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Abstract

Background: There is substantial interest in the evolutionary forces that shaped the regulatory framework in early
human development. Progress in this area has been slow because it is difficult to obtain relevant biological samples.
Induced pluripotent stem cells (iPSCs) may provide the ability to establish in vitro models of early human and
non-human primate developmental stages.

Results: Using matched iPSC panels from humans and chimpanzees, we comparatively characterize gene
regulatory changes through a four-day time course differentiation of iPSCs into primary streak, endoderm
progenitors, and definitive endoderm. As might be expected, we find that differentiation stage is the major
driver of variation in gene expression levels, followed by species. We identify thousands of differentially
expressed genes between humans and chimpanzees in each differentiation stage. Yet, when we consider
gene-specific dynamic regulatory trajectories throughout the time course, we find that at least 75% of genes,
including nearly all known endoderm developmental markers, have similar trajectories in the two species.
Interestingly, we observe a marked reduction of both intra- and inter-species variation in gene expression
levels in primitive streak samples compared to the iPSCs, with a recovery of regulatory variation in endoderm
progenitors.

Conclusions: The reduction of variation in gene expression levels at a specific developmental stage, paired
with overall high degree of conservation of temporal gene regulation, is consistent with the dynamics of a
conserved developmental process.

Keywords: Comparative genomics, Functional genomics, Gene expression

Background
Differences in gene regulation between humans and
other primates likely underlie the molecular basis for
many human-specific traits [1]. For example, it has been
hypothesized that human-specific gene expression pat-
terns in the brain might underlie functional, develop-
mental, and perhaps cognitive differences between
humans and other apes [2, 3]. Providing a measure of
support for this notion, a recent comparative study that
explored the temporal dynamics of gene regulation
found potential differences in the timing of gene expres-
sion in the developing brain across primates [4]. The

authors argued that such differences might be related to
inter-species differences in the timing of developmental
processes.
Other comparative studies of gene regulatory pheno-

types in primates have resulted in important insights
into the evolution of gene expression levels and the
traits they are associated with [5]. Yet, we are also find-
ing that comparative studies of gene expression patterns
alone—without additional context or perturbation—pro-
vide relatively little insight into adaptive phenotypes. To
a large degree, the challenge is that comparative studies
in primates are extremely restricted because we only
have access to a few types of cell lines and to a limited
collection of frozen tissues [5]. Frozen post-mortem tis-
sues are not optimal templates for many functional gen-
omic assays; as a result, we lack datasets that survey
multiple dimensions of gene regulatory mechanisms and
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phenotypes from the same individuals [5, 6]. Moreover,
because it is rare to collect a large number of tissue sam-
ples from the same donor (particularly in non-human
primates), we have never had the opportunity to study
cross-species, population-level patterns of gene regula-
tion in multiple tissues or cell types derived from the
same genotype (same donor) in non-human apes.
Recent technological developments in the generation

and differentiation of induced pluripotent stem cells
(iPSCs) now provide a renewable, staged, and experi-
mentally pliable source of terminally differentiated cells.
Utilizing time course differentiation protocols, we can
examine the context-dependent nature of gene regula-
tion, as well as the temporal roles of gene expression as
different cell types and developmental states are estab-
lished [7]. This approach seems promising and, indeed, a
handful of recent studies have been successful in utiliz-
ing iPSCs from humans and chimpanzees to characterize
the uniquely human aspects of craniofacial development
[8] and cortex development [9, 10].
Primate iPSC panels are a particularly attractive sys-

tem for comparative studies of early development. Based
on studies in model organisms, we expect differentiation
into a germ layer in a mammalian system to be ex-
tremely conserved [11]. We thus set out to ask whether
we can recapitulate a conserved early developmental
gene regulatory trajectory in human and chimpanzee
iPSC-derived cell lineages. Our rationale is that if we can
demonstrate the fidelity of the iPSC model in this con-
text, it would provide support for the notion that the
iPSC system can be a useful tool for future comparative
studies of dynamic biological processes.
To this end, we chose to differentiate iPSCs from hu-

man and chimpanzee into the endoderm germ layer,
from which essential structures in the respiratory and
digestive tracts are ultimately derived. These structures
include the liver, the pancreas, the gall bladder, the lung,
the thyroid, the bladder, the prostate, most of the phar-
ynx, and the lining of the auditory canals and the larynx
[11]. Using this system, we found evidence to support
developmental canalization of gene regulation in both
species, 24 h after differentiation from an iPSC state.

Results
Study design and data collection in the iPSC-based
system
To perform a comparative study of differentiated cells,
we used a panel of six human and four chimpanzee iPSC
lines previously derived and characterized by our lab
[12, 13]. We differentiated the iPSCs into definitive
endoderm, a process that was completed over three days
[7], and included replicates of cell lines that were inde-
pendently differentiated (see “Methods”; Fig. 1a). We
performed the differentiations in two batches, with equal

numbers of human and chimpanzee samples in each
batch. We harvested RNA from iPSCs (day 0) before dif-
ferentiation and subsequently every 24 h to capture inter-
mediate cell populations corresponding to primitive streak
(day 1), endoderm progenitors (day 2), and definitive
endoderm (day 3). Overall, we collected a total of 32
human samples and 32 chimpanzee samples (Fig. 1a). We
confirmed that RNA from all samples was of high quality
(Additional file 1: Table S1; Additional file 2: Figure S1)
and subjected the RNA to sequencing to estimate gene
expression levels. Detailed descriptions of all individual
donors, iPSC lines, sample processing and quality, and
sequencing yield can be found in the “Methods” section
and Additional file 1: Table S2A and B.
To estimate gene expression levels, we mapped reads

to the corresponding genome (hg19 for humans and
panTro3 for chimpanzees) and discarded reads that
did not map uniquely [14]. We then mapped the reads
to a list of previously described metaexons across
30,030 Ensembl genes with one-to-one orthology be-
tween human and chimpanzee [6, 15]. We eliminated
genes that were lowly expressed in either species, re-
moved data from one clear outlier sample (H1B at Day 0;
Additional file 2: Figure S2A), and normalized the read
counts (see “Methods”; Additional file 2: Figure S2B
and C) to obtain TMM- and cyclic loess-normalized
log2 counts per million (CPM) values for 10,304 ortholo-
gous genes (Fig. 2a; Additional file 3). These normalized
gene expression values were used in all downstream
analyses.
Beyond the gene expression data we collected, in the

second batch, we assessed the purity of the cell cultures
at each day of the time course using flow cytometry with
a panel of six canonical markers. These markers corres-
pond to the cell types we expected in the different stages
of differentiation (Fig. 1b; Additional file 2: Figure S3A
and B). We also assessed the purity of the samples in the
first batch of differentiation; however, due to a technical
problem with the antibodies, those values are not in-
formative. Overall, the FACS-based estimated purity
levels for the sample in the second batch are high and
consistent across species in days 0 and 1 (> 0.79 and >
0.66, respectively; Fig. 1b; Additional file 1: Table S3;
Additional file 2: Figures S3 and S4). On days 2 and 3,
however, purity levels were considerably lower in the
human than in the chimpanzee samples (Fig. 1b;
Additional file 1: Table S3; Additional file 2: Figures S3
and S4). On the one hand, this inter-species difference
in purity in the later stages of the time course limits the
insight we can draw from this comparative study, as we
discuss throughout the paper. On the other hand, be-
cause our main focus is to confirm that this early devel-
opmental process is conserved in the two species, the
observation of strong conservation, which we discuss
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Fig. 1 Study design and quality control analyses. a Study design. Samples from four chimpanzees and six humans were studied at four time
points during endoderm development. We included two technical replicates from each of the chimpanzees and two technical replicates for two
of the six humans. iPSC induced pluripotent stem cell, PS primitive streak, EP endoderm progenitor, DE definitive endoderm. b Purity analysis. Cell
type composition at each day based on FACS analysis (see “Methods”), estimated by k-means clustering. c Heat map of normalized log2(CPM) as
a measure of expression levels of TFs that are known to be highly expressed in one or more stages in the differentiation to endoderm [7]. Generally,
samples from the same day, regardless of species, cluster together
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below, is robust with respect to this inter-species tech-
nical difference in purity.

iPSCs-based system effectively models primate endoderm
differentiation
Given the potential impact of study design properties on
gene expression data and subsequent conclusions [16],
as a first step of our analysis, we confirmed that none of
our recorded variables related to sample processing
(apart from sample purity, as stated above) were con-
founded with our main variables of interest, namely day
and species (see “Methods”; Additional file 1: Table
S4A–D; Additional file 2: Figures S2C and S5). Once we
were confident that our study design provided an effect-
ive dataset for addressing our biological questions of
interest, we performed a global survey of the gene ex-
pression data using principal component analysis (PCA).
This analysis indicated that the primary sources of gene
expression variation are differentiation day (Fig. 2a; Add-
itional file 1: Table S4A–E; regression of PC1 by differ-
entiation day, P < 10−15), followed by species (regression
of PC2 by species, P < 10−15). This observation was also
supported by clustering analysis based on the correlation
matrix of pairwise comparisons of the gene expression
levels (Additional file 2: Figure S6).
After characterizing global gene expression patterns, we

focused on the expression of specific transcription factors
(TFs) with known roles in developmental pathways (Fig. 1c)

and other previously known lineage-specific markers [7, 17,
18]. Consistent with the results of our FACS analysis,
we observed that the temporal trajectory of expression
levels of known lineage-specific markers and TFs further
supported the assumed differentiation stages in each day
(e.g. primitive steak-specific markers had increased expres-
sion on day 1, Fig. 2b). The lineage-specific markers and
TFs were expressed at comparable levels in humans and
chimpanzees at the relevant time points, consistent with
previous literature [7, 17], and further supporting the val-
idity of our in vitro system (Additional file 2: Figure S7A).

Comparative assessment of gene expression changes
during differentiation
To identify gene expression differences between humans
and chimpanzees throughout the time course, we used
the framework of linear models (see “Methods”). We
first assessed how many genes were differentially
expressed (DE) between species at each time point inde-
pendently. Using this approach, we classified thousands
of genes as DE between the species (at FDR of 5% 4408–
5077 genes are classified as inter-species DE at different
times points; Fig. 3a; Additional file 1: Table S5A–D).
Even at a fixed FDR cutoff, nearly half of the genes that
were classified as DE between the species at any single
time point were found to be DE in all time points (2269
genes). Nearly one-third of genes whose expression was

Fig. 2 General patterns in the data. a Normalized log2(CPM) expression measurements for all genes projected onto the axes of the first two PCs.
Color indicates day. Shape represents species. PC1 is highly correlated with differentiation day (r = 0.92). PC2 is highly correlated with species
(r = 0.93). b Box plots of normalized expression values for genes with known roles in endoderm development
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measured in our experiment were not classified as DE
between the species at any time point (2862 genes, 28%).
We proceeded to consider temporal expression pat-

terns within species. When analyzing expression changes
across consecutive time points, we had more power to
detect temporal gene expression differences in chimpan-
zee compared to humans (Figs. 3b, c and 4; Additional
file 1: Table S6A–F), especially with respect to the tran-
sition between endoderm progenitors (day 2) and defini-
tive endoderm samples (day 3). This property is likely
related to the inter-species difference in purity of sam-
ples from these days, as discussed earlier. When we
accounted for incomplete power (see “Methods”), we
found a remarkably consistent pattern whereby 77% of
DE genes between iPSCs and primitive streak in humans
are also DE between these states in chimpanzees; simi-
larly, 77% of DE genes between primitive streak and
endoderm progenitors in humans are also DE between
these states in chimpanzees; and 80% of DE genes be-
tween endoderm progenitors and definitive endoderm in
humans are also DE between these states in chimpan-
zees (Additional file 1: Table S7). As might be expected
from these observations, we found that the relationship
between day and gene expression was largely independ-
ent of species (Fig. 3d; Additional file 1: Table S8A–C).

Fig. 3 Number of DE genes in pairwise analyses. Venn diagrams of a DE genes at each day, b DE genes between consecutive time points in
humans, c DE genes between consecutive time points in chimpanzees, d genes with a significant species–time point interaction effect at each
day (DE was classified at FDR of 5% in all cases)

Fig. 4 High sharing of DE genes across species. A circos diagram with
the number of shared, human-specific, and chimpanzee-specific DE
genes across time points. There is a high degree of sharing of DE
genes (yellow ribbon), particularly from day 0 to 1 and day 1 to 2
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Joint Bayesian analysis reveals conservation of temporal
gene expression profiles
In an attempt to further overcome issues of incomplete
power affecting these original naïve pairwise DE compar-
isons, and to account for dependency in data from dif-
ferent time points, we utilized a Bayesian clustering
approach implemented by Cormotif [19]. This joint
modeling technique leverages expression information
shared across time points to identify the most common
temporal expression patterns (referred to as “correlation
motifs”).
We identified diverse expression patterns that emerge

as differentiation progresses in both species (Fig. 5;
Additional file 1: Table S9A) as well as a set of 3789
genes whose expression is not significantly altered
throughout the time course (8004 genes could be reli-
ably classified into a motif, Additional file 1: Table S9A;
Additional file 2: Figure S8A). This analysis revealed fur-
ther evidence for conserved gene expression patterns, as
75% of genes assigned were assigned to motifs with the
same or similar temporal regulatory trajectories in both
species (Fig. 5). Further, when we excluded data from
the definitive endoderm samples, where we suspect that
a particularly large inter-species difference in sample
purity has increased gene expression variance between

the species, we assigned 85% of genes to motifs with the
same temporal trajectories across species. These obser-
vations are robust with respect to the number of correl-
ation motifs, the method used to combine data from
technical replicates, which days were included in the
pairwise comparisons, and the inclusion of all 10,304
genes in the analysis (Additional file 2: Figures S8B–D
and S9; Additional file 4). Our observations are also
robust with respect to the overall approach used to
estimate and compare gene expression trajectories
(Additional file 2: Figure S7B; Additional file 4).
We found two correlation motifs with a potential

marked difference between the species at a given stage
(motif 4 with 187 genes and motif 7 with 686 genes). In
both of these motifs, data from the earliest time points
were conserved but gene regulation in the final stage
(days 2–3) differed between the species. The genes in
these motifs were enriched for Gene Ontology (GO)
annotations related to animal organ development (e.g.
NRTN, PITX2, RDH10), anatomical structure morpho-
genesis (ARHGDIA, EHD2, SERPINE1), regulation of
developmental process (FLRT3, LOXL2, SEMA7A), and
regulation of cell differentiation (DIXDC1, ENC1, IRF1;
Additional file 1: Table S9B) [20]. These four GO anno-
tations were not enriched in other similarly sized motifs
or group of motifs (Additional file 1: Table S9C–E) [20,
21]. Unfortunately, due to interspecies differences in
purity at the later days, we cannot definitively determine
whether these enrichments are driven by biological or
technical differences.

Fig. 5 Gene expression motifs. Correlation motifs based on the
probability of differential expression across days for each species
with the number of genes assigned to each correlation motif. The
shading of each box represents the posterior probability that a gene is
DE between two time points in a given species. Each row (“correlation
motif”) represents the most prevalent expression patterns. Out of
10,304 genes, 8004 were assigned to one correlation motif in
this model

Fig. 6 Global reduction of variation in gene expression from the
iPSCs to primitive streak state. Box plot of the log2 variance of
expression levels for each gene. Variation in gene expression levels
are significantly reduced from iPSCs to primitive streak (P < 10−15 in
both species) but not in subsequent time points (P> 0.5 in both species)
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Reduced variation in gene expression levels at primitive
streak
We next turned our attention to differences in the mag-
nitude of variation in gene expression levels across time
points, within and between species. Previous studies re-
ported that variation in gene expression levels between
individuals was lower in iPSCs than in differentiated
cells ([22, 23] and Additional file 2: Figure S10A). We
were thus interested in gene expression variation during
iPSC differentiation in our comparative system.
We first compared within-species expression variation

for all 10,304 orthologous genes across time points. We
found a reduction in inter-individual variation of gene
expression levels as the human samples differentiated
from iPSCs to primitive streak (P < 10−15, Fig. 6). We
also detected this pattern when we considered the chim-
panzee samples (P < 10−15, Fig. 6), but the effect size in
chimpanzee is much smaller. We did not identify a simi-
lar reduction in variation in gene expression levels in
any other transition during the time course in either
species (P > 0.5 for testing the null of no change in vari-
ance of gene expression from day 1 to day 2 and from
day 2 to day 3 in each species). As mentioned above, the
purity of the samples in days 2 and 3 is lower than that
of samples in days 0 and 1, though we only successfully
measured the purity values for the samples that were
processed in the second batch. We accounted for the
measured purity values by regressing them out of the
gene expression data. As might be expected, accounting
for the purity values resulted in different patterns ob-
served for the data from days 2–3. Yet, the reduction in
variation from day 0 to day 1 persisted in both species
even after we accounted to the purity values (Additional
file 2: Figure S10B).
We turned our attention to regulatory divergence

between species. The overall human–chimpanzee diver-
gence in gene expression levels was also slightly reduced
as samples differentiated from iPSCs to primitive streak
(Mann–Whitney U test, P = 0.04; Additional file 2:
Figure S10C), but not in any other transition during the
time course. Furthermore, while we classified 504 genes
as DE between humans and chimpanzees exclusively in
iPSCs (of a total of 4475 DE genes in iPSCs, FDR = 5%;
Fig. 3a; Additional file 1: Table S10), we found only 279
genes that were DE exclusively in primitive streak sam-
ples (from a total of 4408 DE genes for the primitive
streak; Fig. 3a; Additional file 1: Table S10). The number
of genes that are DE between the species exclusively in
endoderm progenitors and definitive endoderm samples
is higher (at FDR of 5%, 402 and 934, respectively;
Fig. 3a; Additional file 1: Table S10). The observation
of a smaller number of genes that are DE exclusively
in primitive streak samples compared with iPSCs is
robust with respect to normalization method, purity

of the samples, FDR cutoff, and differentiation batch
(Additional file 1: Table S10; Additional file 2: Figures S2C,
10C, and S11). While the difference in divergence and
the number of DE genes between these differentiated
states is modest and could potentially be explained
by a number of non-biological factors (including the
differences in purity in the later day), this observation
was intriguing to us.
We thus focused on the transition between iPSCs to

primitive streak in both species. The recorded technical
factors (including purity for these states) are highly
similar across biological conditions in days 0 and 1, and
therefore are not likely to explain this observation
(Additional file 1: Table S11). We thus proceeded to
analyze the trajectory of variation in expression level on
an individual gene basis. In this analysis, we were par-
ticularly interested to address whether the individual
genes that undergo a change in variation of expression
levels are shared across species. An observation of excess
sharing could not be explained by inter-species differ-
ences in technical factors and hence would provide sub-
stantial support to the notion of conserved reduction of
regulatory variation as the samples begin their differenti-
ation process.
We used F tests to identify genes whose within-species

variation in expression levels differs across time points
(see “Methods”). Distributions of P values from all tests
can be found in Fig. 7a and b and Additional file 1: Table
S12A and B, which indicate that for a large number of
genes, within-species variation in expression levels were
reduced exclusively in primitive streak samples. Indeed,
while we did not have much power to detect differences
in variation of individual gene expression levels between
states (due to the small number of individuals in each
species), we observed a clear excess of small P values
when we tested the null hypothesis that there was no
reduction in gene expression levels from day 0 to day 1.
Using Storey’s approach [24] to account for incomplete
power, we estimated that within-species variation in ex-
pression levels was reduced as the samples differentiate
from iPSCs to the primitive streak in 83% and 27% of
human and chimpanzee genes, respectively (Fig. 7a
and b). This result was robust with respect to the
method used to calculate the proportion of true
positives [25] (Additional file 2: Figure S12). We did
not observe reduced variation of gene expression in
any other differentiation state in our data (Fig. 7;
Additional file 2: Figure S13A).
We next asked about the overlap of genes with re-

duced variation in primitive streak samples across the
two species. Specifically, we asked whether human genes
with lower within-species variation in expression levels
in primitive streak are more likely to show the same pat-
tern in chimpanzee genes. For this analysis, we again
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Fig. 7 Conserved patterns of reduced variation in gene expression at primitive streak. We plotted the P value distributions of F tests of the null
hypothesis that there is no reduction in variation in gene expression levels as samples progress along the time course in human (a) and chimpanzee
(b) samples. π̂0 is the estimated proportion of null tests in each distribution. In the next four panels, we plotted the P value distribution for the same
test, but included only genes whose variation was classified as reduced between states in the other species; thus in (c) we plotted P value distributions
of F tests in chimpanzees only for genes who variation was classified as reduced (P < 0.05) in humans and in (d) we did the reverse. In (e) (chimpanzee
conditional on human) and (f) (human conditional on chimpanzee), we plotted the P value distributions of F tests of the null hypothesis that there is
increase in variation in gene expression levels as the samples progress from day 1 to 2
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used the Storey approach [24] to estimate the proportion
of true-positive tests in one species, conditional on the
observation of reduced variation in the other species
(see “Methods”). We estimated that 47% of genes whose
variation in expression level is reduced in human primi-
tive streak samples showed a similar pattern in chimpan-
zees (under a permuted null we expect 27%, P < 10−4,
Fig. 7c; Additional file 1: Table S13). When we condition
on observing a reduction of variation in chimpanzees,
the overlap with humans was 84% (under a permuted
null we expect 83%, P = 0.38; Fig. 7d). This high value
was not unexpected because of the initial large propor-
tion of human genes with a clear signature of reduced
variation in primitive streak. Because any technical
differences that are confounded with species would
contribute to increased inter-species differences, these
observations support, yet probably underestimate, the
degree of high conservation of regulatory patterns in
humans and chimpanzees.
Using a similar approach to account for incomplete

power, we also found a marked overlap of genes whose
expression underwent a significant increase in variation
throughout the transition from primitive streak to
endoderm progenitors (Fig. 7e, f; Additional file 2:
Figure S13B). All our observations were robust to a wide
range of statistical cutoffs used to classify genes whose
within-species variation changes across the differentiation
states (Additional file 2: Figures S14–S16). In particular,
because these are reports of conserved patterns, they are
likely to underestimate the degree of conservation given
technical differences between the species, including the
difference in purity of the samples on days 2 and 3.
Finally, we sought to provide insight into the potential

functional consequences of our observations. Interest-
ingly, genes that show reduction of variation in gene ex-
pression levels in both species are enriched for GO
annotations [20] related to development, including neuro-
epithelial cell differentiation (e.g. MYCL, NODAL, CDH2),
cell migration during gastrulation (FGF8, MIXL1), and
trophectodermal cell differentiation (CNOT3, EOMES,
SP3; Additional file 1: Table S14). Moreover, we found
that null mutation in mouse orthologs [26] of the primate
genes with shared reduction of expression variation in
our study were more highly associated with embryonic
lethality than null mutation in mouse orthologs of
primate genes that did not show that pattern (41% vs
28%, P < 10−4 [27, 28]).

Discussion
Our results indicate a strongly conserved temporal ex-
pression profile across species during early differenti-
ation. We observed a large number of genes with similar
expression profiles across species. Indeed, we found that

DE genes between differentiation states are shared be-
tween the two species far beyond what is expected by
chance alone. When we jointly analyzed data from the
entire time course, nearly all the gene expression trajec-
tory motifs we identified, including 75% of all genes
assigned to a motif, are shared across the two species
(Fig. 5). Still, our observations likely underestimated the
proportion of shared regulatory patterns due to incom-
plete power.
Our finding that regulatory trajectories throughout

endoderm differentiation are generally highly conserved
in these two species was expected. Yet, our observation
that a large number of genes are associated with con-
served reduced regulatory variation in a specific transi-
tion state is a somewhat surprising property. Indeed, in
our opinion, the most significant finding of this study is
the observation that regulatory variation is reduced in
both humans and chimpanzees as the cell cultures dif-
ferentiate from iPSCs to primitive streak. We found a
marked overlap between the species in the specific genes
that experience this reduction of regulatory variance, in-
dicating a high degree of conservation in this process.
Before we discuss the potential implications of our ob-

servations, we will first discuss a few considerations re-
garding the iPSC-based differentiation models. We argue
that the use of iPSC models allows for greater control
and transparency of comparative studies in primates, in-
cluding a better appreciation of caveats that have always
affected such studies but were typically cryptic.
For more than a decade, comparative genomics in pri-

mates has relied on the use of frozen tissues. An implicit
assumption underlying the use of these tissues has been
that they faithfully reflect interspecies gene regulatory
similarities and differences. Yet, we know that gene regu-
lation in these tissues was likely impacted by non-genetic
factors, such as the individual’s diet, age, and cause of
death. In addition, it is nearly impossible to stage frozen
tissues with respect to cellular composition. In fact, in
practically all studies of comparative data from frozen tis-
sues, cellular composition was not even measured. Indeed,
comparative studies of gene expression in primate frozen
tissue samples, including those by our own group, simply
assumed that most observed patterns are driven by gen-
etic control.
In contrast to frozen tissues, the primate iPSC-based

differentiation model allows us to minimize the impact
of non-genetic (e.g. environmental) factors. We can also
control to a large extent the cellular composition of the
samples and, more importantly, we can measure and ac-
count for differences in cellular composition. Compara-
tive experiments with iPSC-based differentiation are
certainly not flawless, but they allow us to more expli-
citly characterize, and often account for, confounding
factors than was possible with frozen tissue samples. In
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the case of the current study, we used human and chim-
panzee iPSC lines that were generated, and differenti-
ated, using the same protocols. We made considerable
efforts to balance the majority of sample processing
properties related to our study design with respect to
species and time point. For example, the two differenti-
ation batches we used included multiple human and
chimpanzee lines (which we also balanced with respect
to gender). Admittedly, in vitro differentiation protocols
are not identical to natural developmental signaling and
natural cell-driven developmental processes may be
overridden by our administered media conditions. More-
over, although we used an identical differentiation proto-
col across the entire experiment, we observed a wide
distribution of cell purity across samples, with a marked
difference between the species in the purity of cultures
from days 2 and 3.
The fact that we are able to measure and discuss

purity and cellular composition as a potential flaw in our
study is an advantageous property of the iPSC-based
differentiation system. At present, we cannot exclude the
possibility that the observed differences in cellular het-
erogeneity across time points may have driven the obser-
vation of reduced regulatory variation exclusively in
primitive streak samples. In our opinion, however, this is
unlikely, though our arguments are mostly circumstan-
tial and we will not be able to provide a definitive answer
without additional single-cell experiments (which will be
the scope of a future study). Our intuition is based on
the following properties: first, the iPSC cultures are the
most homogenous in our experiment and we neverthe-
less observe a reduction of variation in gene expression
levels in day 1 samples. Second, the conclusion of high
sharing and similarities between species should be
robust (conservative, in fact) with respect to technical
differences between species, including in purity. Third,
when we account for the purity values measured for the
second batch of samples, the relative expression patterns
remain similar.
That said, to provide a definitive answer, we will re-

visit these questions with an experimental design that
involves single-cell data from the same comparative
differentiation trajectory. Single-cell RNA-sequencing
(scRNA-seq) data will also be able to shed light on our
observation that gene regulation in definitive endoderm
(day 3), unlike earlier days, does not indicate strong
conservation between the species. In definitive endo-
derm samples, we observed the largest number of DE
genes across species, the smallest number of DE
genes between two consecutive time points in
humans, and the lowest overlap in DE genes between
time points. Unlike in the human samples, the chim-
panzees had a relatively consistent number of DE
genes between any two consecutive time points. Some

of these observations might be explained by the cell
purity difference between species.
It should be noted that the effect sizes for the reduc-

tion in variation from day 0 to day 1 are small in the
chimpanzee samples and that the P value distributions
do appear quite different across species. These differ-
ences, however, do not invalidate our finding that there
is a significant overlap of genes that undergo a reduction
of variation in gene expression levels in both species. If
the reduction of variation in gene expression levels were
spurious within each species, then we would not expect
a statistically significant overlap of such genes. The
observation of reduced regulatory variation is rather un-
usual in general, partly due to the unusual design of our
study. Indeed, only few comparative studies have been
designed to allow one to measure changes in variation
over time. One such example, from a completely differ-
ent context, can be found in a previous study in which
monocytes from humans, chimpanzees, and rhesus
macaques, which were stimulated with lipopolysaccharide
(LPS) to mimic infection [29]. When comparing gene
expression in LPS-stimulated monocytes to that of
non-stimulated cells, the authors found a reduction of
inter-species variation in gene expression levels in a num-
ber of key TFs involved in the regulation of TLR4-depen-
dent pathways.
In our study, we found enrichment for genes in develop-

mental pathways among genes with conserved reduction
of expression variation. This observation is consistent with
the notion [30] that developmental pathways need to be
tightly regulated in general. This notion is also supported
by deep conservation and lethality upon disruption seen
in many of these genes. Null mutations in mouse ortho-
logs of > 40% of the genes with conserved reduced regula-
tory variation at primitive streak are associated with
embryonic lethality. For example, Xenopus laevis embryos
with null mutations in the ortholog of human MIXL1 ex-
hibit abnormalities in primitive streak and node formation
[31]. Similarly, homozygous null MIXL1 mice have abnor-
mal mesoendoderm development and do not survive to
birth [32]. EOMES homozygous null mice lack trophoec-
toderm outgrowth [33] and do not properly form the
definitive endoderm [34]. This mutation is lethal early in
gestation. Overall, regulation of these genes is likely to be
finely tuned at early development.
Indeed, reduced regulatory variation early in the endo-

derm differentiation process may be driven by the prop-
erty of canalization during development. The theory of
canalization posits that developmental processes end in
a finite number of states despite minor environmental
perturbations [30, 35, 36]. Canalization is fundamentally
linked to evolutionary states [35] and thus phenotypic
robustness; therefore, even when reduced variation in
gene expression levels is observed in cell culture, the
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explanation of canalization is intuitively appealing con-
sidering the discrete nature of cell types in an adult ani-
mal. Our results suggest that stages subsequent to
primitive streak may follow a more relaxed transcrip-
tional regulation with higher influence of individual
genotypes.

Conclusions
Our observations may be consistent with activation of
deeply conserved regulatory programs at the initial
stages of gastrulation followed by processes less affected
by evolutionary constraint and therefore potentially
more amenable to adaptation. In other words, our re-
sults support the expectation that gastrulation is a highly
canalized and conserved process in humans and chim-
panzees. More generally, we believe that despite limita-
tions to studying comparative development using iPSC
models, which we have discussed, this system provides
the opportunity to study previously unappreciated
aspects of primate biology.

Methods
Human and chimpanzee iPSC panels
In this study, we include four chimpanzee iPSC lines (two
males, two females) from a previously described panel
[12] and six human lines (three males, three females) [13]
matched for cell type of origin, reprogramming method,
culture conditions, and closely matched to passage num-
ber (median passage was within one passage across species
and differentiation batches). We evaluated iPSC lines for
pluripotency measures, differentiation potential, lack of
integrations, and normal karyotypes as described previ-
ously [12, 13] (Additional file 2: Figures S17 and S18).
We identified one human individual (H5) that tested
positive for episomal vector sequence (Additional file 2:
Figure S18). This individual was not an obvious outlier in
any of our data (Figs. 1b and c and 2), thus we choose to
include it in our study. Original chimpanzee fibroblast
samples for generation of iPSC lines were obtained from
the Yerkes Primate Center under protocol 006–12. Hu-
man fibroblasts samples for generation of iPSC lines were
collected under University of Chicago IRB protocol 11–
0524. Feeder-free iPSC cultures were initially maintained
on Growth Factor Reduced Matrigel using Essential 8
Medium (E8) as previously described. After ten passages
in E8, all cell lines were transitioned to iDEAL feeder-free
medium that was prepared in-house as specified previ-
ously [37]. Cell culture was conducted at 37 °C, 5% CO2,
and atmospheric O2.

Endoderm differentiation
To produce definitive endoderm and intermediate cell
types, we followed a recently published three-day proto-
col that systematically identified and targeted pathways

involved in cell fate decisions, at critical junctures in
endoderm development [7] with minimal modification.
At 12 h before initiating differentiation, iPSC lines at
70–90% confluence were seeded at a density of 50,000
cells/cm2. Basal medial for differentiations consisted of
50/50 IMDM/F12 basal media supplemented with
0.5 mg/mL human albumin, 0.7 μg/mL Insulin, 15 μg/mL
holo-Transferrin, 1% v/v chemically defined lipid concen-
trate, and 450 uM 1-thioglycerol (MTG). For differenti-
ation, basal media was supplemented with the following:
day 0 to day 1 (Primitive streak induction) media included
100 ng/mL Activin A, 50 nM PI-103 (PI3K inhibitor),
2 nM CHIR99021 (Wnt agonist), days 1→ 2 (total of two
media changes) media included 100 ng/mL Activin A and
250 nM LDN-193189 (BMP inhibitor). Two independent
differentiation batches were performed, resulting in
replicates for a subset of individuals (Additional file 1:
Table S2). Each chimpanzee was replicated, while only
two human individuals were replicated across the two
batches. Replicates were sex-balanced both within and
across species. Cell culture was conducted at 37 °C, 5%
CO2, and atmospheric O2.

Purity assessment using flow cytometry
Cells were dissociated using an EDTA-based cell release
solution, centrifuged at 200 × g for 5 min at 4 °C and
washed with PBS. Subsequently, 0.5–1 million cells were
fixed and permeabilized using the Foxp3 / Transcription
Factor Staining Buffer Set from eBioscience. Cells were
fixed at 4 °C for 30 min before washing once using FACS
buffer (autoMACS® Running Buffer, Miltenyi Biotech). A
total of 150,000 cells were transferred to BRAND lipo-
Grade 96-well immunostaining plates and centrifuged at
200 × g for 5 min at 4 °C. Cells were rinsed in FACS
buffer then resuspended in the staining solution. A sin-
gle master mix containing 1X Permeabilization buffer
(eBioscience), BD Horizon Brilliant Stain Buffer, and
antibodies was prepared and 30 μL of this mix was
added to each well containing cells.
In order to estimate purity for each day of the time

course, we utilized a mixture of six different directly labeled
antibodies: OCT3/4 (BV421 labeled clone 3A2A20, Biole-
gend), SOX2 (PerCP-Cy5.5 labeled clone O30–678, BDbio),
SOX17 (Alexa 488 labeled clone P7–969, BDbio), EOMES
(PE-Cy7 labeled clone WD1928, eBioscience), CKIT (APC
labeled clone 104D2, Biolegend), and CXCR4 (BV605 la-
beled clone 12G5, Biolegend). All antibodies were used at
the manufacturer-recommended dilution except CKIT and
CXCR4, which were used at one-tenth of the manufac-
turer’s specified concentration (15 ng of each antibody in
final volume of 30 μL per staining). We found that the
manufacturer-recommended dilution produced acceptable
results for live cells; however, upon fixing, we observed
non-specific binding by all populations. Thus, we
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determined the optimal antibody titer to maximize the
separation between iPSCs (biological negative) and day 3
definitive endoderm. We found this optimal concentration
to be in concordance with that quantity specified by a pre-
vious publication using the same antibody clone from a dif-
ferent manufacturer [38]. Cells were stained for 1 h at 4 °C
and subsequently washed 3× using a solution of BD Hori-
zon Brilliant Stain Buffer containing 1X Permeabilization
buffer; on the final wash, cells were resuspended in 100 μL
FACS buffer for acquisition on a BD LSR II flow cytometer.
After data acquisition compensation, we used the pro-

gram FlowJo (http://docs.flowjo.com/d2/credits-2/) to de-
termine scaling. To do so, we used data from single stained
compensation beads (Life Technologies) that were stained
and collected in parallel. Live, intact, single cells were gated
based on FSC and SSC channels as previously described
[7]. Day 0 iPSC purity was estimated by dual positive
OCT3/4 and SOX2 [39] as well as negative staining for
EOMES. Day 1 primitive streak purity was estimated pri-
marily based on EOMES Positive staining [17, 40] but also
negative staining for SOX17. Day 2 endoderm progenitor
purity was quantified by positive staining for SOX17 expres-
sion [41] (CKIT could also be used, as its level peaks at day
2) and negative staining for CXCR4. Finally, day 3 definitive
endoderm purity was estimated by double staining for
CKIT and CXCR4 [38]. For all time points, cells were
stained with the full complement of markers; initial gates
were defined using fluorescence intensity levels of an
iPSC line as a biological negative control for days 1,
2, and 3. For day 0 (iPSCs), a definitive endoderm
time point was used to quantify the biological nega-
tive for OCT3/4 and SOX2 fluorescence intensity. All
iPSC lines regardless of species were at comparable
fluorescence intensity levels, so we choose a repre-
sentative chimp and human line to use as our stand-
ard for defining and refining all gates.
Fully resolving all time points simultaneously required

us to define high and low staining gates, which were
determined using the time points for that marker’s
maximum and minimum fluorescence intensities. All
gates were refined using the same two representative
chimpanzee and human lines as used for determining bio-
logical negatives, resulting in one universal gating scheme
that was applied to both species and all time points. A
complete gating scheme is outlined in Additional file 2:
Figure S3A, with the final purity results for the second
batch of differentiation in Additional file 1: Table S3. The
samples in the first differentiation batch demonstrated
hallmarks of improper fixing (highly non-specific staining
of antibodies, most notably for surface markers CXCR4
and CKIT); thus, we were unable to determine reliable
purity estimates for the first differentiation batch.
Purity was also determined using k-means clustering

of minimally preprocessed flow cytometry data. After

applying the same live, intact, single-cell gating scheme
used above, we exported compensated fluorescence
channel values for processing in R. First, we visually
inspected population separation by performing PCA on
compensated fluorescence channel values. We randomly
sampled 1000 cells from each individual at each day,
resulting in a total of 4000 randomly sampled cells per
individual and 31,000 cells overall (no data were col-
lected for individual H4 at day 3). To assign cells to a
specific developmental day, we performed K-means clus-
tering using K = 4 on a correlation matrix representing
pairwise correlations between all 31,000 single cells.
Four relatively well separated populations were visible
after projection onto the first three principal compo-
nents (PCs) (Additional file 2: Figure S4, top panel) and
cluster assignment on the reduced data is shown in
Additional file 2: Figure S4, middle and bottom panels.
We estimated cellular composition at each day by using
the PCA to match clusters to a day assignment (Fig. 1b).

RNA extraction, library preparation, and sequencing
We collected RNA from iPSCs (day 0) before adding day
1 media and then every 24 h during the differentiation
time course for a total of four time points representing
intermediate cell populations from iPSCs to definitive
endoderm (Additional file 2: Figure S1). We extracted
the RNA using the ZR-Duet DNA/RNA MiniPrep kit
(Zymo) with the addition of an on column DNAse I
treatment step before RNA elution. We used non-
strand-specific, polyA capture to generate RNA-seq li-
braries according to the Illumina TruSeq protocol. To
estimate the RNA concentration and quality, we used
the Agilent 2100 Bioanalyzer (Additional file 1: Table S1;
Additional file 2: Figure S1). We added barcoded adap-
tors (Illumina TruSeq RNA Sample Preparation Kit v2)
and sequenced the 50 bp single-end RNA-seq libraries on
the Illumina HiSeq 4000 at the Functional Genomics Core
at University of Chicago on two flowcells (Additional file
1: Table S2). To minimize the introduction of biases due
to batch processing, we chose the RNA extraction batches,
library preparation batches, sequencing pools, adaptor
names, and flowcells in a manner that maximally parti-
tioned the biological variables of interest (day, species, cell
line; Additional file 1: Tables S2A and S4).
We generated a minimum of 14,424,520 raw reads per

sample. We used FastQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) to confirm that the
reads were high quality.

Quantifying the number of RNA-seq reads from
orthologous genes
We mapped human reads to the hg19 genome and
chimpanzee reads to panTro3 using TopHat2 (version
2.0.11) [14], allowing for up to two mismatches in each
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read. We kept on only reads that mapped uniquely.
To prevent biases in expression level estimates due to
differences in messenger RNA transcript size and the
relatively poor annotation of the chimpanzee genome,
we only kept reads that mapped to a list of ortholo-
gous metaexons across 30,030 Ensembl genes avail-
able for the hg19 and panTro3 genomes as described
previously [6]. Gene expression levels were quantified
using the featureCounts function in SubRead 1.4.4
[42]. For one sample (C2B at Day 0), the number of
raw reads was approximately double the second high-
est number of raw reads. Therefore, we subsampled
the raw reads to approximately the same number of
raw reads as the second highest sample.
We performed all downstream processing and analysis

steps in R (version 3.2.2) unless otherwise stated.

Transformation and normalization of RNA-seq reads
After receiving the raw gene counts, we calculated the
log2-transformed CPM for each sample using edgeR
[43]. To filter for the lowly expressed genes, we kept
only genes with an expression level of log2(CPM) > 1.5 in
at least 16 samples per species [44]. For the remaining
genes, we normalized the original read counts using the
weighted trimmed mean of M-values algorithm (TMM)
[44] to account for differences in the read counts at the
extremes of the distribution and calculated the TMM-
normalized log2-transformed CPM.
When we performed PCA using the TMM-normalized

log2-transformed log2(CPM) values, we found one out-
lier (H1B at Day 0, Additional file 2: Figure S2A). We re-
moved this sample from the list of original gene counts.
We filtered for the lowly expressed genes by retaining
genes with an expression level of log2(CPM) > 1.5 in at
least 15 human samples and at least 16 chimpanzee sam-
ples. In total, 10,304 genes remained. We performed
TMM-normalization and then performed a cyclic loess
normalization with the function normalizeCyclicLoess
from the R/Bioconductor package limma [45, 46]. We
found that the TMM-normalized log2(CPM) values were
highly correlated with the TMM- and cyclic loess-normal-
ized log2(CPM) values (r > 0.99 in the 63 samples;
Additional file 2: Figure S2B). We used the TMM- and
cyclic loess-normalized log2(CPM) expression values in all
downstream analysis unless otherwise stated.
We calculated normalized log2-transformed RPKM

values by using the function rpkm with normalized li-
brary sizes from the package edgeR [43] (Additional file
2: Figure S2C). We measured the “gene lengths” as the
sum of the lengths of the orthologous exons and were
also used in [12]. This method of calculating RPKM was
highly correlated with a method in which we subtracted
log2(gene length in kbp) from the TMM- and cyclic
loess-normalized log2(CPM) values (r > 0.97).

Data quality and analysis of technical factors
To assess the data quality, we performed PCA on the
normalized log2(CPM) values from above (Fig. 2a). PC1
was highly associated with day and PC2 was highly asso-
ciated with species (r > 0.92 for each, Fig. 2a; Additional
file 1: Table S4A and B). We sought to determine if the
study’s biological variables of interest were confounded
with any of the study’s recorded technical aspects
(Additional file 1: Table S4C and D). First, we calculated
which of our 35 recorded technical factors were statisti-
cally significant predictors of PCs 1–5 with individual
linear models for each technical factor. The 19 statisti-
cally significant predictors (FDR cutoff of 10% assessed
on the 5 × 35 matrix) were carried to the second stage.
In this stage, we determined which technical factors
were associated specifically with either day or species,
with individual linear models for each technical factor.
We quantified these associations using the P values from
analysis of variance (ANOVA) for the numerical technical
factors and from Chi-squared test (using Monte Carlo
simulated P values) for the categorical technical factors.
Statistical significance was determined by Benjamini–
Hochberg adjusted P value < 10% (assessed on the 2 × 19
matrix). A variable for cell line includes a species but not a
day component and was tested in this pipeline. They were
found to each be confounded with species (Benjamini–
Hochberg adjusted P value < 10−4) but not day
(Benjamini–Hochberg adjusted P value > 0.9), thereby
increasing the confidence in our pipeline.
We note that when all sequencing pools (mastermixes)

were considered together, there was a relationship be-
tween adaptor sequence and day (χ2 test, Benjamini–
Hochberg adjusted P = 0.01); however, this relationship
is substantially weaker when “adaptor sequence” and
“day” were tested in each of the four sequencing pools
separately (Benjamini–Hochberg adjusted P > 0.9 in each
test). Our most highly dependent variables with day or
species were related to properties inherent to the iPSC
model, including harvest density and day (Benjamini–
Hochberg adjusted P = 0.02), harvest density and species
(Benjamini–Hochberg adjusted P = 0.03), and harvest time
and day (Benjamini–Hochberg adjusted P = 0.01)
(Additional file 1: Table S4D; Additional file 2: Figure S5).
During this analysis, we observed that the purity esti-

mates were relatively similar across days and between
species until the final day (Fig. 1b; Additional file 1:
Table S1; Additional file 2: Figure S3C). Therefore, it
was important to explore how the variance for a given
technical factor was partitioned across the biological var-
iables of interest (e.g. across the days, species, and
day-by-species interactions). For each recorded technical
variable, we created a reduced model and a full model.
The reduced model contained only species and day as
fixed effects and the technical factor as the response
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variable. The full model had the same response variable
but contained species, day, and a species-by-day inter-
action as fixed effects. We then compared the two
models and reported the significance (Additional file 1:
Table S11).
The exact tools used to compare the two models were

data-dependent (Additional file 1: Table S2 and columns
1–2 in Table S11). For numerical data (24 technical fac-
tors), we constructed the full and reduced normal gen-
eral linear models for each technical factor. We
compared the models using ANOVA and extracted the
P value directly from ANOVA. For categorical data with
two levels (three technical factors), we constructed the
two general linear models from the binomial family. We
used ANOVA to compare the models and extracted the
deviance along with its degrees of freedom. Based on the
deviance, we calculated the Chi-squared statistic and as-
sociated P value. Eight technical factors (such as RNA
extraction data) contained categorical data with more
than two levels. We modeled this data type with
multinomial logistic regression with the R/Bioconduc-
tor package nnet [47] and used ANOVA to obtain the
likelihood ratio statistic and associated P value. We
performed this process for each technical factor using
data from days 0 and 1 as well as from days 0 to 3
(Additional file 1: Table S11).

A linear model-based framework to perform pairwise
differential expression analysis
Differential expression was estimated using a linear
model based empirical Bayes method implemented in
the R package limma [48, 49]. In order to use a linear
modeling approach with RNA-seq read counts, we cal-
culated weights that account for the mean-variance rela-
tionship of the count data using the function voom from
the limma package [50]. This limma+voom pipeline has
previously been shown to perform well with n > 3 bio-
logical replicates/condition [51, 52].
For all pairwise differential expression comparisons,

the species, day, and a species-by-day interaction were
modeled as fixed effects and individual as a random ef-
fect. The individual (cell line) rather than differentiation
batch was modeled as a random effect because when
using a linear model, individual was most highly corre-
lated with PCs 2 and 3, whereas batch was most highly
correlated with PC 10. Since our recorded technical fac-
tors were not confounded with our biological variables
of interest and did not contribute significantly to the
first five PCs of variation (Additional file 1: Table S4A–
E), we did not include any other covariates.
We used contrast tests in limma to find genes that

were DE by species at each day (Additional file 1: Table
S5), DE between days for each species (Additional file 1:
Table S6), and significant day-by-species interactions for

days 1–3 (Additional file 1: Table S8). For each pairwise
DE test, we corrected for multiple testing with the
Benjamini–Hochberg false discovery rate (FDR) [53] and
genes with an FDR-adjusted P value < 0.05 were consid-
ered DE unless otherwise stated in the text.
To find the number of shared DE genes in consecutive

time points in each species (Fig. 4), we used a two P
value cutoff system. To be “shared” across species for a
given pair of time points (e.g. day 0 to 1), a gene must
have an FDR-adjusted P value < 0.01 in one species and
an FDR-adjusted P-value < 0.05 in the other species [53].
To estimate the percentage of DE genes in chimpanzees
given the observation in humans, we divided the number
of genes with an FDR-adjusted P value < 0.01 in chim-
panzees over the number of genes with an FDR-adjusted
P value < 0.05 in humans.

Combining technical replicates
Some analyses did not allow us to model technical repli-
cates explicitly and treating them as biological replicates
would introduce bias in the data. Therefore, we com-
bined technical replicates for the same individual, when
available. We calculated the average of the normalized
log2(CPM) values for each cell line at each time point.
For day 0, one human cell line had a pair of technical
replicates that were averaged together. For days 1–3,
two human cell lines had technical replicates that were
averaged. We were able to average technical replicates
for each of the four chimpanzee cell lines at each time
point. After this process, six human data points and four
chimpanzee data points per day remained, for a total of
40 data points.
When we performed PCA using these 40 data points,

the results were similar to the PCA plot including all the
technical replicates (Additional file 2: Figure S9A); PC1
was still correlated with day and PC2 was correlated
with species (Additional file 1: Table S4E). We visually
inspected the PCA plot for the distinct clustering of data
points with averaged technical replicates and single rep-
licates in the humans, and this potential pattern was not
present, increasing our confidence that this process did
not introduce bias into the data.
We found that the expression values for the 40 samples

were robust with respect to the method used to combine
the technical replicates. The post-normalization method
described above was strongly correlated with a pre-
normalization method to combine technical replicates
(r > 0.99 for the 10,304 genes included in the main analysis;
Additional file 2: Figure S9B). In our pre-normalization
method of combining the technical replicates, we summed
the raw counts of technical replicates at each time point
(for a total 40 data points) and performed the
normalization steps described in the “Transformation and
normalization of RNA-sequencing reads” section.
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Joint Bayesian analysis with Cormotif
To cluster genes by their temporal gene expression pat-
terns, we used the R/Bioconductor package Cormotif
(version 1.22.0), a method that jointly models multiple
pairwise differential expression tests [19]. Unlike other
available methods in this class, the Cormotif framework
allows for dataset-specific differential expression patterns.
To identify patterns in expression over time (called “cor-
relation motifs”), expression levels from days 1–3 were
compared to those to the previous day for each gene in
each species. Since the program does not allow for the
explicit modeling of technical replicates (unlike the voom
+limma method above), we first ran the program with the
expression values averaged across technical replicates. For
more information on this process, see the “Methods”
section on “Combining technical replicates.”
To use Cormotif, we were required to specify the

number of correlation motifs to model. We determined
a reasonable range by investigating both the Bayesian in-
formation criterion (BIC) and Akaike information criter-
ion (AIC). We observed that the BIC and AIC were
minimized across many seeds when seven or eight cor-
relation motifs were modeled, respectively (Additional
file 1: Table S15; Additional file 2: Figure S8A). Thus, we
further explored models with seven and eight correlation
motifs. Because Cormotif is not deterministic, we ran
Cormotif 100 times and recorded the seed that produced
the model with the largest log likelihood (Additional file
1: Table S15). The best model (the seed with the greatest
log likelihood) with seven correlation motifs is displayed
in Additional file 2: Figure S8B and the best model with
eight correlation motifs is featured in Fig. 5. We selected
the model with eight correlation motifs to be the pri-
mary figure because it had a large log likelihood and all
motifs contained > 100 genes. It should be noted, how-
ever, that the two models had very similar correlation
motifs (expression patterns; Additional file 4).
We were initially conservative when assigning a gene

to a specific correlation motif. Following the advice of
the Cormotif authors [19], a gene must have a posterior
likelihood estimate of ≥ 0.5 to be called DE between
time points and < 0.5 to be considered not DE (Additional
file 1: Table S9A). We also used this assignment criteria
when using Cormotif to compare expression levels
using different combination methods (Additional file 2:
Figure S8C) and to compare all time points to day 0
(Additional file 2: Figure S8D). For a trajectory to be
defined as DE, the trajectory in humans and chimpanzees
needed similar posterior probabilities of differential ex-
pression (≤ 0.20) at each comparison along the trajectory.
Using topGO [20], we tested for enrichment of Gene

Ontology (GO) biological processes enrichment analysis
on various combinations of correlation motifs (Additional
file 1: Table S9B–D). To test for significance, we used the

same parameters as [54]. This included the use of Fisher’s
exact test, with topGO’s weight01 algorithm to account
for the correlation among GO categories in its graph
structure. Categories with P value < 0.01 were considered
significant. To determine the categories enriched in
the Motif 4 + 7 group only, we ensured that these cat-
egories were not significant in any other group (P < 0.01;
Additional file 1: Table S9B–D). To test this in a more
rigorous way, we then compared the enriched categories
for the Motif 4 + 7 group given the genes in the two other
groups (Additional file 1: Table S9E) using the compar-
eCluster function in the R package clusterProfiler [21].
We used a q value cutoff of 0.05 [53] and set the size of
genes annotated by Ontology term for testing parameter
between 3 and 3000.

Global analysis of variation in gene expression levels
We calculated the variance in gene expression level for
each gene in each species. Since the largest theoretical
range of a variance is from 0 to infinity, we performed a
log2 transformation to each variance value (Fig. 6). For
the analysis with lymphoblastoid cell lines (LCLs) and
the four tissues, we used normalized gene expression
data from the GTEx Portal (release V6p; gene expression
data is in RPKM) from LCLs and four additional tissues
[23, 55]. Three of the four tissues are derived from the
endoderm germ layer—liver, lung, and pancreas. The
heart tissue is mesoderm-derived, for comparison. We
identified all of the genes that were expressed and
passed GTEx’s filtering criteria (n = 17,542 genes) as well
as the individuals that had contributed samples to all five
tissues (n = 6).
We then calculated and plotted the log2 variance of

the normalized gene expression using the same pipeline
as before (Additional file 2: Figure S10B). For samples
with associated purity values (n = 30), we calculated the
effect of purity gene expression levels. We regressed out
effect of purity on gene expression levels on a
gene-by-gene basis using the linear model function in R
in each species independently. We then calculated the
log2 variance of these residuals for each gene. We shifted
the log2 variances for these residuals so that the median
at day 0 for each species = 1. For samples without purity
values (n = 32), we calculated the log2 variance of the
gene expression levels for each gene and scaled the
values so that the median at day 0 for each species = 1.
For each gene at each day for each species, we averaged
the scaled log2 variances of the residuals and the log2
variances of the gene expression levels (Additional file 2:
Figure S10B). We then performed a one-sided t-test be-
tween the distribution of log2(variances in gene expres-
sion) from day 0 and day 1 in each species, with the
alternative hypothesis that the variation was greater in
day 0 than day 1.

Blake et al. Genome Biology  (2018) 19:162 Page 15 of 18



We compared the effect sizes of interspecies DE genes
with a one-sided Mann–Whitney U test on magnitudes
of effect sizes (Additional file 2: Figure S10C). We tested
the null that there was no change in log2 fold change in
gene expression across the species from day 0 to day 1,
with the alternative hypothesis that the average magni-
tude of effect of DE genes (FDR = 5%) was greater in day
0 than day 1.

Gene-by-gene analysis of variation in gene expression
levels and calculating the proportion of true positives
To determine if there was an enrichment of genes
undergoing changes in variation one species, we used an
F test to compare two variances in R (var.test command)
for each gene using the averaged log2(CPM) expression
values of technical replicates. In these tests, the null hy-
pothesis was no change of variance in the gene expres-
sion levels between days and the alternative hypothesis
was a reduction in variation of gene expression levels be-
tween two time points (a one-sided test).
We calculated the P values for the F statistics from

each test and plotted the densities using ggplot2 [56].
If a P value distribution appeared to be even slightly
skewed towards small P values, we used the R pack-
age qvalue to determine π̂ o, the true proportion of
null statistics from a given P value distribution [24].
Its complement, π̂ 1, is considered the proportion of
significant tests from a P value distribution. We used
this process to analyze the reduction in variation in
each species from days 0 to 1, 1 to 2, 2 to 3, and 1
to 3 (Fig. 7a and b).
Afterwards, we used the same procedure (F tests) to

test the alternative hypothesis that the variation of gene
expression increased between two time points. We de-
termined π̂ o and π̂ 1 in the same manner as above to
analyze the increase in variation in each species from
days 0 to 1, 1 to 2, 2 to 3, and 1 to 3 (Fig. 7e–f ).

Estimating the proportion of genes that undergo a
change in variation in both species
We then estimated the true proportion of significant genes
shared across species for a given set of time points. Rather
than take the intersection of the significant genes (for which
we would be underpowered), we adopted a method from
Storey and Tibshirani 2003 (Storey’s π̂o) [24]. This method
was recently implemented by Banovich et al. to determine
the sharing of quantitative trait loci (QTLs) from different
cell types [22, 24]. Using the P value distributions generated
in the previous section, we subset the genes in species 2
conditioned on its F statistic significance in species 1
(unadjusted P value < 0.05). To test for an enrichment of
small P values, we used the P values from species 2 to de-
termine π̂o using the same process as the previous section

(Figs. 7c–f, Additional file 2: Figure S13). We then repeated
this process for other P value cutoffs, including 0.01 and
0.10 (Additional file 2: Figures S15 and S16). To determine
robustness with respect to the number of genes considered
significant in species 1, we calculated π̂ o for species 2
conditioned on 100 genes with the lowest P values in
species 1. This process was repeated for the top 101 to all
10,304 genes (Additional file 2: Figure S14).

Estimating the null hypothesis for the proportion of
genes that undergo a change in variation in both species
To determine the null hypothesis for the π̂ 1 based on
conditioning, we performed permutation tests. First, we
combined the unadjusted P values from the F test for a
reduction in variation from days 0 to 1 in chimpanzees
(species 1) and humans (species 2). We used the rando-
mizeMatrix function in the R package picante [57] to
permute the P values of species 1 and then merged this
P value distribution with the P value distribution from
species 2. We then determined π̂ o in species 1 condi-
tioned on its P value significance in species 2 (un-
adjusted P value < 0.05). We repeated this process a total
of 100,000 times and found the complement of the
100,000 values (Additional file 1: Table S13). We defined
the permuted null hypothesis as the mean π̂1 value. We
then repeated this process, with humans as species 1
and chimpanzees as species 2.
For the enrichment analysis, we classified the genes

with a reduced variation of gene expression in both spe-
cies using a 2 P value cutoff in the results of the F tests
(P < 0.05 in one species and P < 0.10 in the other spe-
cies). We chose this method because names of the over-
lapping genes cannot be determined by Storey’s
approach [24]. As described in the “Methods” section,
“Joint Bayesian Analysis with Cormotif,” we performed
the enrichment analysis using topGO with a significance
of P < 0.01 [20]. To determine the genes associated with
embryonic lethality response to perturbation, we entered
our list of genes into the Mouse Genome Database at
the Mouse Genome Informatics website provided by the
Jackson Laboratory (http://www.informatics.jax.org/
batch, [26, 27, 58, 59]) and selected the “Mammalian
Phenotype” option [28]. With this output [28], we elimi-
nated any feature type that was not a protein-coding
gene and those genes without an associated phenotype.
For each gene list, we calculated how many genes con-
tained at least one of the following terms: “embryonic le-
thality”, “prenatal lethality,” or “lethality throughout fetal
growth and development.”

Additional files

Additional file 1: Additional tables. (XLSX 17200 kb)
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Additional file 3: TMM- and cyclic loess-normalized log2 counts per
million for the 10,304 genes analyzed in this study for the 63 samples
used in the downstream analysis. Each row is an Ensembl gene name
and each column is a Sample ID. (RDA 4700 kb)
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information about the Joint Bayesian analysis and a correlation-based
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