also automatically produces subgenus-level clas-
sifications where the input data and reference database
permits. Validating performance at these taxonomic lev-
els would require extensive performance benchmarking
which has not been conducted here. Benchmarking tools

and databases as they emerge are important tasks as they
greatly influence performance. It is hoped that utilities
presented here will assist future benchmarking efforts.
The use of SEPATH pipelines on real cancer sequence

data suggests overall agreement between Kraken and
mOTUs2 but reveals important considerations for sub-
sequent analysis. Kraken appears to be more sensitive
than mOTUs in this real data, possibly due to the differ-
ing parameters used due to the shorter read lengths seen
(2 × 100 bp in real sample data compared to 2 × 150 bp
in simulated data). Using sequencing protocols optimized
for microbial detection compared to human sequencing
projects is likely to result in a higher and more even
microbial genome coverage and subsequently more clas-
sifications with mOTUs2 which has been demonstrated
recently in the analysis of fecal metagenomes of colorec-
tal cancer patients [55]. In this study, mOTUs2 provided
interesting “unknown” classifications which would not be
captured by standard Kraken databases. We therefore rec-
ommend Kraken as the primary tool of investigation on
tissue, but mOTUs2 has a great potential in the con-
firmatory setting and for investigating unknown taxa. A
consensus approach of different tools on much larger
real datasets would likely help in distinguishing between
the peculiarities (particularly false positives) of individ-
ual tools and true-positive results which would benefit the
accurate characterization of human tissue metagenomes.

Conclusions
A benchmark into metagenomic classification tools has
revealed high-performing approaches to process host-
dominated sequence data with low pathogenic abundance
on a large selection of challenging simulated datasets. We
provide these pipelines for the experienced user to adjust
according to their own resource availability and provide
our simulated metagenomes for others to use freely for
independent investigations. mOTUs2 provides fast and
accurate bacterial classification with good quantitative
predictions. MetaSPAdes and Kraken provide bacterial
and viral classification with assembled contigs as a use-
ful downstream output. We have shown that SEPATH
forms a consensus alongside PathSeq to achieve near-
perfect genus-level bacterial classification performance.
Using SEPATH pipelines will contribute towards a deeper
understanding of the cancer metagenome and generate
further hypotheses regarding the complicated interplay
between pathogens and cancer.

Methods
Metagenome simulations
Metagenomes were simulated using a customized version
of Better Emulation for Artificial Reads (BEAR) [56] and
using in-house scripts to generate proportions for each
reference genome (Additional file 8: Figure S7, https://

https://github.com/UEA-Cancer-Genetics-Lab/BEAR
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github.com/UEA-Cancer-Genetics-Lab/BEAR). These
proportions were based on previously analyzed cancer
data [11]. Firstly, the number of total bacterial reads
(in both pairs) was generated by a random selection
of positive values from a normal distribution function
with a mean of 28,400,000 and a standard deviation of
20,876,020. The number of human reads in the sample was
set to the difference between this number and 600 million
(the total number of reads in both pairs). The number of
bacterial species was randomly sampled from the refer-
ence species available, and the number of bacterial reads
available was picked from a gamma distribution of semi-
random shape. The number of reads for each bacterial
species was distributed among contigs proportionately
depending on the contig length. This produced a file with
contigs and proportions of final reads which was provided
to BEAR to generate paired-end FASTA files for each of
the 100 metagenomes with approximately 300 million
reads per paired-end file (complete metagenome compo-
sitions can be found in Additional file 1, viral components
in Additional file 9). An error model was generated
following the BEAR recommendations from a sample
provided by Illumina containing paired-end reads that
were 150 bp in read length (https://basespace.illumina.
com/run/35594569/HiSeqX_Nextera_DNA_Flex_
Paternal_Trio). This sample was selected to best resemble
data originating from within Genomic England’s 100,000
Genomes Project. These simulated metagenomes can
be downloaded from the European Nucleotide Archive
(https://www.ebi.ac.uk/ena/data/view/PRJEB31019).
Tool performance benchmarking
Samples were trimmed for quality, read length, and
adapter content with Trimmomatic [57] prior to running
any classification (default parameters were minimum read
length = 35 and minimum phred quality of 15 over a slid-
ing window of 4). SEPATHhas trimming parameters set as
default that prevent any excessive removal of data (includ-
ing any reads that may be pathogenic), but these should
be adjusted according to the nature of the data being
analyzed.
Performance estimates were obtained by converting all

output files into a common file format which were com-
pared against the true composition by string matches and
NCBI taxonomic ID. The total number of true-positive
results, false-positive results, and false-negative results
was used to calculate F1 score; sensitivity and PPV were
calculated as follows:

SSV(recall) = TP
TP + FN

(1)

PPV(precision) = TP
TP + FP

(2)

F1 − score = 2
SSV−1 + PPV−1 (3)

Real cancer whole genome sequence analysis
Sequencing data from cancer tissue was obtained from
The Cancer Genome Atlas (TCGA-CESC and TCGA-
STAD) [5], International Cancer Genome Consortium
(ICGC) PedBrain Tumor Project [58], and ICGC Chinese
Gastric Cancer project [59]. These sequencing reads were
pre-processed through a common pipeline to obtain reads
unaligned to the human genome [60] and were addition-
ally quality trimmed and depleted for human reads using
SEPATH standard parameters but with a database consist-
ing of human reference genome 38, African “pan-genome”
project sequences and COSMIC cancer genes as previ-
ously mentioned. Kraken was ran on quality-trimmed
reads, and a confidence threshold of 0.2 was applied to
the reports. mOTUs2 was ran for the genus-level analysis
on the same reads using 2 marker gene minimum and a
non-standardminimum alignment length of 50 to account
for shorter read length. Kraken files had a minimum read
threshold applied of 100 reads for each classification, and
mOTUs2 results were left unfiltered.

Computational tools and settings
All analysis for figures was carried out in R version 3.5.1
(2018-07-02). All scripts and raw data used to make the
figures can be found in the supplementary information
and on https://github.com/UEA-Cancer-Genetics-Lab/
sepath_paper. In addition to the “other requirements”
mentioned below, this paper used the following software
as part of the analysis: picard 2.10.9, samtools v1.5, BEAR
(https://github.com/UEA-Cancer-Genetics-Lab/BEAR
commit: a58df4a01500a54a1e89f42a6c7314779273f9b2),
BLAST v2.6.0+, Diamond v0.9.22, MUMmer v3.2.3,
Jellyfish v1.1.11, Kaiju v1.6.3, Kontaminant (pre-release,
GitHub commit: d43e5e7), KrakenUniq (github com-
mit: 7f9de49a15aac741629982b35955b12503bee27f),
MEGAHIT (github commit:
ef1bae692ee435b5bcc78407be25f4a051302f74),
MetaPhlAn2 v2.6.0, Gottcha v1.0c, Centrifuge v1.0.4,
FASTA Splitter v0.2.6, Perl v5.24.1 bzip2 v1.0.5, gzip
v1.3.12, and Singularity v3.2.1.
Python v3.5.5 was used with the exception of BEAR,

which used Python 2.7.12. Python modules used the fol-
lowing: SeqIO of BioPython v1.68, os, sys, gzip, time,
subprocess, and glob. The following are the R pack-
ages used and their versions: Cowplot v0.9.3, dplyr v
0.7.6, ggExtra v0.8, ggplot2 v3.0.0, ggpubr v0.1.8, ggrepel
v0.8.0, purr v0.2.5, ggbeeswarm v0.6.0, see v0.2.0.9, RCol-
orBrewer v1.1-2, readr v1.1.1, reshape2 v1.4.3, tidyr v0.8.1,
and tidyverse v1.2.1.

Availability and requirements
Project name: SEPATH
Project home page: https://github.com/UEA-Cancer-
Genetics-Lab/sepath_tool_UEA

https://github.com/UEA-Cancer-Genetics-Lab/BEAR
https://basespace.illumina.com/run/35594569/HiSeqX_Nextera_DNA_Flex_Paternal_Trio
https://basespace.illumina.com/run/35594569/HiSeqX_Nextera_DNA_Flex_Paternal_Trio
https://basespace.illumina.com/run/35594569/HiSeqX_Nextera_DNA_Flex_Paternal_Trio
https://www.ebi.ac.uk/ena/data/view/PRJEB31019
https://github.com/UEA-Cancer-Genetics-Lab/sepath_paper
https://github.com/UEA-Cancer-Genetics-Lab/sepath_paper
https://github.com/UEA-Cancer-Genetics-Lab/BEAR
https://github.com/UEA-Cancer-Genetics-Lab/sepath_tool_UEA
https://github.com/UEA-Cancer-Genetics-Lab/sepath_tool_UEA
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Operating system(s): Linux-based high performance
computing cluster environments
Programming language: Python 3, Bash
Other requirements: Python v3.5, Snakemake v3.13.3,
Trimmomatic v0.36, Java v.8.0_51, bbmap v37.28,
mOTUs2 v2.0.1, Kraken 1, Spades v3.11.1, Pysam v0.15.1
License: GPL version 3 or later

Supplementary information
Supplementary information accompanies this paper at
https://doi.org/s13059-019-1819-8.

Additional file 1: Tab separated file containing the composition of all 100
bacterial simulated metagenomes.

Additional file 2: Retention of bacterial reads using different depletion
software.

Additional file 3: Violin plots demonstrating performance in terms of
F1-score, PPV and SSV for taxonomic ranks between Phylum and Species
level on n=100 simulated datasets. (A) demonstrates performance of kraken
when ran on raw reads with no read threshold. (B) Performance following
the application of a read threshold (500 minimum) for each classification.

Additional file 4: Coverage of contigs following metagenomic assembly
on 99 simulated metagenomes. Higher values not shown in density plot.

Additional file 5: Violin plot shows genus level performance with
increasing minimum contig coverage filter but not to a large degree
(Fig_S4.png). Tool used was Kraken on MetaSPAdes contigs.

Additional file 6: An in depth look into Krakenuniq filtering parameters vs
bacterial classification status for one simulated bacterial dataset.

Additional file 7: A more in-depth look into contig parameters vs
classification status for one of the viral datasets assembled using
MetaSPAdes and classified using Kraken.

Additional file 8: Scatter plot summarizing the constituents of all 100
simulated bacterial metagenomes. The y-axis demonstrates the number of
bacterial reads in the datasets, whereas the number of human reads is
shown on the x-axis. The number of species in each dataset is indicated by
the color, darker points having less species. The distribution of each axis is
shown in red.

Additional file 9: Common metagenomics profile format (COMP) for viral
simulations.

Additional file 10: Review history.

Abbreviations
BAM: Binary alignment map file format; HPC: High performance computing
cluster; IQR: Interquartile range; NCBI: National Center for Biotechnology
Information; PPV: Positive predictive value (precision); RAM: Random access
memory; SSV: Sensitivity (recall)
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