
SOFTWARE Open Access

MicroPro: using metagenomic unmapped
reads to provide insights into human
microbiota and disease associations
Zifan Zhu1, Jie Ren1, Sonia Michail2 and Fengzhu Sun1*

Abstract

We develop a metagenomic data analysis pipeline, MicroPro, that takes into account all reads from known and
unknown microbial organisms and associates viruses with complex diseases. We utilize MicroPro to analyze four
metagenomic datasets relating to colorectal cancer, type 2 diabetes, and liver cirrhosis and show that including
reads from unknown organisms significantly increases the prediction accuracy of the disease status for three of the
four datasets. We identify new microbial organisms associated with these diseases and show viruses play important
prediction roles in colorectal cancer and liver cirrhosis, but not in type 2 diabetes. MicroPro is freely available at
https://github.com/zifanzhu/MicroPro.
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Introduction
Trillions of microbes populate various sites of the human
body and form microbiome communities [1]. These mi-
croorganisms and their interactions between each other
and the host play an important role in many physiological
processes including metabolism, reproduction and im-
mune system activity [2, 3]. In the nineteenth century,
culture-based methods demonstrated that changes in
these microbes might lead to disease. Since then, many
subsequent studies confirmed these findings [4]. However,
the cultivation technology only provided a limited view
since many microorganisms could not be cultured in vitro
[5]. Over the past 20 years, and thanks to the rapid devel-
opment of sequencing technology, sequencing-based
methods have gradually replaced the cultivation technol-
ogy and have become the most widely used tools for mi-
crobial analysis. The 16S ribosomal RNA sequencing
together with the recent shotgun whole genome sequen-
cing not only discovers large amounts of non-cultivable
microbes, but also fundamentally changes the way micro-
bial analysis is performed [6, 7]. Researchers are now find-
ing more evidence correlating human microbiota with

various diseases such as colorectal cancer [8], type 2 dia-
betes [9, 10], liver cirrhosis [11], and many others. In
addition, human microbiota has been linked to the effect-
iveness of cancer chemotherapy [12]. In some studies, a
single species or strain is associated with a disease while
in other cases, groups of microorganisms interact to affect
human health [13].
Mounting evidence connecting the microbiome with

disease description has gradually brought about the con-
cept of a supervised predictive study of microorganisms
for different diseases. Although most of the studies are
merely observational, which means we cannot simply
conclude the causality between microbes and the disease
[7], the existing correlations are sufficient to prove that
performing a predictive study about the effect of micro-
biota on diseases is plausible. More specifically, many
advances in this area have made it possible to predict
the existence or states of a certain disease given informa-
tion of the microorganisms for a specific subject.
In the field of machine learning, a supervised predict-

ive study aims to build models based on sets of features
to maximally approximate the response value or cor-
rectly classify the label of a sample. In the microbiota-
disease setting, the response can either be disease/non-
disease or different subtypes within a disease; thus, a
classification version of supervised predictive study is
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desired [14]. However, the selection of features varies
greatly among different studies. Our study is focused on
analyzing the microbial abundance in the context of
shotgun whole genome sequencing. A similar analysis
can also be applied to other choices of the feature
including operational taxonomic units (OTUs, widely
used in 16S rRNA analysis) [15], NCBI non-redundant
Clusters of Orthologous Groups (COG) [16], or Kyoto
Encyclopedia of Genes and Genomes (KEGG) groups
[17]. With many software packages like MetaPhlAn2
[18] or Centrifuge [19] tackling the computation of the
microorganisms’ abundance, the microbiota-disease pre-
dictive study can be formulated as a machine learning
task based on a species-by-sample matrix with qualita-
tive labels.
Recently, many studies have focused on the predictive

analysis between human microbiota and diseases. For
example, Zeller et al. [8] developed a species abundance-
based LASSO [20] model to differentiate between colo-
rectal cancer patients and healthy individuals. Qin et al.
[11] used gene markers to predict liver cirrhosis based
on a Support Vector Machine (SVM) [21]. Moreover,
Pasolli et al. [22] built a database named curatedMeta-
genomicData, which stored uniformly processed micro-
biome analysis results across 5716 publicly available
shotgun metagenomic samples. Using this database,
Pasolli et al. developed a random forest [23] model to
analyze the predictive power of different microbial fea-
tures (such as species abundance, pathway coverage) on
various diseases.
However, the currently available approaches face a few

challenges. First, in microbiome studies, there are gener-
ally two types of methods for microbial abundance
characterization from metagenomic datasets: reference-
based methods and de novo assembly-based methods.
Many reference-based methods involve the process of
mapping short reads against known microbial reference
sequences in the NCBI RefSeq database [24] or a catalog
of taxon-associated marker sequences [18]. Microbial
abundances can be estimated from the mapping results.
However, a large proportion of the reads cannot be suc-
cessfully mapped to a particular reference, which results
in the potential loss of valuable information. On the
other hand, de novo assembly-based methods do not
need any reference genomes or marker sequences. These
methods create metagenomic assembled groups (MAGs)
by first assembling the reads into contigs, then binning
the metagenomic contigs into MAGs, and finally esti-
mating the abundance profiles of the MAGs. For
example, Xing et al. [25] and Ren et al. [26] both identi-
fied microbial species in the metagenomic datasets
through de novo assembling reads into contigs and then
binning contigs into MAGs and analyzed disease associ-
ation with the relative abundance of the MAGs. De novo

assembly-based methods have the potential to capture
microbes without reference genomes, thus solving the
main problem of the reference-based methods. However,
de novo assembly-based methods also have their own is-
sues. Sequence assembly is computationally expensive
and takes a lot of time and memory. For example, Minia
3 [27] took 53 h and 63 GB memory to perform de novo
assembly while reference-based method, Centrifuge [19],
completed the mapping in less than 2 h and used 4 GB
memory on the same machine for the QinJ_T2D dataset.
Secondly, the roles of viruses in diseases are often

neglected. Within the human microbial community, bac-
terium reads constitute the majority while virus reads
are reported as a small proportion of the total reads (less
than 5% in datasets analyzed in our study). Additionally,
an incomplete database of viral reference genomes and
the high mutation rates of viruses make them even more
challenging to characterize and analyze [28]. Therefore,
most disease-related microbiome studies focus only on
the connection between bacteria and the disease. How-
ever, learning about viruses is important as the number
of viruses is about 10 times that of bacteria [29], and
they can play important roles in multiple diseases. Nor-
man et al. [30] showed that enteric virome change hap-
pened in patients with inflammatory bowel disease and
bacteriophages might serve as antigens in the human
immune system. Ren et al. [26] demonstrated that de-
creased viral diversity was observed in patients with liver
cirrhosis as compared to healthy individuals. Reyes et al.
[31] identified disease-discriminatory viruses associated
with childhood malnutrition, which might help to
characterize gut microbiota development. Therefore, the
role of viruses in human diseases should be investigated.
In order to overcome the challenges mentioned

above, we developed a metagenomic predictive pipe-
line, MicroPro, which analyzes data in three main
steps: (1) reference-based known microbial abundance
characterization—perform taxonomic profiling based
on sequence alignment against reference genomes; (2)
assembly-binning-based unknown organism feature
extraction—use cross-assembly to assemble the com-
bined unmapped reads from all samples and consider
each assembled contig as originated from an “un-
known” organism, which refers to an organism with
no known references available in the database. Since
some contigs may originate from the same organism,
we cluster assembled contigs into bins and then treat
each bin as an “unknown” organism; and (3) machine
learning predictive analysis—apply machine learning
tools for predicting disease/non-disease or disease
states based on the species-by-sample matrix. To the
best of my knowledge, this is the first predictive pipe-
line based on a combination of both known and un-
known microbial organisms. We tested MicroPro on

Zhu et al. Genome Biology          (2019) 20:154 Page 2 of 13



four public NGS datasets and showed that consider-
ation of unknown organisms significantly increased
the prediction accuracy for three of the four datasets.
Furthermore, we systematically investigated the effect
of viruses on multiple diseases with the virus version
of MicroPro. We examined the predictive power of
the model with known and unknown viruses and
showed that unknown viruses played an important
role in disease prediction warranting further attention.

Results
MicroPro: a metagenomic disease-related prediction
analysis pipeline taking unmapped reads into
consideration
We developed a new metagenomic analysis pipeline,
MicroPro, to take into account both known and unknown
microbial organisms for the prediction of disease status.
MicroPro consists of three main steps: (1) reference-based
known microbial abundance characterization, (2) assembly-
binning-based unknown organism feature extraction, and
(3) machine learning predictive analysis. Figure 1 presents
the procedures to extract the abundance table of both
known and unknown microbial organisms. Various ma-
chine learning tools can then be applied to study the associ-
ation between microbial abundances and the disease.
Detailed explanations of each step are available in the
“Methods” section.

Comparison between MicroPro, reference-based method,
and de novo assembly-based method on simulated
dataset
We simulated 50 metagenomic shotgun sequenced sam-
ples (25 cases and 25 controls) consisting of bacteria
from 100 genera. Each sample had a size of 1 GB
(500 Mbp). The details of the simulation setup are de-
scribed in the “Methods” section. We then tested Micro-
Pro and compared it with the reference-based method
and the de novo assembly-based method on the simu-
lated dataset for their prediction performance of disease
status. The reference-based method only used the
known microbial abundances produced in the first step
of MicroPro to perform the classification study. On the

other hand, the de novo assembly-based method skipped
the first step of MicroPro and performed assembly and
binning on the whole dataset. The simulation study
showed that the predictive performance of the
reference-based method was significantly lower than that
of the de novo assembly-based method and MicroPro,
since reference-based method only captured microbes
within the reference database which possibly ignored
other microbes important for the classification. De novo
assembly-based method and MicroPro had a similar per-
formance in terms of prediction, as they both used all
the reads in the sample without the information loss
encountered in the reference-based method (Fig. 2).
However, in terms of computational cost, the reference-
based method needed the fewest computing resources as
sequence alignment was computationally cheaper than
assembly. Additionally, de novo assembly-based method
required at least twice the wall time and 1.5 times the
memory compared to MicroPro. This result was not
unexpected since sequence assembly was the computa-
tional bottleneck for these two methods and MicroPro
only assembled unmapped reads while de novo
assembly-based method assembled all of them (Table 1).
In summary, MicroPro performed better in prediction than
reference-based method and required much fewer comput-
ing resources than de novo assembly-based method.
Sczyrba et al. [32] showed that Megahit [33] and Minia

3 [27] were among the top assemblers and produced
contigs of similar quality in the Critical Assessment of
Metagenome Interpretation (CAMI) challenge. To com-
pare these two assemblers, we tested Megahit and Minia
3 in the simulation study and found that they had a
similar performance in prediction (Fig. 2), but Minia 3
was computationally more efficient than Megahit
(Table 1).

Application of MicroPro to four real metagenomic
datasets
We downloaded four publicly available shotgun-
sequenced metagenomic datasets related to three differ-
ent diseases: colorectal cancer (CRC) [8], type 2 diabetes
(T2D) [9, 10], and liver cirrhosis (LC) [11] (Table 2).

Fig. 1 Procedures of microbial abundance characterization in MicroPro
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We then analyzed these four datasets using MicroPro.
We found that MicroPro significantly improved the pre-
diction accuracy over reference-based method in three
of the four datasets (Karlsson_T2D, QinJ_T2D, and
QinN_LC). This result uncovered the predictive value of
the abundance profiles of unknown organisms that were
commonly ignored by many reference-based metage-
nomic analysis pipelines (Fig. 3a). We also compared
MicroPro with de novo assembly-based method. Due to
insufficient computing memory, we only used Minia 3
for de novo assembly. The prediction results showed
that MicroPro (Minia 3) performed slightly better than
de novo assembly-based method with the AUC increase
being significant in Zeller_CRC and QinN_LC and
weakly significant in Karlsson_T2D (Fig. 3b). As in the
simulation study, the de novo assembly-based method
was computationally more expensive than MicroPro
(Additional file 2: Table S1). Moreover, we compared the
performance of MicroPro using two different assemblers:
Megahit and Minia 3. The results showed that MicroPro
(Megahit) performed significantly better than MicroPro
(Minia 3) in datasets Karlsson_T2D and QinJ_T2D and

both had a similar prediction accuracy in the other two
datasets (Fig. 3b). Again, Megahit required much more
computing resources than Minia 3 (Additional file 2:
Table S1). It suggests that for small datasets or with
ample computing resources, Megahit is a better choice
over Minia 3 for real data. Unless specified, all the
following analyses are based on Megahit-assembled
contigs.

Analysis of the role of unknown viruses in virus-only
prediction study
To test the predictive power of the viral organisms
within the microbial community, we applied the virus
version of MicroPro to all the four datasets. Although
the prediction accuracy obtained by the abundance
profiles of known viruses was much lower than that ob-
tained by known microbial abundances including bac-
teria, adding the unknown feature significantly improved
the prediction accuracy for datasets Zeller_CRC, QinJ_
T2D, and QinN_LC (Fig. 4). For Zeller_CRC and QinJ_
T2D, the role of unknown viruses was remarkable as
they increased the average AUC score from 0.55 to 0.72
and 0.56 to 0.65, respectively. For QinN_LC, the average
AUC score with known viruses was 0.73 which was
much better than the other three datasets, and the inclu-
sion of unknown viral abundances further increased it to
0.80. These results highlight the advantage of MicroPro
to consider both known and unknown microbial organ-
isms in metagenomic prediction study and further dem-
onstrate the important association of viruses, especially
unknown viruses with multiple diseases.
On the other hand, we acknowledge that the increase

in prediction accuracy for Karlsson_T2D is weaker than
the other three datasets. Considering the fact that there

Fig. 2 Results of simulation studies. Boxplots of random forest AUC scores obtained using features from different methods are provided. Each
random forest classification model was repeatedly trained and tested 30 times. Student’s t test p values between pairs of methods are given

Table 1 Wall time and memory use for individual methods
applied to the simulated dataset

Wall time (min) MaxRSS (GB)

Reference-based 14 0.2

MicroPro (Megahit) 81 12

MicroPro (Minia 3) 43 6

De novo assembly-based (Megahit) 305 20

De novo assembly-based (Minia 3) 79 9

Computing resources required for the individual methods used in the
simulation study are provided. MaxRSS refers to maximum memory used by
the corresponding method
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were only 28 unknown viral contigs found for this data-
set (Additional file 3: Table S2), the number of unknown
viruses were too small to play a major role in the predic-
tion analysis hence the low AUC increment. However, in
the other T2D dataset QinJ_T2D, much more viral
contigs were discovered (Additional file 3: Table S2),
suggesting that the detection of viral contigs can be
dataset-dependent with confounding factors like sample
collection method and shotgun sequencing protocols af-
fecting the generated metagenomic reads. For prediction
performance using both known and unknown viruses,
QinN_LC (mean AUC = 0.80) and Zeller_CRC (mean
AUC = 0.72) are much higher than Karlsson_T2D (mean
AUC = 0.58) and QinJ_T2D (mean AUC = 0.65), which
indicates the potential weaker prediction role of viruses
in T2D compared to the other two diseases.

Alpha diversity analysis of the abundance profiles of both
microbial organisms and viruses
We also performed alpha diversity analysis for both mi-
crobial and viral abundance profiles in the cases and
controls. Figure 5 shows the results of using the abun-
dance profiles of both known and unknown microbial
organisms. Alpha diversity results based on the abun-
dance profiles of only known or unknown organisms are
provided in Additional file 1: Figure S1-S2. For microbial
alpha diversity (Fig. 5a), a consistent pattern of the case
being less diverse is observed. This pattern is most re-
markable for QinN_LC, which corresponds to its high
AUC score when using microbial abundances to differ-
entiate between cases and controls (Fig. 3a). For the viral
alpha diversity, we did not identify statistically significant
differences between cases and controls for liver cirrhosis

Table 2 Four large-scaled metagenomic datasets spanning three different diseases

Dataset name Disease Sample size Number of cases Number of controls Data size (Gbp) Reference

Zeller_CRC CRC 184 91 93 915 Zeller et al. [8]

Karlsson_T2D T2D 96 53 43 296 Karlsson et al. [9]

QinJ_T2D T2D 145 71 74 376 Qin et al. [10]

QinN_LC LC 237 123 114 1200 Qin et al. [11]

Detailed information of the four metagenomic datasets analyzed in this paper is provided

Fig. 3 Prediction results on four real metagenomic datasets. a Boxplots of random forest AUC scores obtained by reference-based method and
MicroPro (with assembler Megahit). Each random forest classification model was repeatedly trained and tested 30 times. Student’s t test p values
are given. b Boxplots of random forest AUC scores obtained by MicroPro and de novo assembly-based method. Results of MicroPro with two
different assemblers are shown. Each random forest classification model was repeatedly trained and tested 30 times. Student’s t test p values
between pairs of methods are given
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Fig. 4 Prediction results on four real metagenomic datasets only using viral abundances. Boxplots of random forest AUC scores obtained using
different viral features are provided. “Viral known” refers to only using known viral abundances to perform the classification while “Viral combined”
means using both known and unknown viral abundances. Each random forest classification model was repeatedly trained and tested 30 times.
Student’s t test p values are given

Fig. 5 Cumulative probability of the alpha diversity. Cumulative probability distributions of alpha diversity with Shannon index are shown.
Abundance profiles of both known and unknown organisms are used for the calculation. Plot a uses the abundance profiles of all the microbes
while plot b only uses the abundance profiles of viruses. p values based on the WMW test for the alpha diversity between the cases and the
controls are provided
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(QinN_LC) and type 2 diabetes (Karlsson_T2D, QinJ_
T2D) at the type I error of 0.05. Surprisingly, we discov-
ered that the viral diversity in CRC cases is much higher
than that in the healthy controls, a finding consistent
with the result from a recent study of Nakatsu et al. [34]
that analyzed the viromes in CRC cases and controls.

Significantly associated microbial organisms for each
disease
We explored the microbial organisms that were signifi-
cantly associated with a certain disease in the metage-
nomic analysis. In our study, significantly associated
microbial organisms were selected by the Boruta feature
selection method [35]. Table 3 illustrates that a majority
of the selected microbes are unknown, further highlight-
ing the advantage of our pipeline to characterize
unknown microbes from unmapped reads. Detailed in-
formation about the selected microbes in each dataset,
including mean abundances in cases and controls, is
provided in Additional file 4: Table S3. We further dis-
cussed the novel microbe-disease associations discovered
in this study (see the “Discussion” section). These
discoveries can lay groundwork for future mechanistic
understanding of the pathophysiology of the correspond-
ing diseases.

Taxonomic assignments of the MAGs generated in four
datasets
To further identify the taxonomic assignment of the
MAGs derived in each dataset, we calculated the pair-
wise distance between each MAG and the reference
genomes in the Centrifuge database (up to December
10, 2018) with Mash v.2.0 [36], a widely used alignment-
free genome comparison tool based on the overlap of
kmers between genomes. We found that none of the
pairwise Mash distance was below 0.05, a threshold sug-
gested by the authors for distinguishing microbial
genomes at the species level [36], which showed that the
MAGs generated in all the four datasets did not overlap
with the genomes in the Centrifuge database at the spe-
cies level. Nayfach et al. [37] suggested Mash distance of
0.35 as a genus-level threshold for microbes. Using this

threshold, we found that 5.8–10.3% of the MAGs for the
four datasets could be classified to the genus level
(Additional file 5: Table S4).

Prediction analysis between two T2D datasets
Although prediction within one study can give good re-
sults, prediction accuracy drops sharply when applied to
a different dataset. Different experiment protocols, vari-
ous sequencing platforms, and variable time points of
data collection are all possible reasons for the drop in
the prediction accuracy. In our study, there were two
T2D datasets, which offered an opportunity to analyze
the generalization potential of the predictive model
across different studies. As shown in Fig. 6, the AUC
scores dropped markedly for both cases from above 0.75
to around 0.6 when compared with the prediction within
one study (Fig. 3a). When using Karlsson_T2D to pre-
dict QinJ_T2D, adding the unknown feature seemed to
have no effect on the prediction accuracy. However, in
the other case, adding the unknown features significantly
increased the AUC scores suggesting that in cross-study
settings, adding unknown organisms can result in higher
prediction accuracy.

Discussion
Many studies have described the development of com-
putational tools to investigate the association of micro-
bial organisms with complex traits. However, most of
the available reference-based tools focus on the micro-
bial species with a known reference genome, and the
reads not mapped to the known genomes are not con-
sidered, which can result in the loss of potentially useful
information. Other de novo assembly-based methods de-
mand significant computing resources with long compu-
tational time and large memory requirement. In order to
address these issues, we developed the MicroPro pipe-
line that extracts both known and unknown microbial
features within metagenomic datasets. We tested Micro-
Pro in a disease prediction study involving four public
metagenomic datasets covering three different diseases.
We show that the prediction accuracy is significantly in-
creased when adding unknown microbial features for
three of the four datasets, which demonstrates the
important predictive role of unknown organisms. Add-
itionally, since MicroPro only assembles the unmapped
reads, it is computationally much more efficient than de
novo assembly-based methods.
Many studies have demonstrated the important role of

viruses in human diseases like inflammatory bowel dis-
ease [30] and liver cirrhosis [26]. However, due to the
limited virus genome database and high mutation rates,
viruses were often neglected in metagenomic association
studies. The virus version of MicroPro aims at extracting
both known and unknown viral features from sequenced

Table 3 Summary of significantly associated microbes for each
dataset

# Significant microbes # Known # Unknown

Zeller_CRC 49 (2313) 8 (1287) 41 (1026)

Karlsson_T2D 25 (1379) 4 (785) 21 (594)

QinJ_T2D 21 (1411) 5 (925) 16 (486)

QinN_LC 68 (1442) 21 (936) 47 (506)

Numbers of significantly associated microbes for each dataset are provided.
“# Significant microbes”, “# Known” and “# Unknown” represent the number of
selected significant, known and unknown microbes, respectively. Numbers
shown in the parenthesis are the corresponding total count of microbes
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reads. We performed prediction analysis with viral abun-
dances extracted by the virus version of MicroPro on
the same public metagenomic datasets. The results indi-
cated that viruses did play some roles in diseases like
colorectal cancer and liver cirrhosis. Thus, the role of
viruses should not be ignored in the metagenomic ana-
lysis. Also, for some datasets, like Zeller_CRC in our
study, the power of predicting disease when using
known virus only was close to random guess. However,
the inclusion of unknown viral features remarkably
increased the prediction accuracy. This demonstrated
that our pipeline was able to distinguish the role of vi-
ruses by investigating unknown features.
We also discovered many novel microbial associations

with specific diseases and disease prediction. Some of
these associations are consistent with what has been de-
scribed in the past. We discovered a number of organisms
which were predictive of liver cirrhosis. These organisms
include Veillonella parvula, Veillonella rodentium, Fuso-
bacterium periodonticum, Lactobacillus salivarius, and
Selenomonas sp. oral taxon 136. These organisms fre-
quently inhabit the oral cavity, and many are pathogenic.
For example, Veillonella parvula is a bacterium in the
genus Veillonella. Veillonella are Gram-negative bacteria
anaerobic cocci. Veillonella parvula is well known for its
lactate fermenting abilities and inhabit the intestines and
oral mucosa. In humans, Veillonella can cause osteomye-
litis, endocarditis, periodontitis, and dental caries as well
as various systemic infections [38]. Similarly, Fusobacter-
ium is a genus of anaerobic, Gram-negative, non-spore-
forming bacteria, similar to Bacteroides. Although in the
past, Fusobacterium was considered part of the normal
oral microbiome, the current consensus is that Fusobac-
terium should always be treated as a pathogen [39] and
has been linked to periodontal diseases, ulcerative colitis,
and colon cancer. These organisms originate from the

mouth but may also inhabit the intestine [40]. Even
though our model discovered new organism associations
for disease prediction, it has been shown that the oral
microbiota can influence the gut microbiome and has
been detected in the stools of patients with cirrhosis [11].
Chen et al. [41] described Veillonella and other oral
microbiota as discriminative taxa between patients with
cirrhosis compared to controls. The permissive oral mi-
crobial invasion may be related to altered hepatic bile pro-
duction or the frequent use of proton pump inhibitors in
this population. Both bile and gastric acid are natural gates
that can inhibit the survival of many of the ingested or-
ganisms. Furthermore, bacterial populations originating
from the oral microbiota are capable of producing high
levels of methyl mercaptan (CH3SH). Elevated blood
levels of CH3SH have been linked to the development of
hepatic encephalopathy [42]. The presence of both Dialis-
ter pneumosintes and Parvimonas micra was predictive of
the development of colorectal cancer in our model. Dialis-
ter pneumosintes was found in patients with periodontitis
[43] and has been shown to have potential pathogenic
roles in various human body sites including the lung and
brain [44]. It has been recently shown to be an important
component of the dysbiotic microbiome in patients with
gastric cancer [45]. Parvimonas micra can cause infectious
endocarditis [46], native joint septic arthritis [47], and
spondylodiscitis [48] and has also been associated with
gastric cancer [45]. Not only enrichment of specific organ-
ism was predictive of colorectal cancer in our model, but
we also report depletion of specific organisms, such as
Cutibacterium acnes, is seen in association with this type
of cancer. While this organism was originally described in
subjects with acne, it can still be found throughout the
digestive tract [49] and was originally named Propionibac-
terium acnes for its ability to generate propionic acid [50].
Propionic acid, among other short-chain fatty acids

Fig. 6 Prediction analysis between two T2D datasets. Boxplots of random forest AUC scores obtained in the cross-study analysis are provided.
“MicroPro known” refers to using only known microbial abundance profile extracted by MicroPro as the feature while “MicroPro combined” refers
to using both known and unknown abundances. Each random forest classification model was repeatedly trained and tested 30 times. Student’s t
test p values are given
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(SCFA), contributes to the health of colonocytes and has
been shown to be depleted in colorectal cancer [51]. The
discovery that subjects with colorectal cancer harbor less
Cutibacterium acnes could potentially explain the previ-
ous reports of depletion of propionic acid in this popula-
tion and may shed some light on the pathophysiology of
disease development (Additional file 4: Table S3).
We acknowledge that there are limitations in our pipe-

line. One potential issue of MicroPro is under the situ-
ation that the core genomes of some microbes are
present in the reference database while their correspond-
ing pan-genomes are not; MicroPro will report the core
genome in the known abundance profile and the
remaining parts as separate unknown MAGs. This issue
may not be problematic for the prediction of a disease
using random forest as it can use one of the abundance
profiles for phenotype prediction. However, caution is
needed when the objective is to identify the microbes
significantly associated with the disease since both the
core genome and the corresponding MAG could be re-
ported as associations although they are actually from
the same genome.
We also acknowledge that although unknown fea-

tures are extracted through assembly and binning,
more functional analysis is needed to further under-
stand the roles of each bin in diseases. Additionally,
the disease prediction study is only observational and
does not show the causality between a certain or a
group of microbes and diseases. Furthermore, though
we only tested MicroPro in disease-related analysis,
MicroPro is ready to be applied to any type of pheno-
type prediction metagenomic studies. By fully utilizing
both known and unknown organisms including vi-
ruses in the microbiota, we expect MicroPro will help
to largely improve the prediction accuracy and facili-
tate biomarker detections.

Conclusions
MicroPro provides a highly useful tool to study the asso-
ciations between microbiota and diseases without
neglecting key information from unknown organisms.
The microbial prediction of disease can be useful in un-
derstanding disease pathogenesis and may become cru-
cial in laying groundwork for future development of
specific disease biomarkers.

Methods
Datasets
We downloaded all the datasets using the links provided
in the original papers [8–11]. The number of cases and
controls is given in Table 1. For Zeller_CRC, the “small
adenoma” samples were treated as controls while the
“large adenoma” samples were removed.

MicroPro: a pipeline of predicting phenotypes based on
metagenomic data
Step 1: Reference-based known microbial abundance
characterization
We used Centrifuge [19] to map the reads to the microbial
genomes and calculated the abundance profiles of known
microbial organisms from the metagenomic data. In terms
of Centrifuge command, we set flag “-q” which indicated
the input was in fastq format and the other arguments
were set as default. Centrifuge is an alignment-based taxo-
nomic profiling tool. Its microbial database contains all
the available bacterial, viral, and archaeal complete refer-
ence genomes in NCBI (up to January 4, 2018). Centrifuge
also utilizes an expectation-maximization (EM) algorithm
to compute the abundance for each microbial species.
This EM-based algorithm is similar in spirit as those used
in Cufflinks [52], Sailfish [53], and GRAMMy [54]. It takes
into account reads mapped to multiple genomes or mul-
tiple locations in the same genome. In our study, we
adopted the species abundance calculated by Centrifuge
as the known microbial feature.

Step 2: Estimating abundance profiles of unknown
microbial organisms based on reads assembly followed by
contig binning
Although Centrifuge accurately characterizes known mi-
crobial relative abundance profiles, a large fraction of
reads cannot be mapped to the known microbial organ-
isms. The average mapping rate for each dataset is about
35–40% in our study (Additional file 1: Figure S3). The
large amount of unmapped reads can potentially provide
extra information on the prediction accuracy of pheno-
types based on the metagenomic data. Therefore, our
main objective in this step is to take into account the
unmapped reads for phenotype prediction.

After filtering out mapped reads from the metagenomic
data, we performed cross-assembly on the unmapped
reads from all samples. We tested two assemblers: Mega-
hit [33] and Minia 3 [27] in this step. Megahit assembles
large and complex metagenomic data de novo based on
succinct de Bruijin graph. Minia 3 utilized a more space-
efficient bloom filter to perform sequence assembly. As
shown in the “Results” section, Megahit performed better
in real data analysis in terms of prediction but required
much more computing time and memory than Minia 3.
After cross-assembly, we used MetaBAT 2.12.1 [55] to
perform binning on the assembled contig set. MetaBAT
2.12.1 is a reference-free metagenomic binner, and its bin-
ning criterion is based on tetranucleotide frequency and
mean base coverage. This “reference-free” feature is cru-
cial to our study, since the contig set to be binned con-
tained no reads that could be mapped to a known
reference. Recent comparative studies on contig binning
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[56] showed that MetaBAT 2.12.1 performs well com-
pared to other contig binning algorithms.
Reads assembly and contig binning are highly import-

ant to recover unknown organisms from the unmapped
reads. Here, “unknown organisms” represent the organ-
isms without a known reference. Once we finished
cross-assembly and metagenomic binning, we treated
each contig bin as an unknown organism and the binned
reads as a part of its genome. In terms of defining the
feature of the unknown organisms, we still used the rela-
tive abundance, just as what we did for known species.
The formula of the relative abundance (Ab) of unknown
organism i was:

Ab ið Þ ¼ rci
XN

j¼1

rc j

;

where rc was the length normalized read counts,
which was defined as the number of reads mapped to
that organism divided by its genome length. Here, calcu-
lating rc was a major issue, since we do not know the
whole genome of the unknown organism. To overcome
this challenge, we first mapped all the unmapped reads
back to the contig set using BWA-aln [57] with param-
eter “-n” set as 0.03 (only alignments with more than
97% accuracy were considered mapped). Then, we calcu-
lated the length normalized read counts (rc) for each
contig according to the mapping results. Finally, for each
contig bin (i.e., each unknown organism), we took the
average rc of all the contigs that belonged to it as an ap-
proximation of its real rc. We could compute the un-
known feature for all contig bins using the above
formula. In terms of combining the known and un-
known abundances, we calculated the mapping rate α
(defined as the number of mapped reads/the number of
total reads) for each sample and multiplied the known
and unknown abundances by α and 1 − α, respectively,
so that the combined abundance table sums to one for
each sample.

Step 3: Predicting phenotypes using random forests
In the above two steps, we extracted the relative abun-
dance profiles of both known and unknown microbial
organisms. We then trained a random forests [23] classi-
fication model based on the combined abundance pro-
files to differentiate between the cases and the controls.
Random forests is an ensemble of the decision tree algo-
rithm and is highly robust to over-fitting when the num-
ber of features is greater than the number of samples.
Our analysis was performed with R package “random-
Forest.” We randomly separated the dataset into training
set and test set with a ratio of 7:3. During model train-
ing, we used tenfold cross-validation to tune the number

of variables selected at each split, which is the “mtry” ar-
gument of the randomForest function in R, for best pre-
dictive performance. In terms of the measure of
prediction accuracy, we adopted the area under the re-
ceiver operating characteristic curve (AUC) score, a
widely used performance measure of the classification
model. An AUC score close to 1 indicated perfect classi-
fication, while a 0.5 AUC score revealed that the model
was close to a random guess. The above procedure was
repeated 30 times.

Reference-based and de novo assembly-based methods
Reference-based methods use a reference database to
characterize microbial abundances. In this paper, the
AUC scores for the reference-based method were ob-
tained by training a random forest classification model
based only on the Centrifuge abundance output (i.e., the
known abundance table in the MicroPro pipeline). De
novo assembly-based methods generate metagenomic
assembled groups by assembly and binning of raw reads
without the help of any reference genomes. To compare
its predictive performance with MicroPro, we imple-
mented de novo assembly-based method on all the four
metagenomic datasets. We first generated a cross-
assembly of all the metagenomic reads in a dataset. Due
to insufficient computing memory, cross-assembling all
samples using Megahit was computationally infeasible.
Thus, we only used Minia 3 for cross-assembly. After
obtaining the assembled contigs, we performed metage-
nomic binning of the assembled contigs by MetaBAT
2.12.1 and computed the contig bin abundances in the
same way as the MicroPro pipeline. The abundance pro-
file of bins was used as features for the random forest
classification studies

Simulation studies
We performed simulation studies to compare the predict-
ive performance of MicroPro, reference-based method,
and de novo assembly-based method. We simulated 50
shotgun metagenomic sequenced samples with 25 cases
and 25 controls in the following way. To mimic the real
human gut microbial community, the abundance profiles
used in the simulation were modified based on the known
abundance table of the QinN_LC dataset. In particular, we
calculated the average relative abundance of the microbes
at the genus level among all control samples and only kept
the top 100 bacterial genera by the descending order of
abundance. Then, we divided this abundance vector by its
sum and treated it as the standard abundance profile of
the control samples. For the case samples, we randomly
selected 10 microbes and multiplied their abundances by
fi, i = 1, …, 10, where each fi was sampled from Uniform
(0.1, 3). We renormalized the derived abundance vector to
sum to 1 and used it as the standard abundance profile of
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the case samples. We also introduced absolute random
Gaussian noise with mean zero and standard deviation
equal to each component to the standard abundance pro-
files to further diversify the microbial composition of the
simulated samples. CAMISIM [58] was then used to gen-
erate 50 samples with Illumina 2 × 150 bp paired-end
reads based on the generated abundance profiles. Each
generated sample had a size of 1 GB (500 Mbp).
MicroPro with different assemblers Megahit and Minia

3 was tested on the simulated datasets. Reference-based
method only used the Centrifuge abundance output as the
feature of the classification study. For this simulated data-
set, we randomly picked 30 microbes out of 100 to gener-
ate the reference genome database used in Centrifuge
taxonomic profiling. De novo assembly-based method
generated metagenomic assembled groups by assembly
and binning of raw reads without any reference genomes.
We also tested two assemblers Megahit and Minia 3 for
the de novo assembly-based method. The random forest
classification analysis was performed in the same manner
as step 3 in the MicroPro pipeline. Since we used prede-
termined abundance profiles to simulate metagenomic
reads, we obtained the ground truth AUCs with these
abundance profiles input as the classification feature.

Predicting phenotypes based on virus abundance profiles
Viruses play a very important role in the human micro-
bial community by controlling the balance of different
bacterial organisms. However, due to its relatively low
abundance, extraction of all the viral information, espe-
cially those without a known reference, remains a major
difficulty. Aimed at making full use of all the viral fea-
tures within metagenomic samples, the virus version of
MicroPro is similar in spirit to the general pipeline pre-
sented in the previous section, except for an additional
step for viral contig detection. The full pipeline is shown
below.

Step 1: Known viral abundance extraction
For the known viral abundance, we again used the soft-
ware Centrifuge, but only extracted the viral abundances
from the Centrifuge profiling output and treated it as
the known viral feature.

Step 2: Unknown viral feature detection
We performed cross-assembly using Megahit on the un-
mapped reads filtered out by Centrifuge results. Before
metagenomic binning, we applied VirFinder [26] for
viral contigs detection. VirFinder utilized a logistic re-
gression model to differentiate between bacterial and
viral contigs. We considered a contig as a virus if its Vir-
Finder q value is smaller than 0.2. q value [59] is a
p value correction method targeting exact false discovery
rate (FDR) control. We performed metagenomic binning

on the viral contigs and calculated viral bins’ abundance
using the same method as described in the previous sec-
tion step 2.

Step 3: Predicting phenotypes based on viral abundance
With both the known and unknown viral features at
hand, the next step was to perform the prediction ana-
lysis. We combined two viral features in the same way as
in the general MicroPro pipeline and trained a random
forest model based on the extracted viral abundance.
We used tenfold cross-validation to tune the parameters
and set AUC score as the measure of prediction
accuracy.

Alpha diversity analysis
Alpha diversity is a widely used diversity measure in
microbiome studies. It is defined based on both the
number of species within a sample and the abundance
of each species. We performed alpha diversity analysis of
both microbial and viral abundance profiles. Alpha di-
versity with Shannon index is calculated by package
“vegan” in R.

Significantly associated microbial organisms for each
disease
We identified the significantly associated features by the
Boruta feature selection method [35]. Boruta is an itera-
tive algorithm to select all relevant features through stat-
istical tests. The analysis was carried out with R package
“Boruta.”

Predictive study between the two T2D datasets
We trained a random forest model based on one of the
T2D datasets and tested it on the other to obtain the
AUC score. Features included were also the known and
unknown microbial abundance. Obtaining the known
feature was essentially the same procedure as MicroPro’s
step 1. We used the following strategy to calculate the
abundance profiles of the unknown microbial organisms.
For the train set, we used MicroPro’s step 2 with assem-
bler Megahit to find out the unknown microbial feature.
For the test set, instead of mapping back to its own con-
tig set, we aligned the unmapped reads in the test set
against the train data contig set. In this way, we could
obtain a consistent feature matrix so that the following
prediction analysis could be performed seamlessly.

Additional files

Additional file 1 : Figure S1. Cumulative probability of alpha diversity of
known profile. Plot A uses all the microbial abundances while plot B only
uses viral abundances. For both plots, only known abundances are used
for the calculation. Shannon index is set as the diversity index. WMW test
p values between the cases and the controls are provided. Figure S2.
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Cumulative probability of alpha diversity of unknown profile. Plot A uses
all the microbial abundances while plot B only uses viral abundances. For
both plots, only unknown abundances are used for the calculation.
Shannon index is set as the diversity index. WMW test p values between
the cases and the controls are provided. Figure S3. Histograms of
mapping rates of each dataset. Dashed lines show the mean mapping
rate. (PDF 656 kb)

Additional file 2 : Table S1. Computing resources required for each
method on four real metagenomic datasets are provided. MaxRSS refers
to the maximum memory used by the corresponding method. (XLSX 10
kb)

Additional file 3 : Table S2. Number of assembled contigs from
unmapped reads and number of detected viral contigs by VirFinder for
each dataset are provided. (XLSX 9 kb)

Additional file 4 : Table S3. Significantly associated microbes selected
by Boruta feature selection method for each dataset are provided. The
table also shows the mean abundance in cases and controls for each
selected microbes together with a FDR-adjusted WMW test p value for
differences in the mean abundances. (XLSX 19 kb)

Additional file 5 : Table S4. A genus-level assignment for each MAG
generated from four metagenomic datasets is given. The corresponding
Mash distance and p value are also provided. A MAG with multiple hits in
the database is reported in the table only if all of its hits belong to a
common microbial genus in the taxonomy tree. (XLSX 21 kb)
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