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Abstract

Background: A series of miRNA-disease association prediction methods have been proposed to prioritize potential
disease-associated miRNAs. Independent benchmarking of these methods is warranted to assess their effectiveness
and robustness.

Results: Based on more than 8000 novel miRNA-disease associations from the latest HMDD v3.1 database, we perform
systematic comparison among 36 readily available prediction methods. Their overall performances are evaluated with
rigorous precision-recall curve analysis, where 13 methods show acceptable accuracy (AUPRC > 0.200) while the top two
methods achieve a promising AUPRC over 0.300, and most of these methods are also highly ranked when considering
only the causal miRNA-disease associations as the positive samples. The potential of performance improvement is
demonstrated by combining different predictors or adopting a more updated miRNA similarity matrix, which would
result in up to 16% and 46% of AUPRC augmentations compared to the best single predictor and the predictors using
the previous similarity matrix, respectively. Our analysis suggests a common issue of the available methods, which is
that the prediction results are severely biased toward well-annotated diseases with many associated miRNAs known
and cannot further stratify the positive samples by discriminating the causal miRNA-disease associations from the
general miRNA-disease associations.

Conclusion: Our benchmarking results not only provide a reference for biomedical researchers to choose appropriate
miRNA-disease association predictors for their purpose, but also suggest the future directions for the development of
more robust miRNA-disease association predictors.
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Introduction
MicroRNAs (miRNAs) are ~ 22 nt RNAs that regulate
gene expression mainly by targeting the 3′UTR regions
of mRNAs [1, 2]. These small non-coding RNAs are
widely involved in important biological processes such
as cell division, differentiation, apoptosis, cell cycle regu-
lation, inflammation, and stress response [3, 4]. There-
fore, dysregulations of miRNAs, including expression
de-regulation, gain- or loss-of-function mutation, and
epigenetic silencing, often play important roles in the

onset and development of many diseases including but
not limited to cancer, cardiovascular diseases, and neurode-
generative diseases [5–7]. To date, there are a few popular
databases of miRNA-disease associations, among which
HMDD and miR2Disease manually curate known miRNA-
disease associations from literature, while dbDEMC infers
miRNA-disease associations by identifying the differentially
expressed miRNAs in disease conditions (cancers) observed
in public transcriptome datasets [8–11]. These databases
could be used not only for biomedical scientists to
understand the roles of miRNAs in diseases, but also
for bioinformatics developers to establish novel miRNA-
disease association prediction tools. Indeed, given that the
large proportion of potential miRNA-disease associations
remain unexplored, the computational approaches consti-
tute an essential complement to the experimental assays.
For instance, the latest miRBase (v22.1, October 2018) has
recorded 1917 human miRNA genes [12], while there are
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more than 9000 disease terms according to the current
Disease Ontology (DO) nomenclature [13]. By contrast,
HMDD v3.1, the most updated miRNA-disease associ-
ation dataset for now (released in January 2019), covers
only 35,547 miRNA-disease associations between 893 dis-
eases and 1206 miRNA genes [8]. These statistics indicate
that ~ 30% and ~ 80% of human miRNAs and diseases
respectively have not been reported by experimental in-
vestigations. Considering the time and labor cost of ex-
perimental assays, efficient and accurate computational
prediction tools are necessary and warranted for the com-
munity to screen primary targets for further studies.
To this end, novel prediction methods for miRNA-

disease associations have been continuously proposed.
These methods can be largely grouped into three cat-
egories: (1) methods based on score function, (2)
methods based on the complex network or graph algo-
rithms, and (3) methods based on the machine learning
algorithms [14]. By assuming that functional-related
miRNAs are more likely to be associated with phenotypic-
ally similar diseases, the first category of methods designed
various scoring functions to estimate the functional simi-
larity between miRNAs. One early method developed a
scoring system assuming that the microRNA pairs linked
to common diseases were functionally more related [6].
More sophisticated scoring functions can be constructed
by extracting scoring terms from the miRNA-miRNA and
disease-disease networks. For example, WBSMDA inte-
grated features from miRNA functional similarity net-
work, disease semantic similarity network, and Gaussian
interaction profile kernel similarity network to infer the
potential disease-miRNA associations [11]. The network
or graph algorithms focused on constructing miRNAs
and/or disease similarity networks and efficient transfer-
ring miRNA-disease association labels between similar
miRNAs and/or similar diseases in the network. There-
fore, label propagation algorithm, which has the advan-
tages of simplicity and efficiency on the miRNA/disease
similarity networks, often constitutes the core component
of the algorithm framework for this type of methods, e.g.,
MCLPMDA [15], LPLNS [16], SNMDA [17], and
HLPMDA [18]. Nevertheless, more sophisticated algo-
rithm designs are often crucial for successful prediction of
miRNA-disease associations. For example, MCLPMDA
employed matrix completion algorithm in addition to
label propagation, LPLNS adopted linear neighborhood
similarity when implementing label propagation, SNMDA
introduced sparse neighborhood representation for build-
ing the similarity network, and HLPMDA took a heteroge-
neous label propagation approach to transfer association
label among a heterogeneous set of similarity networks
[15–18]. Other algorithms focusing on the specific top-
ology of miRNA-disease association network have also
been proposed, such as BNPMDA [19] that used the

bipartite network projection and SACMDA [20] that
made predictions with short acyclic connections in a
heterogeneous graph. On the other hand, machine learn-
ing classification algorithm could take advantages of the
inherent features of miRNAs and diseases, or using the
state-of-the-art recommendation algorithms therefore
could also achieve a satisfactory performance. For ex-
ample, as the first model using decision tree learning,
EGBMMDA has reported a global leave-one-out cross-
validation (LOOCV) area under ROC curve (AUROC)
greater than 0.9 [21]. And other machine learning algo-
rithms, such as collaborative filtering adopted by ICFMDA
[22] and latent feature extraction with positive samples
taken by LFEMDA [23], also showed promising perfor-
mances in cross-validation tests.
Nevertheless, one emerging critical issue for these

algorithms turns out to be the lack of an independent
benchmarking test. According to our survey on PubMed
and Google Scholar references, there are more than 100
articles describing 90 miRNA-disease association predic-
tion methods, among which 36 tools are readily available
as either source code or pre-calculated prediction results
(Additional file 1: Table S1). Most of these methods used
HMDD v2.0 data [24] as their training dataset and per-
formed cross-validation test (either five- or tenfold
cross-validation or LOOCV) on this dataset. While
cross-validation is generally acceptable for performance
assessment, the robustness of the prediction model on
novel data and the risk for over-fitting to the training
samples cannot be sufficiently assessed by cross-validation.
This problem has become even more prominent now, since
the HMDD v2.0 dataset was released 5 years ago, and a
considerable amount of novel miRNA-disease associations
have been reported in recent publications, making the pre-
vious HMDD v2.0 dataset less representative to the latest
knowledge about miRNA-disease associations. As a com-
promise, developers of the prediction tools could also
collect novel miRNA-disease associations from other data-
bases or literature. However, since the manual literature
curation is a labor-intensive task and requires specific bio-
medical background knowledge, the collected new associa-
tions were limited to few diseases or miRNAs and therefore
could not constitute a sizable and qualified independent
benchmarking dataset.
Recently, we have launched the updated HMDD v3.0

miRNA-disease association database [8], and as previ-
ously mentioned, its 3.1 version covers 35,547 miRNA-
disease associations, which indicates more than threefold
association data compared to the previous HMDD v2.0
(10,381 associations). This new dataset predisposes an
unprecedented opportunity to benchmark the current
prediction methods. Therefore, in this study, based on
the novel miRNA-disease associations in HMDD v3.1,
we have performed a comprehensive assessment of 36
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readily available prediction methods [15–23, 25–51]
from five aspects: First, we tested the overall perform-
ance of these methods by rigorous precision-recall curve
analysis. Second, we assessed the mutual complementar-
ity of these methods by iteratively combining the top-
ranked methods for a better performance. Third, we
checked if the overrepresentation of few miRNAs and
diseases in current miRNA-disease association data
would result in biased prediction results. Fourth, as
many methods work with miRNA similarity data, we
evaluated the influence of the updated miRNA similarity
data by replacing the previous MISIM v1.0 miRNA simi-
larity matrix [52] with the recently published MISIM
v2.0 matrix (which was built on HMDD v3.0 data) [53].
Finally, identifying the disease causal miRNAs is of par-
ticular importance for medical researches on the disease
mechanism and for identifying target miRNAs for fur-
ther interventions. In the last update of HMDD (v3.2),
although no new miRNA-disease association data was
added, we systematically re-evaluated the causality po-
tentials of the miRNAs to the corresponding diseases.

Taking this opportunity, we also interrogated whether
current prediction methods, which aimed at predicting
general disease-associated miRNAs, could also prioritize
the disease causal miRNAs.

Results and discussion
Independent benchmarking of miRNA-disease association
prediction methods on novel HMDD v3.1 data
By manual investigation of the related literature from
PubMed and Google Scholar, 90 published miRNA-disease
association predictors were collected (Additional file 1:
Table S1). However, many of them were not readily avail-
able for the benchmarking test. As summarized in Fig. 1a, 3
predictors did not provide available source code or predic-
tion scores, 43 predictors provided partial prediction results
that covered only a few diseases or miRNAs, and 8 predic-
tors provided source code but the code failed to run.
Finally, 36 predictors, including 16 predictors providing
source code and 20 predictors supplying all of their predic-
tion scores, were included in the benchmarking test. Not-
ably, although there were predictors considering datasets

Fig. 1 Overall performance of 36 miRNA-disease association predictors on the benchmarking datasets. a The flow chart depicting the inclusion/
exclusion criterion for the predictors. The count of predictors included/excluded at each step is indicated by the number in the parentheses, and
the fractions of predictors trained with different training datasets are depicted by the associated pie charts. b Precision-recall curves of the top
ten predictors in terms of AUPRC on the ALL benchmarking dataset. c The statistics of correctly predicted miRNA-disease association pairs among
the top 100, top 500, top 1000, and top 5% highly scored predictions on the ALL benchmarking dataset. d Precision-recall curves of the top ten
predictors in terms of AUPRC on the CAUSAL benchmarking dataset
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other than HMDD v2.0 as their training set, none of these
methods met the availability criterion for inclusion (Fig. 1a).
Therefore, all of the 36 predictors included in this bench-
marking test were trained on the HMDD v2.0 dataset, mak-
ing them homogeneous but also more comparable in terms
of the training dataset.
Our primary independent benchmarking dataset is

consisted of all novel miRNA-disease associations in
HMDD v3.1 that were not covered by HMDD v2.0. Be-
sides, for reasonable assessment, we performed disease
name mapping between HMDD v2.0 and v3.1 and only
retained association data with consistent disease names
and miRNA names. This dataset, which is referred as
the “ALL benchmarking dataset” hereafter, has also been
made publicly available at http://www.cuilab.cn/static/
hmdd3/data/benchmark2019.txt. We then compared the
performance of the 36 readily available predictors on this
ALL benchmarking dataset. We noted the prominent
imbalanced positive-to-negative ratio of the benchmarking
dataset, which resulted from the fact that the number of
known miRNA-disease associations, is much smaller than
that of possible miRNA-disease combinations. Therefore,
rigorous precision-recall curve analysis was adopted to as-
sess the overall performance of these predictors. The top
10 predictors in terms of areas under the precision-recall
curve (AUPRC) are shown in Fig. 1b, and the AUPRC re-
sults of all predictors are also available (Additional file 1:
Table S2). All of the top 10 predictors achieved AUPRC
higher than 0.2, suggesting their overall capability for the
prediction of miRNA-disease associations. Especially, the
first-ranked MCLPMDA (AUPRC = 0.311), the second-
ranked LFEMDA (AUPRC = 0.301), and the third-ranked
LPLNS (AUPRC = 0.286) exhibited at least 0.05 AUPRC
superiority than other methods, highlighting their promis-
ing accuracy. MCLPMDA constructed a new miRNA
similarity matrix as well as a disease similarity matrix on
the basis of matrix completion algorithm before conduct-
ing label propagation algorithm in both miRNA space and
disease space [15], and this procedure may be helpful to
enhance the sensitivity of the algorithm by complement-
ing the unseen miRNA/disease similarity space. LFEMDA
designed a new algorithm to obtain the functional similar-
ity than simply using conventional MISIM similarity met-
rics, and our results suggest the effectiveness of this new
miRNA similarity calculation method [23]. Conceptually
similar to MCLPMDA, LPLNS also tried to complement
the unexplored miRNA-disease association space to im-
prove the performance, but with a distinct weighted near-
est neighborhood algorithm [16]. In order to further
investigate the performance of predictors that exploited
diverged computational frameworks, we classified the 36
predictors into three categories according to the criteria
proposed by a recent review [14], i.e., the score function
category, the complex network algorithm category, and

the machine learning category. The per category com-
parison results are summarized in Additional file 1:
Table S3, where SNMFMDA [51] achieved the highest
AUPRC (0.192) in the score function category;
MCLPMDA [15] performed best (AUPRC = 0.311) in the
complex network algorithm category, and LFEMDA [23]
had the superior performance (AUPRC = 0.301) than
other predictors in the machine learning category. To-
gether, the better overall performance of these predictors
indicates that both a reasonable miRNA similarity
metric and effective algorithm for exploring the unseen
miRNA-disease associations are important to the per-
formance improvement. On the other hand, the
AUPRC is not suitable for assessing the predictor
accuracy at specific thresholds. To this end, we further
investigated the proportions of correctly predicted
miRNA-disease pairs among the top 100, top 500, top
1000, and top 5% highly scored predictions based on
the ALL benchmarking dataset. The results are summa-
rized in Fig. 1c, where only MCLPMDA keeps the best
ranking at each threshold. Interestingly, the ranks of
BLHARMDA [25] and PBMDA [48] significantly as-
cend to top 5 when investigating their top 100 and top
500 prediction results, indicating their advantages when
predicting very high confidence miRNA-disease associ-
ations. BNPMDA [19] and HAMDA [29] rank top 3
when considering their top 5% prediction results, sug-
gesting their accuracy in predicting moderately high
confidence miRNA-disease associations. Thus, the users
may wish to select particular prediction tools based on
the number of outputted miRNA-disease association
candidates that can be accepted.
While the above results have illustrated the overall

performance of the predictors, the prediction accuracy
would vary from disease to disease. To preliminarily
check the consistency of the evaluation results between
different diseases, nine common diseases (melanoma,
prostate neoplasms, breast neoplasms, lung neoplasms,
gastric neoplasms, ovarian neoplasms, hypertension, type
2 diabetes mellitus, and heart failure) were selected as
the typical cases for further evaluation. ROC (receiver
operating characteristic) curves were plotted for the top
five predictors for each disease (Additional file 2: Figure
S1). According to these evaluation results, the predictors
showing the best overall prediction performance (i.e.,
MCLPMDA, LFEMDA, and LPLNS) would still rank in
the top five for seven out of the nine common diseases,
suggesting their consistency of accuracy. These methods
could also rank best for particular diseases. For example,
MCLPMDA still achieved the best AUROC (area under
ROC curve) in the evaluation for melanoma and ovarian
neoplasms, while LFEMDA achieved the best AUROC in
the evaluation for breast neoplasms, lung neoplasms,
and heart failure. Besides, the performance of NSEMDA
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[54] is also noticeable as it ranked in top five for five out
of the nine common diseases, indicating its advantages
in predicting common diseases with extensive miRNA-
disease association annotations. Finally, certain predictors
would show superior accuracy for one particular disease,
such as RFMDA (best for prostate neoplasms) [32],
PRMDA (best for gastric neoplasms) [49], BNPMDA (best
for hypertension) [19], and MCMDA (best for type 2
diabetes mellitus) [40]. Therefore, these predictors would
be the better choices when analyzing the corresponding
diseases.
One noticeable issue of the previous HMDD database

is that it included all kinds of miRNA-disease associa-
tions from literature, but some of them were only sup-
ported by weak experimental evidence. For example, a
considerable fraction of miRNA-disease associations was
derived from the differentially expressed miRNAs in the
transcriptome assays which compared the miRNA ex-
pression profiles between disease and normal samples,
but such simple miRNA differential expression could
not support the causal relationship between miRNA and
disease. To address this issue, in the past few months,
we have performed systematic re-evaluation of the
experimental evidence for HMDD v3.1 data to label the
potential disease causal miRNAs. As the result, the last
version of HMDD (v3.2) provides a new dataset of dis-
ease causal miRNAs, which enables us to assemble a
CAUSAL benchmarking dataset, a subset of the ALL
benchmarking dataset that considers only the causal
miRNA-disease associations as the positive testing samples.
Intuitively, this CAUSAL benchmarking dataset is much
more challenging, since current prediction methods did not
aim to distinguish causal miRNA-disease association. As
the result, the prediction performance of all predictors is
systematically and significantly reduced on the CAUSAL
benchmarking dataset (Additional file 1: Table S4). Never-
theless, the ranks of top predictors were largely consistent
between the results from the ALL benchmarking dataset
(Fig. 1b) and those from the CAUSAL benchmarking data-
set (Fig. 1d), among which the ranks of top three predictors
have not changed, including the first-ranked MCLPMDA
(AUPRC= 0.120), the second-ranked LFEMDA (AUPRC =
0.113), and the third-ranked LPLNS (AUPRC= 0.093).
Moreover, nine out of the top ten predictors (MCLPMDA,
LFEMDA, LPLNS, SACMDA, ICFMDA, HLPMDA,
SNMDA, LLCMDA, and BLHARMDA) were shared be-
tween the results on two datasets. As for the per category
comparison, MCLPMDA (AUPRC= 0.120) and LFEMDA
(AUPRC= 0.113) kept the best rank in the complex net-
work algorithm category and the machine learning cat-
egory, respectively (Additional file 1: Table S5). In the score
function category, the previously second-ranked predictor
NARRMDA [44] (AUPRC= 0.063) achieved the highest
AUPRC in the score function category, slightly

outperforming the previous best-performed predictor
SNMFMDA (AUPRC = 0.060).
In all, the consistency of top ranked predictors be-

tween the results from the two benchmarking datasets
suggests the robustness of these predictors. On the other
hand, we also recorded the computational resource and
running time required for the methods that are available
as the source code to run (Additional file 1: Table S6).
Clearly, all of these methods could accomplish the pre-
diction task within 5 min using computational resource
affordable by laptops. But the methods adopt a variety of
programming languages in their source code, and there-
fore, a user-friendly interface would be very helpful for
non-specialists to implement these methods for their
own purpose. As a preliminary effort to increase the ac-
cessibility of the prediction algorithms to non-specialists,
we have incorporated the prediction results of the nine
shared top predictors into the HMDD database (http://
www.cuilab.cn/hmdd). The users can either retrieve the
results for a particular disease or miRNA from the
Browse page of the database, or download the prediction
results as a single Excel file (http://www.cuilab.cn/static/
hmdd3/data/prediction_combined.xlsx).
While HMDD 3.1 is the largest literature-curated data-

base for miRNA-disease associations to date (at least
threefold more records than literature-curated databases
according to recent statistics [8]), there are also few da-
tabases that infer potential miRNA-disease associations
from high-throughput experimental datasets, among
which dbDEMC, a database that focuses on the differen-
tially expressed miRNAs in human cancers, is of the
highest size [11]. To assess whether the 36 predictors
trained with HMDD v2.0 data could also perform well
on the heterogeneous dbDEMC dataset, we also test the
predictors on the dbDEMC records that were not covered
by HMDD v2.0. And the AUPRC results of the top 10 pre-
dictors and all predictors are shown in Additional file 1:
Table S7 and Additional file 2: Figure S2. Generally, the
top 10 predictors achieved an impressive performance on
this heterogeneous dataset with an AUPRC over 0.63,
where eight of them, including LLCMDA, SNMDA,
MCLPMDA, BNPMDA, LPLNS, HLPMDA, ICFMDA,
and SACMDA, were also top-ranked on the ALL bench-
marking dataset derived from HMDD v3.1, indicating
their robustness in predicting cancer-related miRNAs.
There are also predictors showing exceptional perform-
ance on the dbDEMC dataset. For example, HAMDA [29]
and HGIMDA [35] ascended to the top list on the
dbDEMC dataset. Nevertheless, cautious interpretation of
the dbDEMC results is also required, especially when ex-
tending to diseases other than cancer. First, the dbDEMC
dataset is composed of the miRNA-disease associations
with the weak, differential expression-based evidence, and
therefore is not designed to distinguish disease causal
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miRNAs. Moreover, cancer is the most well-annotated
disease in terms of associated miRNAs, and predictors
showing an outstanding performance on cancer dataset
like HAMDA [29] would be biased to well-studied dis-
eases or miRNAs, a prevalent issue that is further analyzed
in the third subsection.

Iterative integration of predictors could further improve
the prediction performance
Notably, the prediction methods have employed various
computational approaches and distinct features describing
miRNA and/or disease similarity. Therefore, it is likely that
some of them are complementary to each other, and inte-
gration of such methods could achieve an even better per-
formance. To check this possibility, we first scaled the
prediction scores of each predictor to the 0–1 interval by
using the max-min normalization approach, and then itera-
tively integrated their prediction scores with a preliminarily
optimized weight of each predictor (see Material and
Methods for details). We first performed the predictor
combination process on the ALL benchmarking dataset.
The iteration started from MCLPMDA predictor which has
the highest observed AUPRC (Additional file 1: Table S2).
Integration with LPLNS [16] resulted in the best AUPRC
improvement to 0.361 at the second round of iteration.
Both MCLPMDA and LPLNS were based on label propaga-
tion algorithm, but MCLPMDA further incorporate the
matrix completion algorithm while LPLNS used linear
neighborhood similarity in the network [15, 16]. Further
integration of NDAMDA [34], another complex network
algorithm exploiting additional network distance features,
could also result in a similar AUPRC of 0.360 (Fig. 2a). The
variation in their algorithm framework, especially in the
description of complex network features, might be

helpful to establish the mutual complementarity be-
tween these three methods. After the third round of it-
eration, the AUPRC began to drop until the eighth
iteration (Fig. 2a). Nevertheless, the performance of the
combined predictors at either round of iteration outper-
formed the best single predictor MCLPMDA, indicating
that the predictor combination is indeed helpful to the per-
formance improvement. The same iterative predictor com-
bination process was also performed on the CAUSAL
benchmarking dataset, and a similar trend of AUPRC was
observed (Fig. 2b). Starting from the best-performed pre-
dictor MCLPMDA (Additional file 1: Table S4), sequential
integration with NDAMDA and LPLNS resulted in the
combined predictors showing the best two AUPRCs (0.147
and 0.142, respectively). Together, the above results dem-
onstrate the possibility and effectiveness of method com-
bination. Besides, we also noted that the consensus
combination of the first three predictors between two pre-
dictor combination processes (MCLPMDA + LPLNS +
NDAMDA). Therefore, to facilitate the community, simi-
lar to the nine shared top-ranked predictors selected in
the previous subsection, we also made the prediction score
of these three predictors and their combination available
on the HMDD database (http://www.cuilab.cn/hmdd).

Assessing the potential bias from the overrepresented
miRNAs and diseases in the current dataset
The miRNA-disease association pairs are not evenly
distributed amid the possible miRNA-disease combina-
tions. According to the published statistics of HMDD
v2.0 [24] and that of more recent HMDD v3.0 [8], a few
miRNAs like hsa-miR-21 show extraordinary amounts of
associated diseases, while several prevalent cancer types
dominate the top-ranked list of diseases with the highest

Fig. 2 AUPRC improvement with iterative integration of different predictors. The combined predictors using the max-min prediction score
normalization approach were tested on the ALL and the CAUSAL benchmarking datasets, respectively. The predictor integrated at each round of
iteration and the AUPRC of the combined predictor are indicated on the line chart. a The AUPRC results of the combined predictors on the ALL
benchmarking dataset. b The AUPRC results of the combined predictors on the CAUSAL benchmarking dataset
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numbers of associated miRNAs. Such overrepresentation
of specific miRNAs or diseases would predispose bias in
the prediction models, where well-annotated miRNAs or
diseases tend to have much better prediction accuracy. To
check this possibility, we first stratified the prediction re-
sults of different miRNAs based on their disease spectrum
width (DSW). Higher DSW scores indicate wider disease
associations of miRNAs [8]. Figure 3a compares each pre-
dictor’s performance between the well-annotated miRNAs
(with the top 25% DSW) and the less-annotated miRNAs
(with the last 25% DSW). As intuitively expected, all pre-
dictors show much better performance for well-annotated
miRNAs than less-annotated miRNAs, with the average
AUPRC of the former ones as about twofold as large as
that of the latter ones. Nevertheless, the AUPRC differ-
ences between two DSW groups are largely comparable
among the predictors, indicating that there is no particular
computational framework susceptible to the bias from the
overrepresentation of well-annotated miRNAs in the data-
set. Only three prediction methods, including PBMDA,
LRSSLMDA, and LPLNS, show slightly higher preference
toward high DSW miRNAs. Interestingly, we also noted
MCLPMDA, the top-ranked predictor in overall AUPRC
assessment (Fig. 1), show the best AUPRC for both DSW
groups. Therefore, developers may consider to integrate
this computational approach or its conceptual idea to
build a more robust predictor that could accurately pre-
dict less-annotated miRNAs.
A similar measurement named miRNA spectrum

width (MSW) [8] could be used to stratify the well- and
less-annotated diseases in terms of their miRNA associa-
tions. Accordingly, we also compared the AUPRC between

the well-annotated diseases (with the top 25% MSW) and
the less-annotated diseases (with the last 25% MSW). As in-
tuitively observed in Fig. 3b, the situation is much severe
for the MSW stratification than that for the DSW stratifica-
tion. All predictors show much worse performance for less-
annotated diseases than well-annotated diseases, and on
average, the fold change of AUPRC between the two groups
could reach four- to fivefold. For the predictors showing
the largest performance differences between two groups
(HAMDA, EGBMMDA, and BNPMDA), the fold changes
could be further raised over fivefold, until tenfold. These re-
sults highlight the noteworthy problem that most of current
prediction methods are susceptible to the overrepresented
diseases in the dataset and therefore tend to be significantly
biased toward well-annotated diseases. Unfortunately, by
surveying the related references, we also noted that the de-
velopers tended to use data for well-annotated diseases like
cancers to exemplify the effectiveness of their predictors.
For example, dbDEMC, a database collecting differentially
expressed miRNAs in cancers [10, 11], is often introduced
as the additional validation data for the predictors. As
clearly shown by the above analysis results, predictor per-
formance for the well-annotated diseases like cancers does
not constitute a good representation of the performance for
the less-annotated diseases. This is also demonstrated by
the diverged performance assessment results between the
HMDD dataset and dbDEMC database for some predictors
like HAMDA (Tables S2 and S7). Therefore, special focus
on the less-annotated diseases is necessary to further im-
prove the robustness of the predictors. On the other hand,
one predictor, RFMDA [32], shows comparable perform-
ance across both the high MSW group (AUPRC = 0.163)

Fig. 3 The stratified comparison of predictor performance in terms of DSW and MSW. a Dot plots where the AUPRCs of the well-annotated
miRNAs (with the top 25% DSW scores) are plotted against AUPRCs of the less-annotated miRNAs (with the last 25% DSW scores). b Dot plots
where the AUPRCs of the well-annotated diseases (with the top 25% MSW scores) are plotted against AUPRCs of the less-annotated diseases
(with the last 25% DSW scores)
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and low MSW group (AUPRC= 0.116), indicating it is
much less biased toward well-annotated diseases. Further
development of predictors may consider including its fea-
ture vector schema to improve the predictor’s performance
on less-annotated diseases.

A preliminary comparison between MISIM 1.0 and MISIM
2.0 miRNA functional similarity matrixes
In line with the guilt-by-association principle to infer
biological functions, functionally similar miRNAs should
tend to co-regulate the phenotypically similar diseases.
Therefore, most of the prediction methods have employed
the functional similarity between miRNAs as one of the
core component in their algorithms, among which the
MISIM (or more specifically MISIM v1.0) miRNA func-
tional similarity matrix has been most widely adopted
[52]. Indeed, 13 out of the 16 predictors available as a
source code used MISIM v1.0 as (one of) their primary
miRNA similarity metric(s). Recently, MISIM v2.0 has
been released based on the novel data from the HMDD
v3.0 database [53]. Therefore, it is interesting to investi-
gate if the predictors would benefit from this more up-
dated miRNA similarity matrix. To this end, we replaced
the MISIM v1.0 similarity matrix with MISIM v2.0 and
re-ran the programs to obtain new prediction scores for
the 13 models. Then the performances based on two simi-
larity matrixes were compared on the same benchmarking
dataset described above. The testing results are summa-
rized in Fig. 4. Most methods except MCLPMDA,
MERWMDA, and PRMDA exhibit performance improve-
ment to different extents when using MISIM v2.0, where
MKRMDA benefits the most, with a 0.085 augmentation
of AUPRC. On the other hand, MCLPMDA shows a
noticeable AUPRC decrease (0.095) with the MISIM v2.0.
MCLPMDA implemented the matrix completion algo-
rithm specifically designed on the previous miRNA and
disease similarity matrixes, and it seems necessary to re-
design the matrix completion algorithm based on the new

MISIM v2.0 data to efficiently exploit this novel miRNA
functional similarity matrix. In all, the new miRNA func-
tional similarity matrix MISIM v2.0 would be helpful to
improve the prediction performance, but careful algorithm
design is required to deal with the differences between
MISIM v1.0 and v2.0, in order to make full use of this
new similarity matrix.

Prioritizing disease causal miRNAs from general disease-
associated miRNAs is still a challenging task
MiRNAs have different roles in diseases. Some causal
miRNAs could directly participate in the mechanisms of
the diseases, while others only show non-causal associa-
tions with the diseases (e.g., simply exhibiting differential
expression without furtherer mechanism evidence). There-
fore, identifying the potential disease causal miRNAs is
crucial for understanding the underlying mechanism of dis-
eases. Until recently, there is no comprehensive annotation
dataset about the disease causal miRNAs. Therefore,
current miRNA-disease association prediction methods do
not aim at distinguishing disease causal miRNAs. To ad-
dress this issue, in the latest HMDD v3.2 version, although
no additional miRNA-disease associations were included in
comparison with HMDD v3.1, a manual curated causal
miRNA-disease association dataset was made available.
This new dataset gives us an opportunity to test whether
the current predictors, which have been designed to predict
general miRNA-disease associations, could also prioritize
the disease causal miRNAs. For this purpose, we divided all
miRNA-disease pairs in the benchmarking dataset into
three groups, i.e., “causal,” “non-causal,” and “non-disease.”
In the first subsection above, we have tested the ability of
predictors to distinguish the “causal” pairs from the “non-
disease” pairs by using the CAUSAL benchmarking dataset
(Fig. 1d). Here, we went a step further to evaluate the pre-
dictors for discriminating the “causal” (as the positive sam-
ples) and “non-causal” (as the negative samples) pairs by
their AUROCs. This is a very challenging task since either

Fig. 4 The comparison of the prediction performance using MISIM 2.0 or MISIM 1.0 miRNA similarity matrix
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“causal” or “non-causal” miRNA-disease associations were
considered as the positive samples when training the
miRNA-disease association predictors and no further strati-
fication of the positive samples according to the disease
causality has been considered. The evaluation results are
summarized in Fig. 5a and Additional file 1: Table S8. Un-
fortunately, none of the predictors achieve satisfactory
performance in distinguishing causal and non-causal miR-
NAs, where the best AUROC is limited to 0.538. Therefore,
we took a relaxed approach by comparing the prediction
scores between causal and non-causal miRNAs using the
Wilcoxon statistical test. Among the 36 predictors, only
three methods show significant higher prediction scores for
causal miRNAs than non-causal ones, including L1-norm
(P value = 3.93e–05), CNMDA (P value = 0.0197), and
TLHNMDA (P value = 0.00377), indicating a weak poten-
tial for distinguishing the causal miRNAs of these methods.

Nevertheless, the overall performance of these predictors
for general miRNA-disease associations are not very im-
pressive (Additional file 1: Table S8), suggesting that add-
itional biological features are required for the distinction
between disease causal miRNAs and generally associated
miRNAs. Therefore, newly designed computational ap-
proaches based on the new disease causal miRNA dataset
are highly warranted to efficiently identify causal miRNA-
disease associations. With the increasing research interests
on the mechanisms of miRNAs involved in diseases, causal
miRNA prediction is very likely to become an emerging im-
portant direction for the related bioinformatics studies in
the near future.

Conclusion
Rapidly increasing evidence has demonstrated that miR-
NAs are involved in the onset and development of a

Fig. 5 The prediction performance for prioritizing disease causal miRNAs. a The ROC curves illustrating the performance in distinguishing causal
miRNA-disease associations (as the positive samples) from the non-causal miRNA-disease associations (as the negative samples); only the top ten
predictors in terms of AUROC are shown. b–d The violin plots for three predictors that show significant higher prediction scores (via Wilcoxon
test) for causal miRNA-disease associations than non-causal miRNA-disease associations
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wide spectrum of human diseases, which has further
propelled the emergence of miRNA-disease association
prediction being an active direction in the field of bio-
informatics. Here, we systematically evaluated 36 predic-
tors, which were established using various machine
learning algorithms and network analysis methods, on an
independent benchmarking dataset consisting of more
than 8000 novel miRNA-disease associations. Here, by
outlining the above benchmarking results, several points
that would be helpful to the users and developers of the
predictors could be highlighted. As for the users of
miRNA-disease prediction tools, (1) many prediction
methods do not have publish their pre-calculated predic-
tion results or source codes, and we have summarized the
36 readily available tools (Additional file 1: Table S1) for
further consideration. (2) All of the high-ranked predictors
exhibited acceptable overall performance in the bench-
marking test, with the top 13 predictors reaching AUPRC
> 0.2, and the MCLPMDA, LFEMDA, and LPLNS
achieved the best overall performance (Fig. 1). (3) Users
should be cautious of the potential bias toward the over-
represented diseases. That is to say, current predictors
tend to show a much better performance in predicting
miRNAs of well-studied diseases like cancers compared to
their performance in predicting less-studied diseases. For
now, RFMDA is one solution to predict miRNA-disease
associations for less-studied diseases (Fig. 3), but combin-
ation of prediction results with other experimental data
should be encouraged. (4) Current predictors do not tend
to prioritized disease causal miRNAs; therefore, the pre-
diction scores cannot be considered as a primary reference
for screening target miRNAs for further disease mech-
anism studies. As for the developers of miRNA-disease
prediction tools, (1) current predictors adopted different
programing languages in their source code (Additional file 1:
Table S6), and therefore, a user-friendly interface or a web-
server is encouraged to facilitate the biomedical researchers
who are not familiar with the prediction pipelines. One
example is RWRMTN [55], which provides a querying
interface of its top prediction results as a Cytoscape plugin.
(2) The best performed algorithms (Fig. 1) like MCLPMDA
often take various approaches to explore the unseen
miRNA-disease associations, which may be helpful to the
robust performance on the independent dataset. (3) Inte-
grating different predictors as a meta-predictor (Fig. 2) or
updating the miRNA functional similarity matrix (Fig. 4)
would also improve the predictors’ performance. (4) The
developers should be aware of the bias toward well-
annotated diseases (Fig. 3), and the predictor performance
among the diseases with few known miRNA associations
should be intentionally checked to reduce such bias. (5)
Current predictors do not design for screening disease
causal miRNAs (Fig. 5), and novel computational ap-
proaches are highly warranted to effectively prioritize

the disease causal miRNAs from general miRNA-disease
associations, perhaps based on the latest disease causality
annotation from HMDD v3.2. On the other hand, current
benchmark test also has its own limitations. First, al-
though HMDD v3.1 could constitute a sizable miRNA-
disease association dataset for a benchmarking analysis, its
coverage is still not fully satisfactory compared to the pos-
sible miRNA-disease combinations. Therefore, continuous
benchmarking of the predictors with newly discovered
miRNA-disease associations is necessary. Second, a con-
siderable number of prediction methods were not in-
cluded because of their limited availability. A larger-scale
benchmarking test, when these predictors become
available, will clearly benefit the potential users to find
more competent tools for analyzing the miRNA-disease
associations. Together, we hope our benchmarking analysis
would serve as a helpful reference for biomedical re-
searchers to choose appropriate predictors as well as a hint
about the future directions for predictor improvements.

Materials and methods
Inclusion and exclusion criteria of the prediction methods
By querying PubMed and Google Scholar with the key-
words “miRNA-disease + prediction,” 118 related refer-
ences were obtained. After surveying on the literature full
text or software homepage, 90 predictors were curated as
the candidates for benchmarking analysis (Additional file 1:
Table S1). Unfortunately, however, we found more than
half of these predictors did not have a readily available tool
or prediction score for further assessment, and only 37 are
readily available either as source code, standalone software,
or pre-calculated prediction scores. During further assess-
ment, one tool was excluded because it produced few con-
fidence levels rather than exact prediction scores [7]. We
also noted that although ~ 15% of the candidate predictors
used training datasets other than HMDD v2.0, as for the
readily available tools, all of them were trained only with
HMDD v2.0 dataset (Fig. 1a). As the result, 36 available
prediction methods trained with HMDD v2.0 dataset were
finally included in this benchmarking analysis.

Benchmarking test and performance statistics
The newly curated experimental miRNA-disease associa-
tions from the HMDD v3.1 database (http://www.cuilab.
cn/static/hmdd3/data/alldata.txt) that were not covered
by HMDD v2.0 (http://www.cuilab.cn/static/hmdd3/
data/hmdd2.zip) were obtained as the primary bench-
marking samples. Because the disease nomenclature has
changed from “MeSH” in HMDD v2.0 to “Disease
Ontology + MeSH” in HMDD v3.1, the disease name
mapping from HMDD v3.1 back to HMDD v2.0 was
performed on all benchmarking samples to avoid false
negative artifacts resulting from the inconsistency of dis-
ease names. The newly reported diseases or miRNAs in
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HMDD v3.1 were not included in the benchmarking
test. As the result, the ALL benchmarking dataset covers
7178 novel miRNA-disease associations, which can be
downloaded at http://www.cuilab.cn/static/hmdd3/data/
benchmark2019.txt, and the disease name mapping file
from HMDD v3.1 to HMDD v2.0 was also made avail-
able at http://www.cuilab.cn/static/hmdd3/data/disease_
mapping2019.txt. Besides, based on the disease causality
labels of miRNA-disease association in HMDD v3.2
(http://www.cuilab.cn/hmdd#fragment-8), the CAUSAL
benchmarking dataset was further extracted by limiting
the causal miRNA-disease associations as the positive
samples. The CAUSAL benchmarking dataset covers
2339 novel miRNA-disease associations, which can be
downloaded at http://www.cuilab.cn/static/hmdd3/data/
benchmark2019_causal.txt. Finally, we also compiled a
testing dataset from dbDEMC, a database collecting dif-
ferentially expressed miRNAs in various cancer types
(36) [11]. The dbDEMC dataset covers 7616 potential
miRNA-disease associations that were not covered by
HMDD v2.0, and this dataset can also be downloaded at
http://www.cuilab.cn/static/hmdd3/data/benchmark2019
_dbDEMC.txt.
The prediction scores on the benchmarking samples

were either fetched from the pre-calculated prediction
results or obtained by re-running the source code on
our computer (CPU: Intel® Core™ i7-7700 CPU @ 3.6 Hz,
8 cores; Memory: 8 GB; see Additional file 1: Table S6
also for the required computational resource). Note that
the prediction scores obtained by either approach are
largely consisted of a D ×M matrix where D and M are
the numbers of HMDD v2.0 diseases and miRNAs that
could be mapped to the benchmarking dataset, respect-
ively. Therefore, the size of the prediction score matrixes
for different prediction tools are roughly equivalent, no
matter how the prediction scores were pre-calculated or
derived from the re-running of the program. Based on
the prediction scores, we plotted the precision-recall
curve for each prediction method and calculated AUPRC
as the primary performance evaluation metric by using
the sklearn package in Python. Besides, we also ranked
the prediction scores for each predictor to investigate
the proportions of correctly predicted miRNA-disease
pairs among the top 100, top 500, top 1000, and top 5%
highly scored predictions, respectively.

Iterative integration of the prediction methods
The prediction scores from each predicator were firstly nor-
malized to a 0–1 interval via the max-min normalization ap-
proach to avoid the scaling issue when performing further
combination:

x� ¼ x−xmin

xmax−xmin

where x means the score of one miRNA-disease pair to
be normalized, xmin and xmax indicate the minimum and
maximum scores among all prediction scores of one pre-
dictor. We also compared the results from the max-min
normalization approach with those from the other two
popular approaches (i.e., Z-score normalization and
Sigmoid normalization) as well as those without any
normalization, and found that the four approaches
showed similar results with respect to the AUPRC of the
combined predictors (Additional file 2: Figure S3). Then
we started with the predictor showing the highest
AUPRC and iteratively combined the prediction scores
of other predictors. For each round of iteration, we
added one predictor that could improve the AUPRC to
the most. The predictors were combined based on the
weighted summing of their normalized prediction scores,
where the weight of each single predictor was optimized
(taking 0.05 as the step size) and renewed for every pos-
sible predictor combination at each round of iteration.
We ran 10 rounds of iterations, but the performance
began to drop from the third or fourth iteration (Fig. 2),
indicating the optimized predictor combination could be
selected within few rounds of iteration.

Stratified analysis of the prediction scores based on MSW
and DSW
MicroRNA spectrum width (MSW) and disease spectrum
width (DSW) are a pair of metrics that can roughly assess
the overrepresentation of certain diseases and miRNAs in
current miRNA-disease association data, where well-
annotated diseases and miRNAs can be indicated by high
MSW and high DSW scores, respectively. Based on the
latest HMDD v3.1 data, we re-calculated the DSW and
MSW scores following the previously described method
[8]. We then stratified the prediction scores for the miR-
NAs in the top 25% DSW interval and those in the last
25% DSW interval, and compare AUPRC among these
two groups. The same comparison was also performed
based on the MSW stratification.

MISIM 2.0 vs MISIM 1.0 comparison
For the 13 predictors (as listed in Fig. 4) which provided
source codes and adopted MISIM v1.0 as their miRNA
functional similarity matrix, we tried to replace their simi-
larity matrix with the MISIM v2.0 and re-ran the codes to
check the change of AUPRC on the benchmarking set. The
MISIM v2.0 miRNA similarity matrix was obtained from
the website (using the one not including up-/downregula-
tion, i.e., http://www.lirmed.com/misim/similarity.zip). Note
that all new miRNAs in MISIM v2.0 that were not covered
by the previous MISIM v1.0 matrix were removed before
the subsequent calculations.
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Predicting disease causal miRNAs
Based on the disease causality labels of miRNA-disease as-
sociation in HMDD v3.2 (http://www.cuilab.cn/hmdd#frag
ment-8), we grouped the miRNA-disease pairs in the
benchmarking dataset to “causal” pairs and “non-causal”
pairs, respectively. The capability of the predictors to
prioritize the disease causal miRNAs was assessed by ROC
plot and AUROC values, where the “causal” pairs were
assigned as the positive samples and the “non-causal” one
was assigned as the negative samples.
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