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Abstract

CRISPR/Cas9 pooled screening permits parallel evaluation of comprehensive guide RNA libraries to systematically
perturb protein coding sequences in situ and correlate with functional readouts. For the analysis and visualization
of the resulting datasets, we develop CRISPRO, a computational pipeline that maps functional scores associated
with guide RNAs to genomes, transcripts, and protein coordinates and structures. No currently available tool has
similar functionality. The ensuing genotype-phenotype linear and three-dimensional maps raise hypotheses about
structure-function relationships at discrete protein regions. Machine learning based on CRISPRO features improves
prediction of guide RNA efficacy. The CRISPRO tool is freely available at gitlab.com/bauerlab/crispro.
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Background
Clustered regularly interspaced short palindromic repeats
(CRISPR) - Cas9 genome editing technologies permit new
approaches for the dissection of gene function. Cas9
cleavage results in imprecise end-joining repair products
with indels. Biallelic frameshift mutations lead to
loss-of-function of the gene product, often through
nonsense-mediated decay (NMD) destabilizing the
transcript. This paradigm allows for the systematic dissec-
tion of genetic dependencies in genome-wide CRISPR
screens in the context of disease-relevant cellular pheno-
types [1–3]. The mechanisms by which individual alleles
contribute to cellular phenotypes are not directly assessed
in typical experiments. Such information could aid in the
rational design of novel therapeutics as well as in the con-
text of biological engineering to reprogram gene circuitry.

Following a programmable nuclease-mediated
double-strand break, the major genome editing outcome
is imprecise end-joining, as produced by classical NHEJ
and microhomology-mediated end-joining pathways. The
ensuing indel spectrum is comprised of short indels, typic-
ally up to 10–20 base pair (bp) in length. Although the
distribution of indel length is non-uniform and depends
on target sequence and cellular repair contexts, on aver-
age, 2/3 of alleles from the indel spectrum of end-joining
repair following an induced double-strand break (DSB)
result in frameshifts. For a gene with two genomic copies
and independently assorting repair alleles, on average, ~
4/9 of edited cells would be expected to produce a biallelic
frameshift, causing complete loss-of-function. The
remaining ~ 5/9 of cells would retain partial gene function
from in-frame alleles, assuming gain or loss of a short
stretch of amino acids would be tolerated by the protein.
Guide RNAs targeting the coding sequence of critical resi-
dues may be associated with heightened functional impact
within a population of cells by causing loss-of-function
not only from frameshift but also from in-frame mutations
[4]. Here, we explore comprehensive dense mutagenesis
with many cleavages per gene to systematically define
functional protein coding sequences. This method is also
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known as a CRISPR tiling or guide RNA saturating muta-
genesis screen. A typical design would include as many
guide RNAs as possible, as restricted by a given protospa-
cer adjacent motif (PAM) availability for a given nuclease
(such as the NGG motif in the case of SpCas9) [5, 6]. A
single pooled screen experiment may employ large num-
bers of guide RNAs to systematically disrupt the function
of numerous protein-coding genes (Fig. 1a).
Here, we develop a computational tool to gain mechanis-

tic insights into genetic dependencies from dense muta-
genesis experiments. We leverage CRISPR tiling screens,
protein and nucleotide sequence-level annotations, and 3D
visualization of protein structure to elucidate functional
residues and predict phenotypic outcome of genome edit-
ing in a singular computational pipeline that we have
named CRISPRO. To test and develop CRISPRO, we
re-analyze previously published data by Munoz et al. [7].
This study describes a set of dense mutagenesis CRISPR
screens to investigate the importance of guide RNA posi-
tioning in gene inactivation in three different cancer cell
lines. We re-analyze CRISPR tiling data from Donovan et
al. [8] on MAP2K1 and BRAF as an additional test of
CRISPRO. We validate the analytic and predictive power
of CRISPRO with prospective dense mutagenesis CRISPR
data we generated for ZBTB7A and MYB [5, 9]. We
observe that amino acid sequence conservation, predicted
intrinsic protein disorder, and domain structure are highly
predictive of the functional requirement of protein
sequences. These analyses nominate discrete protein
sequences as essential for specific biological phenotypes.
We demonstrate the flexibility of the CRISPRO pipeline
analyzing orthogonal dense mutagenesis datasets such as
ectopic saturation mutagenesis. We derived a machine
learning-based model based on CRISPRO features to
predict guide RNA efficacy in loss-of-function screens,
providing improved predictive performance compared to
tools primarily utilizing nucleotide features. The CRISPRO
tool is freely available as open-source software along with
sample datasets at http://gitlab.com/bauerlab/crispro.

Results
Development of the CRISPRO tool
CRISPRO inputs next-generation sequencing datasets
resulting from dense mutagenesis CRISPR screens and
maps functional scores associated with guide RNAs to
genome, transcript, and protein coordinates. We map
each guide RNA to the two codons adjacent to the Cas9
cleavage site (see the “Methods” section) (Fig. 1a). The
CRISPR scores are smoothed via LOESS regression in
order to model local trends of the CRISPR perturbation
effect over the entire protein and to provide scores for
amino acids with no assigned guides. CRISPRO couples
calculation of individual scores for guide RNAs with
visualization of functional scores and tracks containing

domain structure (InterPro [10]), secondary structure pre-
diction, disordered region prediction, and PROVEAN
functional predictions based on interspecies conservation
[11–18]. At the tertiary structure level, CRISPRO aligns
peptide fragments to existing protein structures in the
Protein Data Bank (PDB, www.rcsb.org) and recolors
them in a heatmap style reflecting functional scores of
amino acid residues [19] (Fig. 1b). These functionally an-
notated structures may identify critical interfaces between
the analyzed protein and other biomolecules as well as in-
form biophysical and chemical biology hypotheses.
When multiple genes are targeted in a CRISPR screen,

CRISPRO defines hit genes with strong functional effect.
CRISPRO tests the correlation of hit gene functional scores
with annotations. This correlation analysis is conducted for
each hit gene individually. In addition, a pooled correlation
analysis is conducted for all hit genes together. To test the
CRISPRO tool, we evaluated its performance with pub-
lished datasets. Munoz et al. performed CRISPR pooled
screening dense mutagenesis of 139 genes in 3 cancer cell
lines [7]. They reported guide RNA sequences with associ-
ated log2 fold change transformed by z-score for cellular
dropout. A high dropout score, denoted by a more negative
z-score, indicates a strong CRISPR phenotype in this study.
This data was used as input for CRISPRO. Using default
settings, CRISPRO defined 69, 52, and 77 hit genes for the
DLD1, NCI-H1299, and RKO cell lines, respectively (at
least 75% of guides for a gene having a z-score less than 0,
see the “Methods” section), largely overlapping the hit
genes identified by Munoz et al. (Additional file 1: Figure
S1, S9D-E, Additional file 2: Table S1). The default hit call-
ing threshold of CRISPRO is relatively stringent to focus on
genes with strong effect sizes and minimize false positive
signals. The user can optionally override the CRISPRO de-
fault hit gene calling and assign custom hit genes for ana-
lysis or avoid hit calling altogether and analyze all genes
tested.
CRISPRO can also be used for calculation of functional

scores per guide RNA (defined as log2 fold change between
control and test condition) by using next-generation
sequencing (NGS) data as input. The tool includes an
option to normalize guide RNA counts to a set of assigned
negative control guide RNAs. When using NGS data as
input, the tool outputs quality control metrics regarding
the deep sequencing data.

Association of genome editing functional outcome with
conservation and disorder
Targeting amino acids in predicted protein domains is asso-
ciated with heightened CRISPR functional scores [4, 7].
Using CRISPRO with the Munoz et al. dataset, we can con-
firm that guide RNAs targeting inside domains show more
negative dropout scores than guide RNAs targeting outside
a domain (Fig. 2a, Additional file 1: Figure S2A, D,
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Additional file 3: Table S2). Several groups have previously
shown that evolutionary conservation correlates with
CRISPR functional scores [7, 20]. We compared the
CRISPR functional scores with the PROVEAN conserva-
tion scores. For PROVEAN, more negative scores indicate
greater conservation. As expected, using the CRISPRO tool,
we observed a correlation between conservation and func-
tional scores across all three cell lines tested by Munoz et
al. (Spearman correlation, DLD1: ρ = 0.24, p < 0.001;
NCI-H1299: ρ = 0.3, p < 0.001; RKO: ρ = 0.29, p < 0.001)
(Fig. 2b, Additional file 1: Figure S2B, E). These results are
consistent with the hypothesis that targeting conserved as
compared to nonconserved protein coding sequences likely
gives rise to in-frame loss-of-function alleles. Comparing all
the hit genes in the dataset, we observed higher correlation
scores between conservation and CRISPR score for genes
at which the PROVEAN score have a larger standard
deviation. This suggests that PROVEAN scores are most
predictive when they are widely distributed for a gene.
More conserved genes (lower median PROVEAN score)
tended to have a lower median CRISPR score compared to
less conserved genes, suggesting that PROVEAN score is
not only predictive of the CRISPR score within a gene but
also between different genes (Fig. 2d, Additional file 1:
Figure S2G,I).
We compared the effects of targeting domain anno-

tated sequences to conserved sequences. We grouped
guide RNAs based on both conservation (using PRO-
VEAN score threshold − 6) and domain assignment,
resulting in four groups: (1) conserved, in domain; (2)
conserved, not in domain; (3) nonconserved, in domain;
and (4) nonconserved, not in domain. Comparing the
mean of these groups showed that targeting amino acids
in a domain and with high conservation has the greatest
effect (most negative fitness scores). Within the “not in
domain” groups, conserved residues had a more negative
mean fitness score than those of nonconserved residues
(Fig. 2f, Additional file 1: Figure S2K, M).
We found that protein disorder score was also correlated

to functional CRISPR score. Disorder score is a prediction
of intrinsically disordered regions (IDRs) within proteins,
which also have been called intrinsically unstructured, na-
tively unfolded, natively disordered, or highly flexible re-
gions. Although the classic model posits that “sequence
leads to structure leads to function,” IDRs have been found
to participate in a wide variety of biological functions of
proteins, including interactions with other proteins, nucleic
acids, and small molecules, signal transduction, and gene

regulation [17, 21, 22]. We hypothesized that given their
unstructured nature, IDRs might tolerate short in-frame
indels more easily as compared to highly structured regions
of proteins. Targeting sequences with higher order (disorder
score closer to 0) was associated with enhanced functional
scores or higher cellular dropout (Spearman correlation,
DLD1: ρ = 0.31, p < 0.001; NCI-H1299: ρ = 0.27, p < 0.001;
RKO: ρ = 0.34, p < 0.001) (Fig. 2c, Additional file 1: Figure
S2C, F). Similar to the finding for PROVEAN conservation
scores, genes with wider distribution of disorder scores
(higher standard deviation) demonstrated higher correl-
ation with CRISPR scores compared to those with more
narrowly distributed disorder scores. Genes with higher
predicted order had higher negative median dropout scores
as compared to genes with higher predicted disorder
(Fig. 2e, Additional file 1: Figure S2H, J). We tested the rela-
tionship between disorder and conservation by grouping
guide scores in four categories: (1) conserved, ordered; (2)
conserved, disordered; (3) nonconserved, ordered; and (4)
nonconserved, disordered (Fig. 2g, Additional file 1: Figure
S2L, N). We found the most negative fitness scores for
guides targeting conserved and ordered positions. This sug-
gests that conservation and disorder can be used to further
refine the set of key functional residues within a protein.

Association of genome editing functional outcome with
protein primary and secondary structure
We evaluated the impact of amino acid identity at the cleav-
age site by comparing guide RNA dropout scores. Amino
acids with largest effect scores across the three cell lines
were tyrosine (Y), tryptophan (W), methionine (M), isoleu-
cine (I), and leucine (L) (median scores for these in DLD1 <
− 1.25, Kruskal-Wallis: p= 3e−136; NCI-H1299 <− 1.7,
Kruskal-Wallis: p= 1.1e−93; RKO< − 1.39, Kruskal-Wallis:
p= 1.5e−149) (Fig. 2h, Additional file 1: Figure S3H, J).
Selenocysteine (U) also showed a strong effect; however, this
rare amino acid was only found twice in the screen and was
excluded from further analysis. Tyrosine and tryptophan are
the heaviest amino acids (~ 181 and 204 Da), and we
hypothesized that their deletion might especially impact
protein folding. They are hydrophobic, as are methionine
and isoleucine, which may support protein folding [23].
Amino acids were then classified into 13 non-mutually
exclusive groups: polar (S, T, Y, N, Q), nonpolar (G, A, V, C,
P, L, I, M, W, F), hydrophobic (A, V, I, L, M, F, Y, W), hydro-
philic (S, T, H, N, Q, E, D, K, R), positively charged (R, H,
K), negatively charged (D, E), aliphatic (A, G, I, L, P, V),
aromatic (F, W, Y), acidic (D, E), basic (R, H, K), hydroxilic

(See figure on previous page.)
Fig. 1 CRISPRO pipeline. a Dense mutagenesis of protein coding sequence by pooled CRISPR screening approach. Single guide RNAs target every
possible PAM within the coding sequence of a set of genes. Guide RNAs are mapped to the two amino acids closest to the nuclease (e.g., Cas9)
cleavage site. b Overview of the CRISPRO pipeline. Two input options are either FASTQ files or a precalculated score file (blue). Example data shown
for MAP2K1 [8], PDB ID 4MNE
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(S, T), sulfur containing (C, M), and amidic (N, Q). This
classification demonstrated more negative CRISPR scores
for guide RNAs targeting hydrophobic amino acids as well
as the partially overlapping groups of aromatic and
sulfur-containing amino acids (Fig. 2i, Additional file 1:
Figure S3I, K, S4). We tested if the reason for more nega-
tive scores at methionine might be due to targeting the
start codon, but methionine at the start position of a pro-
tein sequence did not show a significantly different fitness
score than methionine throughout the rest of the protein
in any of the tested cell lines (Mann-Whitney U test,
DLD-1: p = 0.229; NCI-H1299: p = 0.161; RKO: p = 0.431)
(Additional file 1: Figure S5).
We tested if the impact of disrupting individual codons

could be due to the nucleotide identity of the codon itself
rather than the encoded amino acid. If the functional effect
were solely dependent on the amino acid, different codons
for the same amino acid should have a similar score distri-
bution. The only difference in average z-score comparing
different codons for the same amino acid was observed for
isoleucine (Kruskal-Wallis, DLD1: p = 6e−13; NCI-H1299:
p = 9.5e−05; RKO: p < 0.001) (Fig. 2j, Additional file 1:
Figure S3L, M), where codon ATC had more negative
dropout scores than codons ATT and ATA in all three cell
lines. Previous data have suggested ATC may have en-
hanced translation as compared to other codons of isoleu-
cine and may therefore influence protein folding [24, 25].
We predicted a consensus secondary structure by

amalgamating the results of several publicly available
tools (see the “Methods” section for details). We found
that guide RNAs had a greater effect targeting sequences
predicted to have helix or sheet secondary structure as
compared to coil secondary structure or no secondary
structure (Fig. 2k, Additional file 1: Figure S3B, E).

Association of genome editing functional outcome with
mRNA annotations
Nonsense-mediated decay (NMD) is the expected result
of the introduction of a premature termination codon

(PTC) by a frameshift indel following CRISPR/Cas9 cleav-
age repair. Exon-junction complex (EJC)-mediated NMD
follows the 50 nucleotide rule, meaning that if a PTC re-
sides more than 55 nucleotides upstream of the last
exon-exon junction, the terminating ribosome will fail to
remove the EJC, causing EJC-mediated NMD. Thus, guide
RNAs targeting more than 55 nucleotides upstream of the
final exon-exon junction should produce frameshift indels
that trigger NMD, whereas guides targeting downstream
may produce frameshift indels that escape NMD [26]. We
find that when applying this rule, guide RNAs targeting
sequences with the ability to escape NMD indeed have
less effect on the functional score (Mann-Whitney U,
DLD1: p = 2.2e−37; NCI-H1299: p = 1.8e−08; RKO: p =
3.7e−19) (Fig. 2l, Additional file 1: Figure S3C, F). These
results are consistent with the hypothesis that triggering
NMD is a major mechanism of genome editing induced
loss-of-function alleles.
We evaluated the predictive value of some other

mRNA-level annotations, including propensity for exon
skipping, distance to exon-intron junction, and fraction of
transcript isoforms targeted. Besides alternative splicing,
both point mutations and CRISPR-induced indels can
cause exon skipping [27]. We hypothesized that exons that
were multiples of 3 would be less functionally essential as
compared to those that were not multiples of 3, since mu-
tations could induce exon-skipping and produce mRNA
with intact reading frame [28]. We were not able to ob-
serve a pervasive impact of exon skipping on CRISPR
score, with no significant difference in dropout phenotypes
between guide RNAs targeting multiple-of-3 as compared
to other exons (Additional file 1: Figure S3A, D, G). We
hypothesized that cleavage sites adjacent to exon-intron
borders might have heightened functional scores since they
could perturb splice sites in addition to protein-coding se-
quences. However, we were unable to detect a significant
difference in guide RNA dropout score for guides targeting
close to as compared to distant from exon-intron borders
(Additional file 1: Figure S6A, B, D, E, G, H). We

(See figure on previous page.)
Fig. 2 Correlation of annotations to functional scores. Data from Munoz et al. [7] is shown for representative cell line RKO. a Violin plot showing
the distribution difference for guide RNA RKO z-scores targeting inside versus outside of predicted domains (as defined by InterPro). b Density
plot showing the relation between RKO z-score and PROVEAN score (more negative is more conserved). c Density plot showing the relation
between RKO z-score and disorder scores (1 equals disorder, 0 equals order). d Scatter plot showing the relation of median RKO z-score (x-axis),
standard deviation (distribution) of PROVEAN score (marker size), and the median of the PROVEAN score (marker color) with the amount of
correlation between PROVEAN scores and RKO z-scores (y-axis), for every gene. e Analogous to d, but for disorder score in place of PROVEAN
score. f Heatmap showing the mean RKO z-score and the percentage guide RNAs falling into groups categorized based on domain annotation
and conservation. g Heatmap showing the mean RKO z-score and the percentage guide RNAs falling into groups categorized based on
conservation and disorder score. h RKO z-score distribution per amino acid. i RKO z-score distribution per non-mutually exclusive amino acid
class: polar (S, T, Y, N, Q); nonpolar (G, A, V, C, P, L, I, M, W, F); hydrophobic (A, V, I, L, M, F, Y, W); hydrophilic (S, T, H, N, Q, E, D, K, R); positively
charged (R, H, K); negatively charged (D, E); aliphatic (A, G, I, L, P, V); aromatic (F, W, Y); acidic (D, E); basic (R, H, K); hydroxilic (S, T); sulfur
containing (C, M); and amidic (N, Q). j RKO z-score distribution per codon encoding for isoleucine (I). k Distribution of RKO z-scores for guides
targeting amino acids with different predicted secondary structure: coil/unstructured, sheet, or helix. l Distribution for RKO z-scores for guides
targeting sequences that are predicted to undergo or escape nonsense-mediated decay (NMD)
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hypothesized that targeting sequences shared among tran-
script isoforms would be more effective than targeting
unique isoforms. We observed that the fraction of targeted
transcripts only makes a modest difference in CRISPR
scores (Spearman correlation, DLD1: ρ = 0.068, p < 0.001;
NCI-H1299: ρ = 0.054, p < 0.001; RKO: ρ = 0.084, p < 0.001)
(Additional file 1: Figure S6C, F, I).

Association of genome editing functional outcome with
nucleotide annotations
Several tools exist to predict the on-target activity of guide
RNAs, which can be defined as the likelihood of creating an
indel at a given locus, such as the Doench (2016, Rule Set 2)
score, Moreno-Mateos score, and the Wong score, among
others [29]. In case of CRISPR experiments utilizing a U6
promoter to express the guide RNA, the Doench score has
been shown to have the best performance among the
publicly available on-target predictors [29]. Therefore, we
focused on the Doench score in our analyses. The Doench
score utilizes nucleotide and spacer features like melting
temperature without explicitly including protein level
features [28]. For CRISPR scores from the Munoz et al.
dataset, we found that the Doench score was correlated with
observed CRISPR score (Spearman correlation, DLD1: ρ=
0.26, p < 0.001; NCI-H1299: ρ= 0.25, p < 0.001; RKO: ρ=
0.18, p < 0.001) (Additional file 1: Figure S7A, D, G) [30].
We tested predicted frameshift scores with guide RNA

score. We hypothesized that guide RNAs more likely to
produce frameshift as compared to in-frame alleles
would be associated with a greater effect on phenotypic
score. We did not detect any association between the
out-of-frame score [31] with the phenotypic CRISPR
scores (Additional file 1: Figure S7B, E, H).

Linear maps of genome editing functional outcomes
CRISPRO provides linear tracks to show functional CRISPR
scores on a per guide RNA basis. CRISPRO performs
LOESS regression on guide RNA functional scores, based
on protein primary sequence location. LOESS regression
parameters were calibrated by the length of the protein and
the assumption that guide RNAs were uniformly distrib-
uted throughout a protein (see the “Methods” section).
LOESS regression allows interpolation of scores for amino
acids that are not targeted by a guide RNA. Several
protein-level functional annotations are plotted below the
guide RNA scores and LOESS regression, such as PRO-
VEAN conservation scores, disorder scores, secondary
structure predictions, InterPro domain annotations [10],
and aligned structures available from the PDB. The linear
maps are generated for every gene included in the analysis,
providing a visual overview of the data and enabling identi-
fication of potential regions of interest within a protein at a
glance. For example, for PLK1 and AURKA (Fig. 3a, b), the
largest negative impact of guide RNAs on cellular fitness is

observed at conserved, ordered positions, with secondary
structure predictions, and at domains. Reciprocally, the
least negative impact on cellular fitness is found at regions
with high disorder, little conservation, lack of secondary
structure, and without domain annotation. CTNNB1
(Fig. 3c) is a strong hit gene in only one of the three cell
lines tested by Munoz et al., DLD1. In this cell line, there is
agreement between the most negative phenotypic CRISPR
scores and conservation, disorder, secondary structure, and
domain annotation.
The linear mapping functionality of CRISPRO can be

readily extended to non-CRISPR datasets. We used
CRISPRO to visualize data produced by ectopic saturation
mutagenesis of MAPK1/ERK2 as performed by Brenan et
al. [32]. This study tested the function of almost all pos-
sible MAPK1/ERK2 missense mutations to identify
gain-of-function and loss-of-function alleles. In the A375
cell line system, loss-of-function MAPK1 mutants are as-
sociated with more rapid proliferation [32]. Following the
method of Brenan et al., we summed functional scores for
every amino acid substitution at a given position and nor-
malized the summed scores to have a minimal positional
score of 0. This resulted in two normalized datasets. One
dataset has a normalized score ETP vs DOX, representing
the abundance of MAPK1 mutants following doxycycline
(DOX) induction relative to an early time point (ETP) to
find loss-of-function alleles. The second dataset has a
score ETP vs VRT, presenting the abundance of MAPK1
mutants in presence of VRT-11E, a small molecule ERK1/
2 kinase inhibitor relative to ETP, to find drug-resistance
alleles (Fig. 3d). The linear map generated by CRISPRO
shows loss-of-function mutants at various sequences with
high conservation and low disorder (ETP vs DOX),
whereas the drug resistance alleles are concentrated at the
ATP-binding pocket around residues 25 to 70 [32] (ETP
vs VRT)(Fig. 3d). These data illustrate how CRISPRO can
be used to flexibly map a variety of functional scores to
protein annotations.

Visualizing genome editing functional outcomes with
protein structures
To further develop structure-function hypotheses from
dense mutagenesis data, CRISPRO maps calculated func-
tional scores to three-dimensional protein structures (Fig. 4).
CRISPRO uses BLAST [33] to search the Protein Data
Bank (PDB) for all available protein structures and op-
tionally downloads additional structures defined by the
user. CRISPRO aligns the structures to the protein se-
quence and uses PyMOL (The PyMOL Molecular
Graphics System. Schrödinger, LCC.) to recolor the
structure based on CRISPR scores (see the “Methods”
section). By default, CRISPRO sets a two-color heatmap
based on the distribution of scores in the dataset such
that the more extreme of the 5%ile or 95%ile guide
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RNA score demarks the last bin and the heatmap is
centered around 0 (Additional file 1: Figure S8). Within
the Munoz et al. dataset, we observe the lowest fitness
scores for PLK1 in the protein kinase and polo box do-
mains. We mapped interpolated CRISPR scores onto
existing protein structures of these domains (PDB IDs
5TA6, 3FVH). The protein kinase domain structure
5TA6 shows the competitive inhibitor 5,6-dihydroimi-
dazolo[1,5-f]pteridine binding at the ATP-binding
pocket [34]. The noncatalytic polo box domain struc-
ture 3FVH shows the phosphothreonine mimetic pep-
tide Ac-LHSpTA-NH2 binding at a key protein-protein
interaction site [35]. Extremely low fitness scores were
observed adjacent to these ligand binding sites, demon-
strating the capacity of CRISPRO 3D mapping to high-
light important protein regions (Fig. 4a, b).
Another example shows the utility of this CRISPRO

feature to highlight regions of small molecule interactions
as well as protein-protein interactions. AURKA is a mem-
ber of a family of kinases that control progression through
mitotic cell division [36]. Figure 4c shows the structure of
AURKA in complex with TPX2, a protein that serves as an
allosteric activator of AURKA, and VX680, an ATP-
competitive small molecule inhibitor of kinase activity
(PDB ID 3E5A). Both the interaction sites of AURKA with
TPX2 and AURKA with VX680 show extremely low fitness
scores (Fig. 4c, Additional file 1: Figure S9). These results
demonstrate how CRISPRO analyses and visualization can
indicate functional regions of a protein and suggest
CRISPRO could help prioritize regions of interest for
further chemical biology investigation.
We used CRISPRO to map the results of a CRISPR

screen of MAP2K1 and BRAF to available protein struc-
ture. This screen was performed in presence of MEK
inhibitor selumetinib, to identify drug-resistance alleles
[8] (Additional file 1: Figure S9B, C). A positive CRISPR
score in the screen indicates an enrichment of these
mutants, thus a proliferative effect (drug resistance). A
negative CRISPR score means a negative fitness effect, a
depletion of these mutants in the cell population (drug
sensitivity). The screen was performed in two cell lines,
MELJUSO and A375.
No structures of MAP2K1 with selumetinib were

available, but the structure PDB ID 4MNE shows the allo-
steric inhibitors ACP and carboxamide which are thought
to occupy the same binding pocket as selumetinib (Fig. 4d).
The positive CRISPR phenotypic scores, indicating position

of drug-resistance alleles (mapped in purple), showed that
these positions are adjacent to the site of small molecule in-
hibitor binding. Other regions of MAP2K1 distant from
small molecule binding only showed negative phenotypic
scores, consistent with negative fitness effect fromMAP2K1
loss-of-function. BRAF, which does not directly bind to the
small molecule inhibitors, only showed negative fitness
scores, with some of the most negative scores concentrated
at the BRAF:MAP2K1 protein-protein interaction interface.
Overall, these results demonstrate the capacity of the
mapping function of CRISPRO to identify critical protein
interfaces for functional small molecule active site or allo-
steric interactions, or sites of protein-protein interactions.

Prediction of genome editing functional outcome
Given that various CRISPRO features such as conserva-
tion and disorder scores were correlated with CRISPR
scores, we sought to test if the collection of features and
annotations used in CRISPRO could be used to predict
guide RNA efficacy in phenotypic screens. Gradient
boosting decision tree (GBDT) modeling is one of the
current state of the art methods for classification and re-
gression and allows for measurement of feature import-
ance [37, 38]. We initially trained a GBDT model using
the Munoz et al. dataset [7], including 10398 sgRNAs
targeting 43 genes. For training, the model utilized
sgRNA spacer, mRNA, and protein level features as in-
puts and gene scaled CRISPR scores as the target vari-
able (see the “Methods” section). Performance was
measured by calculating the Spearman correlation coeffi-
cient between the observed and predicted scaled CRISPR
scores for individual genes. We tested the model by
10-fold cross-validation withholding sgRNAs from 10%
of genes for testing (to have truly independent sets all
the sgRNAs for a gene were withheld if the gene was
used in the test set). In addition to GBDT, we compared
four regression models for CRISPR score prediction:
Lasso, Ridge, Support Vector, and Random Forest. We
found similar performance for many of these models,
with the GBDT model showing the highest average
Spearman correlation coefficient per gene with an aver-
age ρ = 0.57 (Additional file 1: Figure S10A). Therefore,
we focused on GBDT models for further analyses.
We tested the performance of the GBDT model trained

on the Munoz et al. data on another saturating mutagen-
esis dataset, from Doench et al. [30] including 4275
sgRNAs targeting 15 genes. We found that the model

(See figure on previous page.)
Fig. 3 CRISPRO linear maps. a z-score transformed guide RNA fitness scores for 3 cell lines for PLK1 from the dataset of Munoz et al. [7] b z-score
transformed guide RNA fitness scores for three cell lines for AURKA from the dataset of Munoz et al. [7] c z-score transformed guide RNA fitness
scores for 3 cell lines for CTNNB from the dataset of Munoz et al. [7]. d MAPK1/ERK2 mutant abundance following DOX induction, relative to early
time point (ETP vs. DOX) and MAPK1/ERK2 mutant abundance following DOX induction in the presence of 3 μM VRT-11E relative to ETP (ETP vs.
VRT), from the dataset of Brenan et al. [32]
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showed a substantially lower average Spearman correlation
per gene with an average ρ = 0.28 (Additional file 1: Figure
S10B). Unlike its performance on the Munoz et al. dataset,
the GBDT model underperformed the Doench score,
which itself was partially derived from analysis of the
Doench et al. saturating mutagenesis dataset. We were not
surprised that a model trained on a single dataset might be
relatively overfitted to that dataset with limited

generalizability. To test if the GBDT would be well pow-
ered when using the Doench et al. dataset, we re-trained
the GBDT model using only this dataset. We observed
substantially improved performance, with average Spear-
man correlation per gene ρ = 0.60. As expected, we also
observed reciprocally poorer performance for this new
model (average Spearman correlation per gene ρ = 0.33)
when tested on the Munoz et al. dataset (Additional file 1:

A

C D

B

Fig. 4 CRISPRO 3D structure maps. a PLK1, PDB ID: 5TA6. Mapped scores are DLD1 z-score (LOESS interpolation) of PLK1 (protein kinase domain,
AA37-330, cartoon presentation in the left panel, surface presentation in the right panel) in complex with 5,6-dihydroimidazolo[1,5-f]pteridine
inhibitor (green). Zinc ion is displayed as a gray sphere. b PLK1, PDB ID 3FVH. Mapped scores are DLD1 z-score (LOESS interpolation) of PLK1
(polo box domain, AA368-604) in complex with Ac-LHSpTA-NH2 peptide. Both surface (right) and cartoon (left) presentation shown. C) AURKA
with TPX2, PDB ID 3E5A. Mapped scores are NCI-H1299 z-score (LOESS interpolation) of AURKA (presented as surface in left panels, right as a
cartoon, AA125-389, protein kinase domain) and TPX2 (presented solely as cartoon, AAs 6–21, 26–42, Aurora-A binding domain) in complex with
VX680, an ATP-competitive small molecule inhibitor. Sulfate ions are displayed as gray spheres. d BRAF and MAP2K1, PDB ID 4MNE. Mapped
scores A375 selumetinib (LOESS interpolation) of BRAF (surface in left panel, cartoon in right, AAs 449–464, 469–722, protein kinase domain) and
MAP2K1 (cartoon in left panel, surface in right, AAs 62–274, 307–382, protein kinase domain). Ligands ACP in yellow, and 7-fluoro-3-[(2-fluoro-4-
iodophenyl)amino]-N-{[(2S)-2-hydroxypropyl]oxy}furo[3,2-c]pyridine-2-carboxamide in green. Magnesium ion is displayed as a gray sphere
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Figure S10B). This suggested that the two models may cap-
ture different properties of those two screens. We reviewed
the top features for the GBDT models trained on either
the Munoz et al. or Doench et al. datasets (Additional file 1:
Figure S10C-D). We indeed observed that different fea-
tures were assigned relative importance, for example em-
phasizing PROVEAN score from the Munoz et al. training
set and gene fraction from the Doench et al. training set,
indicating orthogonal important feature sets learned from
the two datasets. Based on these observations we elected
to use both datasets for combined training of the GBDT
model (Additional file 1: Figure S10B).
The most important features by information gain (see the

“Methods” section) of the combined training set GBDT
model, heretofore called the CRISPRO prediction, were the
PROVEAN and disorder scores, followed by relative pos-
ition targeted in protein (gene fraction), dinucleotides 9 and
8, and distance between predicted double strand break and
3′ exon border (distance 3′ exon border), and GC content
of the sgRNA spacer (Fig. 5a, Additional file 1: Figure S11).
PROVEAN score and disorder score were modestly
correlated, while many of the other features showed low
correlation (Fig. 5a inset). This diversity and variable inter-
relationship of features highlight the complexity of sgRNA
efficacy prediction as features apparently affecting Cas9
cleavage and DNA repair (e.g., GC content and nucleotide
features), stability of the mRNA gene product (e.g., distance
3′ exon border), and structure-function of the protein gene
product (e.g., PROVEAN and disorder scores), all con-
tribute to the CRISPRO prediction model. Given the
multiple layers of regulation, we would expect improved
predictive performance as more saturating mutagenesis
experiments become publicly available and better prog-
nostication of genome editing allelic outcomes emerges.
In addition, the prediction is likely influenced by the cell
type and biological phenotype measured.
We evaluated the CRISPRO prediction on independent

external datasets. These datasets included a CRISPR knock-
out screen focused on essential genes, Essential-RT112
(43 genes, 7.86 sgRNA/gene) [39], as well as the hit genes
from two genome-wide CRISPR knockout screens,
GeCKO-HT29 (417 genes, 5.62 sgRNA/gene) [30] and
EKO-NALM6 (916 genes; 9.70 sgRNA/gene) [40].
Performance was measured only for genes not observed
in training. In each case the CRISPRO prediction
provided a higher median and overall a boost over the
Doench score in terms of average Spearman ρ per gene,
significant by Mann-Whitney test in two of these three
datasets (Fig. 5b). We observed better generalizability
on these unobserved independent test datasets of the
CRISPRO prediction model trained on both the Munoz
et al. and Doench et al. datasets as compared to models
trained on a single dataset (Additional file 1: Figure
S10B).

Finally, we performed a prospective saturating mutagen-
esis experiment, tiling guides throughout the coding se-
quences of MYB and ZBTB7A, two key erythroid
transcription factors, to test for fitness effects of guide
RNAs during erythroid differentiation of a Cas9 expressing
human erythroid cell line. For these prospective CRISPR
saturating mutagenesis screens, the CRISPRO prediction
had substantially higher Spearman correlation coefficient
than the Doench score (ρ = 0.57 vs 0.28 for MYB; ρ = 0.67
vs 0.40 for ZBTB7A) (Fig. 5b). From visual inspection of
the linear maps, the CRISPRO prediction accurately identi-
fied key functional domains, including the SANT/MYB do-
mains for MYB and the zinc finger domains for ZBTB7A
(Fig. 5c, d).
We have calculated CRISPRO prediction scores across

the hg19 proteome (available at gitlab.com/bauerlab/
crispro). These guide RNA predictions could help gen-
ome editing users select for functional studies guide
RNAs likely to perturb their gene target.

Discussion
The discovery of methods for programmable genome edit-
ing by CRISPR-Cas9 systems have offered unprecedented
capabilities for comprehensive genetic perturbations in situ
to investigate the sequence determinants of gene function.
We have developed a widely adaptable open-source com-
putational tool, CRISPRO, to take deep sequence data from
dense mutagenesis in situ pooled screens as input to com-
pare functional scores with protein, transcript, and
nucleotide-level annotations, perform statistical association
testing, and visualize functional results with linear maps
and three-dimensional protein structures.
We confirmed prior observations that protein-level

annotations such as domain structure and interspecies
sequence conservation help predict the functional out-
come of CRISPR perturbation. Furthermore, we demon-
strate that other protein annotations such as disorder
score have additional predictive utility.
By automatically mapping the phenotypic scores onto

linear and 3D maps, the tool implicates discrete protein
regions in specific biological phenotypes. Especially when
combined with orthogonal genetic and biochemical data,
the ensuing hypotheses may be prospectively tested to im-
prove understanding of protein structure-function rela-
tionships and suggest critical interfaces as opportunities
for rational targeting for bioengineering or therapeutics.
Beyond protein-level annotations, we observed that tran-

script level (for example, NMD escape and isoleucine
codon usage) and nucleotide level (for example, nucleotide
identity) annotations offer additional layers of predictive
power. We used these annotations to develop predictive
models of genome editing functional outcomes by gradient
boosting decision tree modeling. We show boosted per-
formance as compared to prediction by the Doench score
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Fig. 5 (See legend on next page.)
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alone. We prospectively tested the predictions on orthog-
onal datasets, and validated the heightened predictive
power of the CRISPRO prediction. We have generated pre-
diction scores across all protein coding sequences (available
at gitlab.com/bauerlab/crispro).
The CRISPRO tool is flexible to incorporate additional

annotations. We anticipate that inclusion of other anno-
tations at various levels, including protein, transcript,
chromatin, DNA sequence, and guide RNA, could fur-
ther increase predictive power and utility of the tool.
A current limitation of Cas9-mediated dense mutagen-

esis in situ is that the resolution is restricted by both the
targeting range constraints of PAM sequence (such as
NGG availability for SpCas9) and the variable and difficult
to predict end-joining repair indel spectrum following nu-
clease cleavage dependent on nuclease, guide RNA, and
target DNA, chromatin and cellular contexts. However
with rapid advances in genome editing technology, the
targeting range problem may be partially addressed by use
of orthologous and engineered Cas nucleases with alterna-
tive PAM restriction, such as the recently described xCas9
and Cas9-NG with NGN PAM [41, 42]. Ability to predict
genome editing outcomes may improve with added know-
ledge of DNA repair determinants and empiric genome
editing allele datasets. Furthermore, non-nuclease gen-
omic perturbation options continue to increase, such as
the development of C and A base editors [43, 44]. Since
the CRISPRO tool is flexible with regard to input data, the
resolution of its visualizations and predictive power of its
associated annotations will likely only increase as genomic
perturbation resolution continues to improve.
Although CRISPRO has been implemented as a tool to

aid analysis and prediction of coding sequence perturba-
tions, analogous inclusion of annotations from DNA and
chromatin modifications, evolutionary conservation,
genetic association studies, and other data types might
ultimately be applied to the analysis and prediction of
noncoding sequence perturbations as well.

Conclusions
Here, we describe CRISPRO open-source software for the
analysis of dense mutagenesis in situ pooled CRISPR screen
datasets. We demonstrate the utility of various protein, tran-
script, and nucleotide-level annotations to predict functional

outcome of genome editing. The linear and 3D maps pro-
duced by CRISPRO may be used to develop hypotheses re-
garding structure-function relationships within mutagenized
genes. CRISPRO annotations and models improve prediction
of genome editing functional outcome.

Methods
CRISPRO pipeline
The CRISPRO pipeline is written completely in Python
(The Python Software Foundation, https://www.pytho-
n.org/) and R [45]. CRISPRO requires Python 2.7 and
R > =3.4.1. Packages needed in R are tidyverse (ggplot2,
dplyr, lazyeval, gridExtra, purr, RColorBrewer, readr),
and DESeq2 (optional, when calculating scores). Package
dependencies in Python are pandas (version ≥ 0.21.0),
numpy, seaborn, matplotlib (version 1.5.3), PyMOL (ver-
sion ≥ 2.1.0), scipy, and biopython.
There are two entry points to the CRISPRO pipeline. Users

can either upload next-generation sequencing data (sequence
read files) in the FASTQ format or scores that have been cal-
culated or precomputed (based on guide RNA or sequence
coordinates in combination with the peptide ID).
The overview of the complete pipeline, from input to

counting, mapping, annotating, testing and finally dis-
playing the data onto structure, is displayed in Fig. 1b.
CRISPRO relies on a precompiled annotation set, which
is publicly available for hg19. A script is available to
compile other annotation datasets for different genome
releases and organisms (e.g., hg38, mm10).

Counting and mapping guides
The guide RNA counts for a sample are extracted from a
given FASTQ file. CRISPRO needs a list of identifiers,
sample (condition) names, and comparisons to count the
guides in each of the FASTQ files and to calculate func-
tional scores. Identifiers can be either a list of genes,
Ensembl peptide, transcript, or gene IDs [46]. Guides are
mapped to the protein sequence using information from
the CRISPOR database [29]. This database contains all
possible guides in the human genome (at coding exons),
together with the genomic coordinate where they are pre-
dicted to cause a double strand break through Cas9 cleav-
age. Utilizing the CRISPOR database increases the speed
of CRISPRO substantially since the mapping of guides can

(See figure on previous page.)
Fig. 5 CRISPR score prediction performance on independent datasets. a Feature importance in CRISPRO prediction GBDT model by information
gain when a feature is used to split the combined training data (Munoz et al. and Doench et al. datasets). Positional nucleotide features are 0-
indexed (i.e., nucleotide 0 is in position 1 of the spacer sequence, dinucleotide 0 corresponds to positions 1 and 2 of spacer, where position 20 is
PAM proximal). Inset shows pairwise Spearman correlation coefficient for all numerical and binary features in CRISPRO training set. b Spearman
correlation per gene of predicted as compared to observed CRISPR functional scores in independent datasets not observed in training for
Doench score and CRISPRO prediction GBDT model. c, d Scatter plots for ZBTB7A and MYB of scaled observed guide RNA scores, CRISPRO
prediction scores, and Doench scores, with LOESS regression shown by blue lines compared to position in protein. Protein-level and mRNA-level
annotations aligned underneath
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be precomputed. In addition, users do not have to provide
guide sequences to count sequencing output.
CRISPRO maps each guide RNA to the two amino

acids nearest the double strand break by using genomic
coordinates (Fig. 1a). This avoids the arbitrary decision
of mapping a guide to one side of its cleavage site at
both the nucleotide and amino acid levels. Also this
mapping may more closely approximate the typical indel
spectrum following NHEJ repair, affecting 1 up to 10 or
more base pairs around the double strand break.
Functional scores are calculated as the log2 fold

change of the guide count in the sample groups pro-
vided and defined by the user. The user has the option
to choose if the functional score is calculated by taking
the average log2 fold change of replicates (ALFC
method), or if the log2 fold change is calculated by using
the DESeq2 R package [47]. CRISPRO uses DESeq2 as a
default. DESeq2 shrinks the value of the log2 fold change
for a guide if read counts are low (noisy), to correct for
the higher level of uncertainty. Reducing the fold change
allows for confident comparison of all estimated fold
changes across experiments.

Off-target effect
Programmable nuclease mediated genomic cleavages can
display modest negative fitness activity, presumably asso-
ciated with activation of the DNA damage response.
Non-targeting guides would not take into account
nuclease-mediated gene-independent effects. For this rea-
son, we suggest it is best practice, especially in fitness/
growth screens, that scores are normalized to functionally
neutral genome targeting guides instead of non-targeting
guides [48].
Guide RNAs targeting repetitive genomic sequences can

have outsized non-specific negative fitness activity and
may confound interpretation of perturbation screens [5].
To avoid high functional CRISPR scores solely caused by
a high off-target effect (especially in fitness screens), we
suggest it is important to implement an off-target filter.
We found in previous data (not shown) guides with a
CRISPOR MIT off-target score lower than 5 often have
extreme low fitness scores. We included a default filter in
CRISPRO to remove any guide RNAs with CRISPOR
MIT off-target score less than 5 [29, 49]. This filter can be
adjusted by the user.

Smoothing
Scores for amino acids with no assigned guide RNA are
interpolated via LOESS regression in the stats R package,
using known guide scores and location to train the model.
LOESS regression is nonparametric, and uses weighted
least squares to fit a quadratic curve on a contiguous sub-
set of the data, in order to capture local trends of the
CRISPR effect over the entire protein. The size of the

subset of the data to which to fit a curve is determined by
the span parameter, which is defined as 100/protein length
for a given protein. The span parameter allows for ap-
proximately the same amount of data to be used to fit a
local curve for various length genes with the assumption
of uniform distribution of guide RNAs. The optimal span
parameter should avoid both under-smoothing with ex-
cessive variance, and over-smoothing with loss of informa-
tion. The parameter was set empirically based on
correlation between the LOESS regression curve and
other protein annotations such as PROVEAN and dis-
order scores (Additional file 1: Figure S12). We compared
span parameters ranging from 10 AA/L to 250 AA/L,
where L is the length of the protein in AA, in terms of the
correlation of PROVEAN score and disorder score with
CRISPRO functional scores (Additional file 1: Figure S12).
We observed that the correlation increased sharply as the
span was extended from 10 to ~ 50 AA/L, but between ~
50–250 AA/L there was a relative plateau in the correl-
ation. We chose 100 AA/L as a pragmatic solution to at-
tempt to balance risk of under-smoothing and
over-smoothing.

Annotations
Annotation of sequences and testing their correlation
with calculated CRISPR scores is essential to the analysis
in the CRISPRO pipeline. Sequences may influence
CRISPR scores via effects at the DNA, RNA, or protein
levels. At the DNA level, the target sequence and its sur-
rounding context may specify guide RNA binding effi-
ciency, off-target potential, or genomic repair
preferences. Edits may affect mRNA splicing (by impact-
ing cis-acting splice regulatory sequences), RNA stability
(such as frameshifts that initiate nonsense-mediated
decay), or isoform usage (by targeting unique as com-
pared to shared exons). At the protein level, the primary
amino acid identity, secondary structures, likelihood of
disorder, presence in identified domains, or interspecies/
intraspecies constraint may influence the impact of mu-
tations. CRISPRO utilizes one precompiled database
with annotations from several genome-wide databases.
Annotations from publicly available databases include

CRISPOR (guide efficiency score (Doench ’16 [30]),
out-of-frame score and off-target score), InterPro (do-
mains), APPRIS (protein principal isoform), and
Ensembl (exons, peptide and coding sequences) [10, 29,
50]. The CRISPRO database also contains precomputed
conservation scores (PROVEAN [15]), exon length, DSB
distance to 3′ and 5′ exon borders, the location in the
protein (protein fraction), the predicted ability to escape
nonsense-mediated decay (NMD) (when the guide RNA
targets upstream of − 55 bp from the final exon-exon
junction), the fraction of targeted protein isoforms per
gene, disorder score, and secondary structure prediction.
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PROVEAN (Protein Variation Effect Analyzer) is a
protein sequence variant predictor that not only predicts
the effect of single amino acid substitutions, like other
commonly used tools such as PolyPhen and SIFT, but
also predicts the effect of deletions. Since CRISPR-Cas9
cleavage creates a spectrum of indels, CRISPRO uses the
effect score for single amino acid deletions generated by
PROVEAN as a measure of conservation. More negative
PROVEAN scores indicate greater conservation. CRIS-
PRO’s original database is designed for hg19 proteins
from Ensembl release 90; we computed all PROVEAN
scores for this database.
As described above, the DSB coordinate for each guide

is obtained from the CRISPOR database. We mapped
guide RNAs to their corresponding amino acids in a pro-
tein and calculated the distance to both exon borders,
based on protein (genomic) coding coordinates from hg
19 Ensembl, release 90 (start and end points per exon).
We pre-computed disorder scores for CRISPRO with

VSL2b, a length-dependent predictor [17, 18].
We used multiple tools, PSSpred, PSIpred, SPINE X,

and RaptorX, to build a weighted consensus secondary
structure prediction [11–14, 16]. Each tool provides a
probability score for a predicted secondary structure (ei-
ther strand (B), helix (H) or coil (C)). For each amino
acid, these scores are added up per secondary structure
and divided by the sum of all the options. This gives the
weighted predictive score per secondary structure,
whichever is the highest determines which secondary
structure is predicted.
Two BLAST searches are used to align and annotate all

available protein structures in the RCSB Protein Data
Bank (PDB) [19, 33]. The first search is done with
complete protein sequences of the entire genome. These
hits and alignments are directly available in CRISPRO’s
standard annotation set. The second search is done per
protein domain, as defined by the SMART database, to
expand the range of available structures and to include
partial structure hits which might have been missed in the
first round of BLAST. For both BLAST searches the
cut-off value for identity is 0.7 and e-value is 0.05. The
results of the second BLAST search (domain only) are
separated in an additional annotation file. These results
are only used when a CRISPRO-user includes the
option to map functional scores to structures. Any
additional structures available for a protein are in that
case aligned with Biopython pairwise2 local alignment
(using blosum62 matrix, gap open penalty: − 10, gap
extension penalty: − 0.5) [51]. The option exists for the
user to pass extra PDB IDs (which might not have been
found by the automated BLAST search) and the corre-
sponding protein ID as input for CRISPRO. These
structures would also be aligned with Biopython pairwise2
(same variables).

General quality control and statistical testing
As part of its standard output CRISPRO provides sum-
mary statistics, quality information, guide density, func-
tional scores and annotations based on raw FASTQ
sequencing files. For each FASTQ file used as input, the
following is calculated: total reads, mapped reads, per-
centage mapped reads, Gini score (a measure of inequal-
ity of the distribution), mean reads per guide, standard
deviation reads per guide, minimum reads per guide,
10th percentile reads per guide, median reads per guide,
90th percentile reads per guide, and maximum reads per
guide. All these values contribute to the quality control
of the sequencing data and its mapping. Raw read
counts per guide are saved for each of the sequencing
files (samples) and a Pearson correlation test is per-
formed comparing all sequencing files.
CRISPRO calculates guide density and average guide

distance for each gene individually. Guide density is cal-
culated by dividing the total number of guides in a pro-
tein by the total number of amino acids. The distance
between each of the guides is based on the first amino
acid in the sequence it maps to, which is then averaged
for all guides in a protein. Guides are filtered based on
detection in the sequencing data. In other words, if ac-
cording to CRISPOR there was a possible guide targeting
the protein coding sequence, the guide is only consid-
ered if it was actually detected in the sequencing files
and has a functional score.
Each guide RNA score is normalized by subtraction of

the median negative control guide RNA score (if a set of
negative control guides is available). It is optional for the
user to assign negative and positive controls as input for
CRISPRO. Negative controls can either be nontargeting
guides or neutral gene-targeting guides. The latter is en-
couraged when possible, to control for the expected ef-
fect of gene-independent genome targeting events.
Positive control guide RNAs could be targeting genes
with known high effect, such as guides targeting riboso-
mal genes in the case of negative selection screens.
CRISPRO calculates the mean, standard deviation, first

quartile, median, third quartile, the interquartile range
(IQR), and the earth mover’s distance for the functional
scores of each tested gene. The earth mover’s distance
indicates the cost of turning the distribution of scores of
the protein into the distribution of the negative control
distribution.
Operationally, CRISPRO defines a gene as a hit for a

given score (i.e., showing an overall phenotype of poten-
tial biological interest) in the CRISPR screen by checking
if at least 75% of guides are above or below 0 (e.g., the
IQR does not contain 0), where 0 corresponds to the
median of the distribution of the negative controls. If
this is the case, the gene is labeled as hit. We have found
that performing statistical tests, like Mann-Whitney,
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between guides targeting a gene and nontargeting con-
trols leads to the classification of most genes as hits.
Small effect sizes may be statistically significant, because
of the usually high number of tested guides. The ten-
dency to identify many genes as significant hits may be
exaggerated with use of nontargeting guides as negative
control as compared to neutral genes [48]. For the pur-
pose of further statistical testing, the direction of the hit
is assigned, labeling the hit gene as either positive (me-
dian > 0) or negative (median ≤ 0). It is possible for the
user to define gene hits as an input for CRISPRO, by
adding a list of gene names, or Ensembl peptide, tran-
script or gene IDs. If the user chooses to do so, the de-
fault of using the IQR will be overwritten.
CRISPRO generates several plots to show correlation

between every annotation CRISPRO provides and the
functional scores. For categorical annotations these are
violin or box plots, for continuous data these are scatter
plots. CRISPRO produces plots for each score for all hit
genes pooled and for the individual hit genes. CRISPRO
performs relevant statistical tests for each annotation
(either Spearman correlation, Mann-Whitney test, or
Kruskal-Wallis test with SciPy module in Python [52]).

Mapping CRISPR scores to protein structures
CRISPRO downloads all structures found by BLAST
search in the PDB (as described above), when the user
chooses to map functional CRISPR scores to protein
structures. In case there are specific structures the user
wants to map, regardless if these were found in the
standard BLAST search, the user has the option to pass
the PDB IDs and the corresponding protein ID as input
for CRISPRO. These structures will be included in all
other standard output for CRISPRO, like the figures pre-
senting annotations (linear tracks) and overview tables.
Every PDB structure found (complying with before men-
tioned conditions of the BLAST search) or added by the
user will be mapped and recolored, even if there are
multiple structures available for the same (sub)sequence
of a protein.
CRISPRO saves the amino acid sequence of the struc-

ture via PyMOL and aligns with the full protein sequence.
Based on these alignments, CRISPRO writes raw input
text files for PyMOL, containing a list with the CRISPR
functional score values corresponding to each amino acid
present in the structure. It might occur that a structure
has a different sequence than the original protein se-
quence, in which case there may be mismatches between
amino acids, amino acids missing, or extra amino acids in
the structure. If there are amino acids in the structure that
are different but aligned to an amino acid in the original
protein, the corresponding score is mapped. If there are
extra amino acids in the structure which cannot be
aligned, no data will be mapped (shown in yellow).

CRISPRO loads the functional CRISPR scores in the
B-factor field of the PDB structures in PyMOL. To re-
color the structure based on these values, CRISPRO as-
signs a bin and corresponding color to each amino acid
in the structure. The standard CRISPRO color legend
consists of either 17 or 9 bins, from blue to dark purple,
centered on 0. To be able to visually compare proteins
and to distinguish important regions, CRISPRO deter-
mines bin size and boundaries for each functional
CRISPR score (separately for both raw and LOESS
regressed scores), over all the proteins in the dataset. Ei-
ther the 5th or 95th percentile (and its inverse) of the
score distribution, whichever is farther from 0, is set as
the upper and lower border of the outermost bins. Every
score lower or higher than this value will fall into those
outer bins. The rest of the bins are evenly sized between
the borders, resulting in a scale centered on 0 (Add-
itional file 1: Figure S8).
The recolored structures are saved as PyMOL session

files (.pse). The user can open the sessions in the desk-
top version of PyMOL and adjust the orientation or
visuals of the structure before saving an image.

Score prediction
Data processing
For each gene, we multiplied each CRISPR score (aver-
age of all guide RNA CRISPR scores) for a gene by − 1
if the mean score of the guide RNAs was less than 0,
and z-score normalized them. By doing so, a predicted
high CRISPR score is interpreted as having the greatest
effect on phenotype for that gene, regardless of direc-
tion. We then scaled and centered CRISPR scores by
gene, to make the target variable comparable across
experiments.

Models
For Lasso and Ridge Regression, we used LassoCV and
RidgeCV respectively from the scikit-learn package in Py-
thon with default parameters to determine the optimal
alpha parameter via the default cross validation method
[53]. SVR from scikit-learn was used for support vector re-
gression model. We used LGBMREgressor, from the
LightGBM package in Python, for the GBDT and random
forest algorithms described above [54]. We explored the
hyperparameter space for the gradient boosted decision
trees using GridSearchCV from the scikit-learn package in
Python [53], yielding the following parameters differing
from the default: (“bagging_freq” 0, “colsample_bytree” 1/
3, “learning_rate” 0.01, “max_depth” − 1, “min_child_sam-
ples” 32, “n_estimators” 1024, “max_bin” 63.
We performed cross-validation by leaving out guides

targeting 10% of genes in the full training set (43 genes).
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Features
Targeted amino acids 1 and 2, domain occupancy status
(InterPro), exon multiple of 3, ability of targeted tran-
script to escape nonsense-mediated decay, single nucleo-
tide and dinucleotide positional identities within guide
RNA spacer (e.g., identity of nucleotide at position 17 in
spacer), and orientation of sgRNA relative to gene (e.g.,
both sgRNA and gene involve same strand) were all used
as categorical features. Categorical features were one hot
encoded. Numerical features included PROVEAN dele-
tion score of the targeted amino acids 1 and 2, position
in the gene, predicted disorder score of amino acids 1
and 2, GC content of the 20-mer guide, length of the
targeted exon, and off-target score of the guide RNA.
We computed GC content of the 20mer guide by adding
the number of observed “G”s and “C”s in the 20mer and
dividing the sum by the length of the guide (20 bp).
For Lasso, ridge, and support vector models, the fea-

ture set was scaled to have a range of 0–1. Features were
removed recursively in 10 group fold cross validation
using scikit-learn package in Python [53].

Feature importance (GBDT)
Feature importance was calculated via information gain
of split with the LightGBM package in Python [54].

Training set processing
In the dataset from Munoz et al., each sgRNA had a log2
fold change in three cell lines. We used the average log2
fold change across the 3 cell lines for each guide (“aver-
age score”). Next, we filtered out genes that had a mean
“average score” > − 1 (to filter potential outliers that
could have biased the model). In the CRISPR saturating
mutagenesis from Doench et al., we calculated log2 fold
change of DMSO day 14 over ETP.

Independent test set processing
For each dataset utilized [30, 39, 40], the authors provided
a list of genes classified as hits from the respective CRISPR
screen. Only sgRNAs from hit genes were utilized for test-
ing. If sgRNA scores were provided for each replicate, the
average was used for downstream data processing described
above. If normalized counts were provided for a replicate/
condition, sgRNA scores were calculated as described in
the methods of the corresponding paper. SgRNAs from
genes that had sgRNAs observed in testing were removed.

Saturating mutagenesis CRISPR/Cas9 fitness screen in
HUDEP-2
HUDEP-2 cells constitutively expressing lenti-Cas9 were
transduced with a lentiviral guide RNA library contain-
ing puromycin resistance. 24 h post transduction, cells
underwent selection and erythroid based differentiation
protocol. After 12 days of culture, we isolated the

genomic DNA allowing for next-generation sequencing
(NGS) of the integrated guide RNA library as previously
described [5]. We defined the fitness score as the log2
fold change of counts in the final time point over the
counts in the lentiviral plasmid sample.
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