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Post-translational buffering leads to
convergent protein expression levels
between primates
Sidney H. Wang1* , Chiaowen Joyce Hsiao2, Zia Khan3 and Jonathan K. Pritchard4,5,6

Abstract

Background: Differences in gene regulation between human and closely related species influence phenotypes that
are distinctly human. While gene regulation is a multi-step process, the majority of research concerning divergence
in gene regulation among primates has focused on transcription.

Results: To gain a comprehensive view of gene regulation, we surveyed genome-wide ribosome occupancy, which
reflects levels of protein translation, in lymphoblastoid cell lines derived from human, chimpanzee, and rhesus
macaque. We further integrated messenger RNA and protein level measurements collected from matching cell
lines. We find that, in addition to transcriptional regulation, the major factor determining protein level divergence
between human and closely related species is post-translational buffering. Inter-species divergence in transcription
is generally propagated to the level of protein translation. In contrast, gene expression divergence is often
attenuated post-translationally, potentially mediated through post-translational modifications.

Conclusions: Results from our analysis indicate that post-translational buffering is a conserved mechanism that led
to relaxation of selective constraint on transcript levels in humans.
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Background
Almost half of a century ago, King and Wilson postu-
lated that gene regulation differences are the major fac-
tor driving phenotypic divergence between human and
chimpanzee [1]. Indeed, differences in gene regulation
have been reported to be the major factors determining
phenotypic differences between closely related species
[2, 3]. Alterations of gene expression levels are more
likely to survive natural selection than coding substitu-
tions since a limited spatiotemporal change in gene ex-
pression is less likely to have deleterious pleotropic
effects. Multiple examples, e.g. pelvic fin reduction in
freshwater sticklebacks, demonstrate how changes in
gene expression patterns could result in dramatic pheno-
typic divergence between closely related species [4].
Over the past decade, studies surveying genome-wide

gene expression levels in primates have documented
substantial variation in transcript levels between closely
related species. [5–8]. Furthermore, population genom-
ics studies looking for signatures of recent selection also
highlighted key roles of regulatory variants in human
adaptation [9, 10]. Despite promising progress, how vari-
ation at the transcript level impacts evolution of an or-
ganismal trait remains far from clear.
Protein expression levels are the biologically relevant

quantities for coding genes. Yet most studies investigat-
ing divergence in gene expression among primates fo-
cused on comparing expression levels of messenger
RNA (mRNA) [5, 6, 11, 12]. While the general efficacy
of using mRNA level as a proxy for estimating protein
levels is still an ongoing debate [13], there is no doubt
that in some instances, translational and/or
post-translational regulation of gene expression results
in protein levels that are far deviated from the mRNA
levels upstream [14]. Large-scale studies profiling the
impact of genetic variation jointly on transcript and pro-
tein levels have begun to reveal clues on how protein
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expression is post-transcriptionally regulated [15–18]. In
fact, it has been shown that protein expression levels are
far more conserved across diverse taxa than mRNA
levels [19]. How this conservation of protein level is
achieved given the apparent larger divergence at the
mRNA level is still unclear.
To estimate the divergence of mRNA and protein

levels among primates, we previously collected
RNA-sequencing and quantitative mass spectrometry
data from a set of 15 primate (five humans, five chim-
panzees, and five rhesus macaques) lymphoblastoid cell
lines (LCLs). Consistent with an earlier observation
across wider taxa [19], we found conserved protein ex-
pression levels between human and chimpanzee, despite
extensive divergence in mRNA levels [20]. While a
stronger evolutionary constraint at the protein expres-
sion level likely reflects the critical importance of protein
stoichiometry [18], which is critical for forming the ma-
chinery that executes biological functions, it remains un-
clear how the divergence is buffered. More specifically,
whether this buffering occurs translationally or
post-translationally remains an open question.
Ribosome profiling is a technique that uses next gener-

ation sequencing to survey ribosome footprints in a
massively parallel fashion [21]. It has been shown that
ribosome occupancy levels estimated from counting the
number of ribosome footprints provide a good approxi-
mation for the level of protein translation [22]. Several
studies have successfully applied ribosome profiling to a
wide range of organisms to better understand expression
divergence across species and the impact of genetic vari-
ation within species [17, 22–28]. We recently applied
this technique in a panel of HapMap cell lines to identify
genetic variants affecting protein translation and to esti-
mate relative contributions of translational and
post-translational regulation to steady state protein
levels [17]. We found that among the human cell lines,
protein levels are usually less variable than mRNA levels.
Interestingly, variation at ribosome occupancy level is
mostly in concordance with mRNA rather than protein
levels. Concordance between transcription and transla-
tion indicates that the attenuation of transcript level
variation in humans is mainly mediated by a mechanism
downstream of protein translation.
To further investigate gene expression divergence

across primates, we performed ribosome profiling exper-
iments in human, chimpanzee, and rhesus macaque cell
lines. By integrating previously published ribosome pro-
filing [17], RNA sequencing (RNA-seq) and quantitative
mass spectrometry data [20], we compared the relative
contributions of transcriptional, translational and
post-translational regulation to gene expression diver-
gence. This dataset allowed us to interrogate the rela-
tionships between different layers of gene regulation and

their roles in primate evolution. Results from this joint
analysis suggested that post-translational buffering plays
a major role in maintaining conserved protein levels
across primates. To our knowledge, the current study of-
fers the first global view of the translational landscape
across primates.

Results
To comparatively estimate levels of protein translation
in primates we used ribosome profiling to sequence
ribosome protected fragments (RPF) of mRNA [21]. We
collected ribosome profiling data from LCLs of four
humans, four chimpanzees, and four rhesus macaques
(Additional file 1: Table S1) where data for estimating
mRNA levels by RNA-seq and protein levels by SILAC
were also available.
After excluding sequencing reads that mapped to ribo-

somal RNA (rRNA) and other contaminating sources (see
“Methods”), we obtained a median of ~ 12 million
uniquely mapped ribosome profiling sequencing reads per
sample (Additional file 1: Table S1 and Additional file 2:
Figure 1 S1a). We performed several analyses to confirm
that the quality of the data is consistently high across the
three species (See “Methods” and Additional file 2: Figures
1 S1–S4). Briefly, we confirmed that > 95% of reads have a
Phred quality score > 30 in all samples (Additional file 2:
Figure 1 S1b), and that across samples, regardless of
species, we observe a median footprint length of 29 nt
(Additional file 2: Figure 1 S2) and a consistent codon
periodicity pattern, as expected for ribosome profiling data
(Fig. 1a). We also confirmed that technical variation
(among different sequencing runs of the same sample)
was significantly lower (P < 10−15, Wilcoxon rank sum)
than biological variation (among different individuals from
the same species; Additional file 2: Figure 1 S3). Finally,
we explored the possibility that technical variables (such
as sequencing depth and quality) could contribute to vari-
ation in our expression data. We determined that none of
the technical variables we examined significantly contrib-
ute to variation in the normalized expression data (see
“Methods” and Additional file 2: Figure 1 S4).

Inter-species variation in levels of protein translation
To compare levels of translation across species, we fo-
cused our analysis on ribosome profiling sequencing
reads that aligned to orthologous exons across the three
species (used in [29]; Additional file 3). We combined
data across technical replicates (i.e. pooling sequencing
reads across all sequencing runs of the same sample)
and normalized the sum of read counts across ortholo-
gous exons to estimate gene-specific levels of translation
in each sample (see “Methods”). To examine global pat-
terns in the data, we performed principal component
analysis (PCA) on the gene-specific estimates of
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translation levels (Fig. 1b) and considered hierarchical
clustering of pairwise Spearman’s rank correlation coeffi-
cients across samples (Additional file 2: Figure 1 S5). As
expected, we found that the major source of variation
between samples can be attributed to species, and that
estimates of translation levels are more highly correlated
between human and chimpanzee than between human
(or chimpanzee) and the more distantly related rhesus
macaque (as expected from the phylogeny of these three
species; Fig. 1b, Additional file 2: Figure 1 S5).
To identify specific genes whose translation levels dif-

fer between species, we tested for each gene the associ-
ation between species label and translation level using a
linear model (see “Methods”). Differential translation, in
this context, reflects the combined effects of differences
in mRNA levels and in translation efficiency, because at

this step, we have not yet accounted for inter-species dif-
ferences in transcript levels. We first considered normal-
ized ribosome profiling data from 9364 genes that were
reliably quantified in all three species (Additional file 4,
see “Methods” for criteria). At a family-wise error rate
(FWER) of 5%, we classified 73 genes as differentially
translated between humans and chimpanzees (Fig. 1c, d
and Additional file 5). At the same FWER, we found 247
genes that are differentially translated between human
and rhesus macaque. We also found 262 genes to be dif-
ferentially translated between chimpanzee and rhesus
macaque (Additional file 2: Figure 1 S6, Additional file 5).
The number of differentially translated genes identified
here again reflects the known phylogenetic distances be-
tween these species. Similar results were observed when
either gender effects were removed as a potential
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Fig. 1 Inter-species comparison of protein translation among primates. a Subcodon periodicity pattern of ribosome footprints. Relative
enrichment of RPF in an 80-bp window is aggregated along genomic positions surrounding conserved translation initiation sites (see “Methods”
for details). Bar height represents mean ± standard error estimated from biological replicates for each species. b Major variation in level of protein
translation reflects species differences. A scatter plot showing ribosome profiling data projected onto the first two PCs: each data point represents
an individual sample. c Divergence in level of protein translation between human and chimpanzee. Each data point represents a gene: position
along the x-axis indicates log2 ratio of ribosome occupancy level between human and chimpanzee, position along the y-axis indicates
significance level, and the color of each data point indicates whether the gene is significantly diverged between species at a significance cut-off
of FWER 0.05 (blue: significant, gray: not significant, red: the example significant gene shown in d). d Level of protein translation of an example
gene. Ribosome occupancy level (log2 RPKM) of PGAM1 is shown for each individual human and chimpanzee sample
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confounding factor (Additional file 2: Figure 1 S7, see
“Methods” for details) or inter-species footprint mapp-
ability differences were accounted for (Additional file 2:
Figure 1 S8, see “Methods” for details). We next consid-
ered genes that are only quantifiable in a subset of spe-
cies (see “Methods” for criteria). These genes are
presumably differentially translated between species,
since the level of translation is detectable only in one or
two out of the three species considered. We identified
1287 genes that fall in this category (Additional file 6).
Of these 1287 genes, we found 101 genes that are trans-
lated at a level only detectable in human, 52 genes that
are only detectable in chimpanzee, and 81 genes that are
only detectable in rhesus macaque (Additional file 6).

Estimating divergence in translation efficiency
To evaluate the contribution of translational regulation
to overall inter-species regulatory divergence, we ana-
lyzed the comparative ribosome profiling data in con-
junction with corresponding RNA-seq and quantitative
mass spectrometry data (from [20]). Since the cell lines
used for ribosome profiling experiments described above
does not match exactly the cell lines Khan et al. used to
estimate transcript level and protein level [20], we col-
lected ribosome profiling data from additional cell lines
to match with protein and RNA datasets (see
Additional file 1: Tables S1 and S7 for a full list of cell
lines used in this study). We adjusted for potential arti-
facts that could be introduced by differences in process-
ing batch using ComBat [30] (see “Methods”). Our goal
was to estimate and compare the contribution of
inter-species differences in translation to the observed
attenuation of inter-species divergence at protein levels
[20]. As a first step, we considered inter-species differ-
ences in translation efficiency, namely differences in
translation level between species, which cannot be ex-
plained by corresponding inter-species differences in
transcript levels. We tested for inter-species differences
at the translation level that were significantly larger or
smaller than inter-species differences at the transcript
level (see “Methods” for details).
To facilitate a joint analysis combining data from all

three molecular phenotypes, we focused on a set of 3286
genes for which we were able to obtain measurements
across all three datatypes (mRNA, protein, and ribosome
profiling) from at least three individuals for each species
(Additional file 7). Between human and chimpanzee, we
identified (at 5% FWER) a small number of 23 genes that
are divergent in translation efficiency (Fig. 2a, b).
Similarly, at 5% FWER we found 35 and 69 genes that
are divergent in translation efficiency between rhesus–
chimpanzee comparison and rhesus–human comparison,
respectively (Additional file 2: Figure 2 S1). Thus, only a
relatively small proportion (0.7–2.1%) of tested genes

shows significant (5% FWER) divergence in translation
efficiency. The scarcity of significant divergence in
translation efficiency is in contrast to the level of diver-
gence found in transcription (Fig. 2c, Additional file 2:
Figure 2 S2). Furthermore, this contrast is not simply
reflecting higher technical noise in estimating transla-
tion efficiency. For example, when considering genes
that are diverged at protein level, we found that the ef-
fect size of inter-species divergence in translation effi-
ciency is significantly smaller than that of transcription
(human vs chimpanzee P < 10−7, rhesus vs chimpanzee
P < 10−15, human vs rhesus P < 10−15, Wilcoxon rank
sum) (Fig. 2d, Additional file 2: Figure 2 S3). Taken to-
gether, these results indicated that in contrast to diver-
gence in gene regulation at the transcript level,
divergence at the translational level has significantly
less impact on inter-species divergence at the protein
level.
To further evaluate the downstream impact of

inter-species divergence at the translational level, we
asked how often effects from divergence in translation
efficiency propagate downstream to the protein level.
After accounting for pre-existing divergence at the tran-
script level by regressing out transcript level divergence,
we used the coefficient of determination (i.e. r2 between
inter-species divergence in protein level and
inter-species divergence in protein translation) to esti-
mate the proportion of variance in protein level (quanti-
tative mass spectrometry) that can be explained by
translation (ribosome profiling). When all 3286 genes
were considered (i.e. all genes that were sufficiently
quantified across all three data types), we found rela-
tively weak associations (r2 of 0.13 between human and
chimpanzee, 0.01 between rhesus macaque and chim-
panzee, and 0.07 between human and rhesus macaque).
Because technical variation could dilute correlations, es-
pecially by introducing random noise in genes that are
not diverged, we further evaluated this association by fo-
cusing on genes that are diverged between species in
protein levels. After transcript level divergence was
accounted for, weak associations between protein level
and level of protein translation were consistently ob-
served across different significance cut-offs (i.e. signifi-
cance cut-offs for protein level divergence) (Fig. 2e,
Additional file 2: Figure 2 S4). Taken together, these re-
sults indicate that for genes that are truly divergent at
the protein level, only a small proportion (< 20%) of
these effects are contributed by divergence in translation
efficiency. Instead, the majority of these effects are con-
tributed by divergence at the transcript level (Fig. 2e,
Additional file 2: Figure 2 S4). These results confirmed
the above observation that inter-species divergence in
translation efficiency has only minor impact on diver-
gence at the protein level.
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Attenuation of regulatory divergence
We previously reported that inter-primate divergence in
mRNA levels is often attenuated at the protein level
[20]. We observed a similar pattern with respect to vari-
ation in mRNA and protein expression levels within a
human population [17]. Since intra-species genetic vari-
ation is relatively recent, we reason that compensatory
mutations are less likely to mediate the observed attenu-
ation. Instead, we proposed that downstream buffering
mechanisms could modulate gene expression divergence
introduced at the mRNA level. However, it remains un-
clear how such buffering is achieved. One intuitive hy-
pothesis is that regulatory divergence at the transcript
level is attenuated, or buffered, at translation. Alterna-
tively, these effects could be buffered post-translationally
at the protein level.
To estimate the relative contributions of these two po-

tential mechanisms, we devised a regression approach to
identify divergence in gene expression that is lost in the
downstream molecular phenotype. While buffering
could alternatively be defined as a decrease in effect size
at the downstream level (as was done by Khan et al.
[20]), we chose to take the regression approach in order
to identify only genes that have no remaining divergence
at the downstream level. This regression approach is
more conservative and allowed us to focus our analysis
on buffering events that are more likely to be biologic-
ally relevant. For translational buffering, we tested for
genes that are diverged at the transcript level, but not at
the level of translation. Similarly, for post-translational
buffering, we tested for genes that are diverged in level
of translation, but not at the protein level. For each pair
of molecular phenotypes, we first regressed out down-
stream effects from the upstream phenotype and then
tested for divergence between species on residual effects
(see “Methods” for details). Between human and chim-
panzee, at 5% FWER, we found only one gene that is
under translational buffering (Fig. 3a), while in contrast,

35 genes were found buffered post-translationally
(Fig. 3b). Similar contrasts were observed for compari-
sons between human and rhesus and between chimpan-
zee and rhesus (translational vs post-translational: 7 vs
57 for human–rhesus comparison and 9 vs 45 for chim-
panzee–rhesus comparison) (Additional file 2: Figure 3
S1). Moreover, we found consistently higher proportion
of post-translational buffering than translational buffer-
ing when inspecting the full spectrum of the p value dis-
tribution (Fig. 3c, Additional file 2: Figure 3 S2). These
results clearly indicated that post-translational buffering
occurs much more frequently then translational buffer-
ing. Post-translational buffering is therefore the major
force that attenuates divergence between species at the
transcript level.
Post-translational mechanisms are often regulated in

cis, determined by the composition of the protein se-
quence itself. We thus hypothesized that
post-translationally buffered proteins would possess dis-
tinct features in their amino acid sequence or chemical
composition. To explore enrichment of different proper-
ties of protein composition in this group of genes, we
first addressed two potential biases commonly presented
in enrichment analysis, i.e. gene length and GC content
[31, 32]. We found little to no correlation between each
of these two features and the significance value of
post-translational buffering across genes (r2 < 0.01 in all
pairwise species comparisons, Additional file 2: Figure 3
S3). We therefore decided to proceed with enrichment
analysis without adjusting for these two features (see
“Methods”). When considering the level of overall se-
quence divergence, we found no enrichment in
post-translationally buffered genes in their proportion of
non-synonymous substitutions for each pairwise species
comparison (Fig. 3d, Additional file 1: Table S2).
Although buffered genes are not enriched for
inter-species amino acid substitutions, we next consid-
ered if they are more often targets of post-translational

(See figure on previous page.)
Fig. 2 Transcriptional regulation contributes significantly more to protein level divergence compared to translational regulation. a Inter-species
divergence in translation efficiency. A scatter plot comparing translation efficiency (TE) between human and chimpanzee. Each data point represents a
gene, position along each axis indicates log2 translation efficiency of each species, and the color of each data point indicates whether the gene is
significantly diverged between species in translation efficiency at a significance cut-off of FWER 0.05 (blue: significant, gray: not significant). b An
example gene, Profilin 1 (PFN1), which shows human–chimpanzee divergence in translation efficiency. Level of protein translation (blue) and RNA
transcription (red) are shown in log2RPKM. Each data point represents an individual human or chimpanzee sample. c Divergence between human and
chimpanzee at the transcript level occurs more frequently than that of translation efficiency. Quantile-quantile plot of –log10(p values) derived from
testing for divergence between human and chimpanzee for each trait of interest (RNA: transcript level, TE: translation efficiency). For each molecular
trait, observed p value (y-axis) is plotted against the null expectation (i.e. uniform distribution of p values) (x-axis). The red line marks the expected
results from a scenario where no divergence is observed. d Divergence between human and chimpanzee at the transcript level is greater than that of
translation efficiency. Boxplots comparing effect size (absolute log2 ratio) of human-chimpanzee divergence (RNA: transcript level, TE: translation
efficiency). Only genes that are diverged in protein levels were considered in this analysis. e Between human and chimpanzee, inter-species
divergence in translation efficiency contributes little to inter-species divergence in protein level. Proportion of inter-species divergence propagated
from translation level to the protein level (y-axis) was estimated using coefficient of determination (r2) between translation level divergence and
protein level divergence. Each r2 was calculated for a subset of genes each defined by an FDR cut-off (x-axis) for divergence in protein level. These
coefficients (r2) were calculated either with (red) or without (black) accounting for the effects from the transcript level
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modifications and could therefore be differentially regu-
lated post-translationally. We found significant enrich-
ments of reported ubiquitination sites (P < 10−15) (Fig. 3e)
and acetylation sites (P < 10−7) in post-translationally buff-
ered proteins (Additional file 1: Table S3). We also found
marginally significant enrichments of phosphorylation
sites (P < 0.05), methylation sites (P < 0.05), and sumoyla-
tion sites (P < 0.01) in these proteins (Additional file 1:
Table S3). These results indicated that although buffered
genes are not particularly diverged in their amino acid
sequence, they are enriched for post-translational modifi-
cation sites and could therefore be differentially regulated
via differential post-translational modifications between
species. In addition to post-translational modifications on
proteins, subcellular localization has been shown to im-
pact protein turnover rate [33]. We therefore asked if
post-translationally buffered protein would localize to
specific compartments in the cell. However, we found no
enrichment in each of the subcellular localization pattern
tested for this group of genes (Additional file 1: Table S4).
Finally, we asked if post-translationally buffered genes are
enriched for specific gene ontology groups. We found
mainly enrichment of genes that are involved in the
process of protein translation (Additional file 1: Table S5).
Consistent with enrichment of genes involved in funda-
mental biological functions, we found post-translationally
buffered genes to have more reported protein–protein
interactions (P < 10−4) than the background genes. Taken
together, these results indicated that, for genes involved in
fundamental biological processes, mechanisms mediated
by post-translational modifications could potentially play a
role in buffering gene expression divergence present at the
transcript level.

Relaxed transcriptional regulation of buffered genes
Since protein expression levels are the main relevant
quantities for gene function, we expected the presence

of a conserved post-translational buffering mechanism
would relax selective constraints on the transcript level.
To test this hypothesis, we examined signs of constraint
relaxation at the mRNA level in the context of recent
human evolution. Testing for constraint relaxation at
the mRNA level across primates is inappropriate in our
study, since our criteria for buffered genes enriched for
divergence (i.e. high variance) at the transcript level. In-
stead, we analyzed RNA-seq data collected from a panel
of 72 human LCLs [34] and asked if the buffered genes
(identified across species) have higher variation at the
transcript level then the background genes. We found
significantly higher mRNA variance across the panel of
LCLs derived from Yoruba in Ibadan, Nigeria (YRI) for
buffered genes identified between primate species (P <
10−4, Additional file 1: Table S6) (Fig. 3f, Additional file 2:
Figure 3 S4). This result supported the hypothesis that
selective constraint at the mRNA level is relaxed for
post-translationally buffered genes. Since there is a
known inverse mean-variance relationship in RNA-seq
data [35, 36] (Additional file 2: Figure 3 S5), we further
tested if this high variance in the buffered genes are sim-
ply an artifact driven by enrichment of genes that have
lower expression levels (and therefore higher variance).
Instead, we found a marginal enrichment of genes with
higher expression levels; this enrichment was only found
in the buffered genes identified between human and
chimpanzee (i.e. not in other pairwise comparisons;
Additional file 1: Table S6). This result indicated that the
constraint relaxation observed in human is not simply
an artifact resulting from biases introduced by differ-
ences in gene expression level. To further address poten-
tial confounding issues resulting from differences in
gene expression levels between comparison groups, we
performed an additional test by adjusting the back-
ground set selection to account for differences in gene
expression levels (see “Methods” for details). We found

(See figure on previous page.)
Fig. 3 Gene expression buffering mainly occurs post-translationally and buffered genes are enriched for post-translational modifications. a, b Scatter plots
of inter-species divergence comparing between different molecular traits (RNA: transcript level, RPF: level of translation, protein: protein level). Each data
point represents a gene and the position along each axis indicates the log2 ratio between human and chimpanzee for each molecular trait. The color of
each data point indicates whether the inter-species divergence for each gene is significantly buffered at the downstream molecular trait at a significance
cut-off of FWER 0.05 (blue: significant, gray: not significant). c Post-translational buffering of human–chimpanzee divergence occurs much more
frequently than translational buffering. Quantile-quantile plot of –log10(p values) derived from testing for buffering of human–chimpanzee divergence
(orange: translational buffering, blue: post-translational buffering). Observed p values (y-axis) were plotted against the null expectation (i.e. uniform
distribution of p values) (x-axis). The red linemarks the expected results from a scenario where no buffering was observed. d, e, f Post-translationally
buffered genes are enriched for post-translational modifications and a higher within-species transcript level variation. Individual genes were grouped into
bins according to their significance level of human–chimpanzee post-translational buffering (x-axis). Position of each data point along the y-axis indicated
mean ± standard error. d Post-translationally buffered genes are not significantly enriched for amino acid substitutions. Ka (proportion of nonsynonymous
substitutions out of all possible non-synonymous sites) calculated between human and chimpanzee was plotted against significance level of human–
chimpanzee post-translational buffering. e Post-translationally buffered genes have more ubiquitination sites. Number of reported ubiquitination sites in
human was plotted against significance level of human–chimpanzee post-translational buffering. f Potential impact of post-translational buffering on
relaxation of transcriptional regulation. Post-translational buffering of inter-species divergence is more likely to occur to genes that have a higher
within-species (human) variation at the transcript level. Standard deviation across YRI individuals (reflects level of variation in the population) of transcript
level (orange) or that of protein level (black) was plotted against significance level of human–chimpanzee post-translational buffering
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the enrichment of high variance in buffered genes to re-
main significant after adjusting for expression levels (P <
10−8, Additional file 2: Figure 3 S6). Higher variance
between individuals in buffered genes indicated that
selective constraint on the mRNA levels among the YRI
individuals is more relaxed for the buffered genes than
for the background genes. Taken together, our results
demonstrated that post-translational buffering led to a
constraint relaxation at the mRNA level in recent hu-
man evolution.

Discussion
To determine the contribution of translational regula-
tion to gene expression level differences between
humans and closely related species, we generated new
data using ribosome profiling to estimate translation
levels. This dataset in conjunction with the data de-
scribed in Battle et al. [17] and Cenik et al. [27] provided
a unique opportunity to explore recent evolution of
translational regulation in humans. Through joint ana-
lysis with RNA-seq measurement of transcript levels and
quantitative mass spectrometry measurement of protein
levels, we provided an integrated view of divergence in
gene regulation across primates. We found that diver-
gence in translation efficiency is rare, which means that
divergence between primate species at the transcript
level often propagates to the level of protein translation
(ribosome occupancy). This observation is in contrast to
previous reports on pervasive translational buffering
observed in F1 hybrids between S. cerevisiae and S.
paradoxus [24, 25]. Interestingly, a report focusing on
the same process in budding yeast hybrids between la-
boratory and wild isolate strains [23] and a follow-up re-
analysis of the Artieri dataset [37] contradicts the notion
of a pervasive translational buffering. Instead, their results
were more in line with our observations in primates.
Translational regulation is often controlled by regula-

tory elements that reside in the UTR regions. Variants
found in the UTR regions are therefore more likely to
impact translation efficiency. Given the level of sequence
divergence in the UTR regions [38], the amount of
divergence in translation efficiency found between pri-
mates appears to be unexpectedly low. That being said,
whether these substitutions in the UTR regions impact
translational rate remains an open question. It is possible
that these genetic variants, while impactful, are cryptic
in the environment we tested. Further studies applying
appropriate environmental perturbations could reveal
species divergence in translational regulation [39]. On
the other hand, we identified some inter-species diver-
gence in translation efficiency. Interestingly, however,
among the limited number of genes that show signifi-
cant inter-species divergence in translation efficiency,
transcriptional divergence often predicts protein level as

well as (or better than) translational divergence for these
genes. In other words, inter-primate divergence in trans-
lational regulation appears to have minor impact on
gene expression differences at the protein level. Unfortu-
nately, measurement noise prevented us from obtaining
a precise estimate for the percentage of translational regu-
lation that has a persistent impact on steady state protein
levels. However, we were able to show that in contrast to
transcriptional regulation, divergence in translation effi-
ciency has only a minor impact on protein levels.
In contrast to gene regulation at translation, we found

post-translational gene regulation to have a much
broader impact on protein levels. Regulation at this layer
often attenuates variation created upstream. A direct
comparison between p values from testing effects of
buffering from translational vs post-translational mecha-
nisms clearly showed that more genes are regulated by
the post-translational mechanisms. Buffering of diver-
gence in gene expression levels has broad implications,
especially in the context of evolution. For most genes,
proteins often execute cellular functions. Variation in
gene expression that has not reached the protein level is
therefore less likely to impact organismal phenotypes.
Consistent with this notion, we found evidence for relax-
ation of selective constraint on the mRNA levels in the
HapMap YRI population for buffered genes identified
between primate species. Further investigation on gene
expression buffering in the context of population genet-
ics would likely provide valuable insights on how
selection might act on the regulatory variants associated
with buffered genes. We found paralleled similarities be-
tween effects of post-translational buffering on gene ex-
pression divergence and effects of HSP90 chaperone
action on rectifying mis-folding caused by missense mu-
tations [40, 41]. HSP90 confers phenotypic robustness by
buffering fitness impact imposed by non-synonymous mu-
tations likely through either correcting the protein struc-
ture or facilitating the degradation process [42]. We
speculate that parallel to HSP90 buffering at the structural
level, post-translational buffering could confer phenotypic
robustness at the gene expression level by stabilizing pro-
tein expression levels against mutations impacting tran-
scription regulation.
We identified post-translationally buffered genes across

all three pairwise species comparisons. This observation
suggests that post-translational buffering is a conserved
mechanism likely evolved under stabilizing selection for
protein levels in primates. It remains unclear how
post-translational buffering is achieved. We found enrich-
ment of post-translational modifications among this group
of genes without significant enrichment of coding substi-
tutions. It could be that divergence in post-translational
modifications instead of divergence in coding sequence
led to differential turnover rates of proteins and therefore
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drives buffering. This interpretation provides an explan-
ation for how post-translational buffering could be
achieved between human and chimpanzee given the ap-
parent low level of protein sequence divergence.
Post-translational buffering could be a consequence of

a conserved cellular quality control system, such as
endoplasmic-reticulum-associated protein degradation
(ERAD) [43]. Protein quality control mechanisms are in
place to ensure that proteins are properly folded and
present in adequate amount to execute biological func-
tions [44]. Adequate post-translational modifications are
required for proper folding to take place. Moreover,
ubiquitination is a key step in targeting mis-folded
proteins to proteasome for degradations [44, 45]; mis-
folded proteins arising out of mutation or shortage of
chaperones are labelled for degradation by ubiquitina-
tion. Consistent with the role of protein quality control
mechanisms, we observed significant enrichment of re-
ported ubiquitination sites in post-translationally buffered
genes (Fig. 3e). In addition, many proteins are assembled
into multi-subunit complexes with defined stoichiometry.
Excess components of these complexes are targeted to
proteasome for degradation [46–48]. Active degradation
of excess product of translation could explain the apparent
buffering of divergence at the protein level. Consistent
with this notion, Chick et al. recently reported evidence
supporting a stoichiometric buffering effect [18]. More-
over, Ishikawa et al. demonstrated that effects of artificial
perturbation of protein stoichiometry through genetic
manipulation are often buffered post-translationally [49].
Multiple protein quality control pathways could be involved
in post-translational buffering. By overexpressing ribosomal
proteins, Sung et al. described a nuclear protein-degradation
mechanism mediated by ubiquitination in maintaining ribo-
somal protein stoichiometry [50]. Perhaps not coinciden-
tally, our gene ontology analysis also found enrichment of
genes that are involved in the process of protein translation
for post-translationally buffered genes (Additional file 1:
Table S5). Further investigation to identify factors involved
in maintaining post-translational buffering would provide
insights to advance our understanding of both how nat-
ural selection acts on gene regulation and how to better
predict phenotypes given genetic variants that impact
gene expression.
Taken together, our study provided the first integra-

tive view on gene expression divergence across pri-
mates that allows a comparison between translational
and post-translational events. We found extensive
post-translational gene expression buffering that led
to a stable protein level across primate species. We
propose a scenario where buffering evolved under sta-
bilizing selection of protein levels that prevents nega-
tive impacts on organismal fitness from protein level
variation while allowing the transcript level to diverge

for quick adaptation to environmental changes. Given
the energy cost of protein translation [51], it remains
puzzling to us that stabilizing selection appears to act on
the post-translational level instead of the translational level.
We reason that evolution of post-translational buffering is
probably the more parsimonious path and speculate a
trans-acting mechanism, involving post-translational modi-
fication enzymes, achieved gene expression buffering in a
relatively short period of evolutionary time.

Conclusions
Using ribosome profiling, we measured the impact of
translational regulation on inter-species divergence be-
tween human and closely related primate species. We
found divergence in translation efficiency between pri-
mate species to be relatively rare, while in contrast, we
found post-translational buffering to be a major force in
shaping protein expression divergence between primates.
We provided evidence indicating that post-translational
modifications play a role in this buffering process.
Post-translational buffering appears to have allowed a re-
laxation in the selective constraint on transcription regu-
lation. Taken together, these results highlighted our
incomplete understanding of gene regulatory divergence
between primates and have important implications for
understanding human evolution.

Methods
Study design
The goal of this study is to evaluate the inter-species di-
vergence in translational regulation between primates
and to evaluate relative contribution of transcriptional,
translational, and post-translational gene regulation to
the protein level divergence between primates. This
study is built on top of the previous work on quantifying
inter-species divergence in transcript and protein level
from human, chimpanzee, and rhesus macaque LCLs
[20] and the previous work on translation QTL map-
ping, which collected ribosome profiling data from YRI
human LCLs [17]. For evaluating inter-species diver-
gence in protein translation, we performed ribosome
profiling experiments (in one batch) for four human,
four chimpanzee, and four rhesus macaque LCLs
(Additional file 1: Table S1). For comparing divergence
of transcriptional, translational, and post-translational
regulation between primates, we leveraged data previ-
ously collected from the Khan et al. and the Battle et al.
projects [17, 20]. To do so, we designed this study to
include data from matching cell lines across all three
datatypes (i.e. RNA-seq, ribosome profiling, and quanti-
tative mass spectrometry). Since data from matching cell
lines were collected in separate batches, to properly
estimate batch effects we also included additional cell
lines from each batch (Additional file 1: Table S7).
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Details on how batch effects were adjusted and how
differential expression tests were done can be found in
respective sections. While these adjustments were neces-
sary to ensure accurate identification of divergent genes,
the main conclusions of the paper are robust against the
exact method of choice.

Cell culture and ribosome profiling
Ribosome profiling data were collected from LCLs de-
rived from five chimpanzee (Pan troglodytes) individuals
(New Iberia Research Center: Min 18358, Min 18359;
Coriell/IPBIR: NS03659, NS04973, Arizona State Univer-
sity: Pt91; all Epstein-Barr virus (EBV)-transformed), five
rhesus macaque (Macaca mulatta) individuals (Harvard
Medical School, NEPRC: 150–99, R181–96, R249–97,
265–95, R290–96; all rhesus Herpesvirus papio trans-
formed), and four human individuals (Coriell: GM19127,
GM19137, GM19144, GM19147; all EBV-transformed).
Cell lines were cultured at 37 °C with 5% CO2 in RPMI
media with 15% FBS. The media were further supple-
mented with 2 mM L-glutamate, 100 IU/mL penicillin,
and 100 μg/mL streptomycin. Before pelleting the cells
for lysate preparation, we did not incubate the culture
with cycloheximide. We avoided cycloheximide treat-
ment because of its known potential in introducing
biases at certain codons [52]. Ribosome profiling experi-
ments were performed using ARTseq™ Ribosome Profil-
ing kit for mammalian cells (RPHMR12126) following
vendor’s instructions. Briefly, cell lysates were prepared
by disrupting flash frozen pellets of 30–50 million live
cells through repeated pipetting in 1 mL cold lysis buffer
on ice. Monosome isolation was performed using Sepha-
cryl S400 spin columns (GE; 27–5140-01) on a tabletop
centrifuge. Ribosomal RNA depletion was carried out by
using Ribo-Zero Magnetic Kits (Epicentre; MRZH11124).
Ribosome footprint complementary DNA libraries were
PCR amplified (12–15 thermo-cycles) and barcoded using
ScriptMiner Index PCR Primers (Epicentre; SMIP2124).
Indexed libraries were subsequently pooled together and
then sequenced on an Illumina HiSeq 2500.

Data processing
Preprocessing, mapping, and counting
Since ribosome protected fragments are relatively short
(~ 30 nt), a typical 50-cycle Illumina sequencing run will
read into the adaptor sequence. Before aligning reads to
the genome, we first removed adaptor sequence using
FASTX-Toolkit. We also trimmed the 5′ most nucleo-
tide from each read, as it has been reported that this nu-
cleotide is often an artifact resulted from non-templated
addition from the reverse transcription step during
library construction [21]. Ribosome profiling strategy
enriches for sequence reads derived from rRNA, transfer
RNA (tRNA), and, to a lesser extent, small nuclear RNA

(snoRNA). Because our goal was to quantify the level of
protein translation, to facilitate downstream analyses, we
first removed sequencing reads mapped to a reference
FASTA file composed of human rRNA, tRNA, and
snoRNA sequences. The unmapped reads resulted from
this filtering step were kept and then aligned to their re-
spective reference genome (i.e. hg19 for human, Pantro3
for chimpanzee, and RheMac2 for rhesus macaque)
using BWA [53]. The mapping procedure allowed a
maximum of two mismatches and retained only uniquely
mapped reads (see Khan et al. [20] for the exact BWA
options used). Alignments with quality scores < 10 were
filtered out using SAMtools [54]. Levels of protein transla-
tion were estimated by counting the number of ribosome
profiling reads aligning to each gene using BEDTools [55].
Importantly, for inter-species comparison, we considered
only reads intersecting exons that are orthologous be-
tween species (used in [29]; Additional file 3). Junction
reads spanning across exons were excluded from this
analysis.

Data quality assessment

Codon periodicity Ribosome footprints are enriched at
coding exons in a pattern that reflects the mechanism of
protein translation [21]. We use this pattern (see Fig. 1a
for examples) as a quality check to evaluate each ribo-
some profiling experiment. To compute a quantitative
metric, we aggregated data across all conserved transla-
tion initiation sites on the plus strand of the human gen-
ome. To obtain annotations for conserved translation
initiation sites, we first downloaded coding exon annota-
tions from UCSC genome browser [56] and used a
100-bp window flanking the first position of the first
coding exon for each gene as a candidate region. We
then computed average PhastCons scores [57] for each
candidate region and set a conservation cut-off at an
average PhastCons score of 0.9 to define the regions
flanking conserved translation initiation sites in human.
Using this approach, we defined 668 conserved transla-
tion initiation sites for human. For chimpanzee and rhe-
sus macaque, translation initiation site annotations were
separately converted from the human annotations using
liftOver [58]. To compute aggregate enrichment at each
position relative to the initiation site, we used BEDTools
to identify RPF overlapping the 100-bp conserved initi-
ation site windows and took only the 5′ most position of
each RPF to represent the position of the ribosome (for
Fig. 1a, we shifted the relative coordinates to center the
enrichment pattern at the P site of a ribosome). Relative
enrichment at each position was then computed by sum-
ming the number of reads for each position and then div-
iding by the total number of reads that fall into the 100-bp
windows across conserved translation initiation sites.
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Principal components analysis and potential con-
founders Singular value decomposition was performed
on centered and scaled ribosome profiling data using the
prcomp() function in the stats package of R environment
for statistical computing. To evaluate impact of potential
confounders on variation between samples, we tested for
associations between each principal component (PC)
and potential confounders (Additional file 2: Figure 1 S4).
For quantitative confounders, we computed Pearson’s
correlation coefficients; for qualitative confounders, we
used analysis of variance.

Data transformation
We focused our analysis on genes that were reliably
quantified across all three species. To do this, we kept
only genes that have at least one sequencing read aligned
to in at least three out of four individuals of each spe-
cies. This filtering resulted in a quantification matrix of
9364 detectable genes (Additional file 4). To test for dif-
ferential expression using a linear modeling framework,
we transformed the raw counts to TMM-normalized
log2 counts per million (CPM) [59]. We then account
for variations in orthologous gene lengths across species
by converting log2CPM to log2 reads per kilobase per
million (RPKM) using species-specific gene lengths. To
adjust for heteroscedasticity in sequencing data for linear
modeling, we also estimated observational-level weights
using voom [36].
Since ribosome footprints are shorter than the typical

RNA sequencing reads, additional inter-species mapp-
ability differences could arise specifically in ribosome
profiling data. To evaluate the potential impact of mapp-
ability differences on differential expression analysis, we
performed an alternative data transformation to account
for inter-species mappability differences. To do so, we
first identified mappable regions for each orthologous
gene for each species and then used species–specific
mappable gene lengths for converting CPM to RPKM.
To compute species-specific mappable gene lengths, we
first generated in silico synthetic footprints of 29 nt (i.e.
the median footprint length) tiling all orthologous exons
at a single base increment for each species. We then
identify mappable regions for each species by mapping
the synthetic footprints back to the respective genome.
We evaluate the impact of inter-species mappability
differences on results of differential expression analysis by
the coefficient of determination computed between test
results (i.e. fold change and p value) obtained with and
without adjusting for mappability differences.
For genes that were not reliably quantified across all

three species, we further categorized genes that were
expressed in at least one species and genes that were
only expressed in one species. For a gene to qualify as
expressed in (at least) one species, we required an

average within species expression level to be greater than
the first quartile (i.e. 25%, RPKM= 6.05) of the detect-
able genes (Additional file 4) and a minimum of one
sequencing read aligned to the gene in at least three in-
dividuals of the species. For a gene to qualify as
expressed in only one species, we further required the
expression level to only be quantifiable in at most one
individual from each of the other two species
(Additional file 6).
For joint analyses across different data types, we in-

cluded additional ribosome profiling data to have quanti-
fications on a matching set of 15 individuals that we had
previously collected RNA-seq data and quantitative mass
spectrometry data [20]. Since ribosome profiling data
from additional human individuals were collected across
multiple batches as a part of an earlier study [17], to
adjust for batch effects, we first included multiple indi-
viduals from each relevant batch to better estimate the
effects introduced by batch differences. Data from indi-
viduals other than the 15 cell lines matching previous
RNA-seq and mass spectrometry data collection
(Additional file 1: Table S7) were only included for batch
effect adjustment and were excluded from the down-
stream joint analyses. Before adjusting for batch effects,
we filtered out genes that were not sufficiently quantified
for estimating batch effects by requiring a minimum of
quantification in two individuals for each batch. Filtered
data were then TMM normalized and transformed to
log2RPKM. We used Combat with a parametric prior to
adjust for batch effects [30]. We then extracted
batch-effect-adjusted data from the 15 individuals of
interest for subsequent differential expression analyses.
The same normalization and batch effect adjustment
procedures were performed on the RNA-seq dataset
using its respective batch information. For protein data,
we first filtered out genes that were not expressed at the
protein level by requiring available SILAC ratios from at
least three individuals from each species for each gene.
We then normalized the filtered data by centering
SILAC ratios quantified for each cell line at its respective
trimmed mean (i.e. shifting the entire distribution for
each individual sample to get a trimmed mean of zero).
When calculating trimmed mean for each individual, we
excluded the top and bottom 30% of genes. Finally, for
joint analyses across different data types, we only in-
cluded genes that were quantified across all three data
types (Additional file 7).

Differential expression test
Differential expression tests were computed using limma
[60, 61] R Bioconductor package.
For testing differences in levels of protein translation

between species, we fitted log2 transformed, TMM nor-
malized ribosome profiling data to a fixed effects model
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(species effect) with voom weights [36]. For each gene, the
species coefficient (effectively log2 ratio between species)
is tested against the null hypothesis that the coefficient is
equal to zero using empirical Bayes moderated t-statistics.
To account for multiple testing, nominal p values were
adjusted using Bonferroni correction to get estimates of
FWER; false discovery rates (FDR) estimated using qvalue
[62] were also included in the supplemental files. While
we included this information to help readers interpreting
the results, it should be noted that in some instances, the
p value distributions are not ideal for applying qvalue()
function, and the resulting FDRs should therefore be
interpreted with precaution. For analyses assessing sex
effect in ribosome profiling data, we adjusted for sex effect
on log2 transformed and TMM normalized ribosome
profiling data using Combat with parametric prior [30].
When testing for differences in translation efficiency

between species, we jointly modeled ribosome profiling
and RNA-seq data with a fixed effects model including
an interaction term. The interaction coefficient estimates
datatype dependent species difference (i.e. species differ-
ence in translation efficiency); thus, it identifies differ-
ences in translation that cannot be accounted for by
differences in transcript expression and vice versa. More
specifically, for each gene, let Eij be expression level of
data type j from individual i, Sij be the indicator variable
for species label, and Tij be the indicator variable for
data type label. We fitted the following model:

Eij ¼ μþ β1Sij þ β2Tij þ β3SijT ij þ εij

We fitted log2 transformed, TMM normalized ribo-
some profiling data and RNA-seq data jointly with voom
weights. For each gene, we used empirical Bayes moder-
ated t-statistics to test the contrast coefficient for the
interaction term (i.e. β3, which is effectively log2 ratio of
translation efficiency between species) against the null
hypothesis that the coefficient is equal to zero.
When testing for gene expression buffering, we first

regressed out downstream effects using linear models
and then tested for species effects on the residuals
using the same limma framework described above.
For testing translational buffering, we defined transcript
level (RNA-seq) as the upstream trait and level of protein
translation (ribosome profiling) as the downstream trait.
For testing post-translational buffering, we defined level of
protein translation (ribosome profiling) as the upstream
trait and protein levels (quantitative mass spectrometry)
as the downstream trait. For each comparison, we only
considered a pair of species (i.e. instead of fitting all three
species together). We first modeled the upstream trait
(dependent variable) with the downstream trait as a
fixed-effect predictor. More specifically, for each gene,
let Ui be expression level of an upstream trait from

individual i, Di be expression level of a downstream trait,
Si be the indicator variable for species label. We first fitted
the following model:

Ui ¼ μþ β1Di þ εi

We then took the residual from the first model fit (i.e. εi)
and further fitted a second model on the residual with
species as a fixed-effect predictor:

εi ¼ μ0 þ β2Si þ ε0i
The estimated species coefficients (i.e. β2) from the

second model fit were used to quantify residual diver-
gence between species for the upstream molecular trait
after accounted for the divergence in the downstream
molecular trait (i.e. effect size of buffering).

Enrichment analysis
Enrichment of different features in post-translationally
buffered genes were evaluated by testing Pearson’s
product moment correlation coefficients between the
features of interest (either a continuous or binary dis-
tribution across genes) and significance of buffering
(i.e. -log10(p value) from post-translational buffering tests).
Unless otherwise specified, all tests were two-sided and
the sign of correlation coefficient indicated the direction
of enrichment. For Gene Ontology analysis, we adjusted
for multiple testing using the Benjamini–Hochberg FDR.
Annotations for post-translational modifications were

downloaded from PhosphoSitePlus [63] on 5 August
2016. Subcellular location and Gene Ontology annota-
tions were downloaded from UniProt [64] (last updated
on 6 July 2016). Protein–protein interaction data were
downloaded from BioGRID v3.4 [65] (last updated on 26
July 2016). Pairwise inter-species Ka, Ks values, and
other gene features (such as gene length and GC con-
tent) were downloaded from Ensembl [66] for genome
build hg19. Finally, for genes that have multiple iso-
forms, we used the median value among isoforms for
each feature of interest to test for enrichment.
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species. HvC.beta: coefficient estimated from a contrast comparing
between human and chimpanzee (effectively log2 ratio of levels of
protein translation between the two species). HvC.p.value: nominal
p values derived from t tests. HvC.FDR: false discovery rate adjusted from
nominal p value. HvC.FWER: family-wise error rate adjusted from nominal
p value. (CSV 1507 kb)

Additional file 6: Species-specific protein translation. A .csv table of raw
ribosome profiling counts listing genes that are quantifiable in at least
one species (see details on criteria in “Methods”). Columns of Boolean
labels indicate whether or not a gene is expressed in a species and
whether a gene is only expressed in that species. (CSV 103 kb)

Additional file 7: Transformed ribosome profiling, RNA-seq, and
quantitative mass spectrometry data for genes that are quantifiable in all
three species across all three data types. A total of six R objects are
included in this .RData file. Ribo.expressed.data: TMM normalized
log2RPKM values of ribosome profiling data, ribo.expressed.weights:
corresponding voom weights for ribosome profiling data, ribo.expressed.ref:
TMM normalized log2RPKM values of ribosome profiling data for the
reference cell line (GM19238), RNA.expressed.data: TMM normalized
log2RPKM values of RNA-seq data, RNA.expressed.weights: corresponding
voom weights for RNA-seq data, RNA.expressed.ref: TMM normalized
log2RPKM values of RNA-seq data for the reference cell line (GM19238),
protein.expressed.data: trimmed mean centered SILAC ratios for quantitative
mass spectrometry data. (RDATA 1942 kb)

Additional file 8: Inter-species divergence in translation efficiency. A
.csv file listing results from testing for differences in translation efficiency
between species for genes that are quantifiable in all three species across
all three data types. Column names follow the same convention as
Additional file 5. (CSV 606 kb)

Additional file 9: Translational gene expression buffering. A .csv file
listing results from testing for translational gene expression buffering
between species for genes that are quantifiable in all three species across
all three data types. Column names follow the same convention as
Additional file 5. (CSV 600 kb)

Additional file 10: Post-translational gene expression buffering. A .csv
file listing results from testing for post-translational gene expression
buffering between species for genes that are quantifiable in all three
species across all three data types. Column names follow the same
convention as Additional file 5. (CSV 607 kb)

Acknowledgements
We thank Yoav Gilad for supporting this project and members of the Gilad
lab for helpful discussions; Amy Mitrano and Claudia Garcia for collecting the
sequencing data; Darren Cusanovich for sharing computing scripts; Yoav
Gilad, John Blischak, Annie Shieh, and two anonymous reviewers for reading
and commenting on the manuscript.

Funding
This project was founded by NIH grant GM077959 and by the Howard
Hughes Medical Institute.

Availability of data and materials
The sequencing data supporting the conclusions of this article are available
at Gene Expression Omnibus (accession number GSE71808, data uploaded
on 6 Aug 2015) [67]. The processed data tables (Additional files 4, 6, 7) and
results from statistical tests (Additional files 5, 8, 9, 10) are included as
additional files for this article. R code and bash scripts used for analyses are
available at GitHub (https://github.com/siddisis/project_primate_ribo, code
deposited on 4 May 2018) [68].

Authors’ contributions
SHW, ZK, and JKP conceived and designed the study. SHW performed and
oversaw the experiments. SHW and CJH performed and oversaw the data
analysis. SHW wrote the paper. SHW, CJH, ZK and JKP commented and
revised the paper. All authors read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1Center for Human Genetics, The Brown foundation Institute of Molecular
Medicine, The University of Texas Health Science Center at Houston,
Houston, TX, USA. 2Department of Human Genetics, University of Chicago,
Chicago, IL, USA. 3Genentech, 1 DNA Way, South San Francisco, CA, USA.
4Department of Genetics, Stanford University, Stanford, CA, USA.
5Department of Biology, Stanford University, Stanford, CA, USA. 6Howard
Hughes Medical Institute, Stanford University, Stanford, CA, USA.

Received: 19 September 2017 Accepted: 10 May 2018

References
1. King MC, Wilson AC. Evolution at two levels in humans and chimpanzees.

Science. 1975;188:107–16.
2. Romero IG, Ruvinsky I, Gilad Y. Comparative studies of gene expression and

the evolution of gene regulation. Nat Rev Genet. 2012;13:505–16.
3. Carroll SB. Evo-devo and an expanding evolutionary synthesis: a genetic

theory of morphological evolution. Cell. 2008;134:25–36.
4. Shapiro MD, Marks ME, Peichel CL, Blackman BK, Nereng KS, Jónsson B, et al.

Genetic and developmental basis of evolutionary pelvic reduction in
threespine sticklebacks. Nature. 2004;428:717–23.

5. Gilad Y, Oshlack A, Smyth GK, Speed TP, White KP. Expression profiling in
primates reveals a rapid evolution of human transcription factors. Nature.
2006;440:242–5.

6. Blekhman R, Oshlack A, Chabot AE, Smyth GK, Gilad Y. Gene regulation in
primates evolves under tissue-specific selection pressures. PLoS Genet. 2008;
4:e1000271.

7. Enard W, Khaitovich P, Klose J, Zöllner S, Heissig F, Giavalisco P, et al. Intra-
and interspecific variation in primate gene expression patterns. Science.
2002;296:340–3.

8. Khaitovich P, Hellmann I, Enard W, Nowick K, Leinweber M, Franz H, et al.
Parallel patterns of evolution in the genomes and transcriptomes of
humans and chimpanzees. Science. 2005;309:1850–4.

9. Capra JA, Erwin GD, McKinsey G, Rubenstein JLR, Pollard KS. Many human
accelerated regions are developmental enhancers. Philos Trans R Soc Lond
Ser B Biol Sci. 2013;368:20130025.

10. Lindblad-Toh K, Garber M, Zuk O, Lin MF, Parker BJ, Washietl S, et al. A high-
resolution map of human evolutionary constraint using 29 mammals.
Nature. 2011;478:476–82.

11. Brawand D, Soumillon M, Necsulea A, Julien P, Csárdi G, Harrigan P, et al.
The evolution of gene expression levels in mammalian organs. Nature.
2011;478:343–8.

12. Khaitovich P, Weiss G, Lachmann M, Hellmann I, Enard W, Muetzel B, et al.
A neutral model of transcriptome evolution. PLoS Biol. 2004;2:E132.

13. Li JJ, Bickel PJ, Biggin MD. System wide analyses have underestimated
protein abundances and the importance of transcription in mammals.
PeerJ. 2014;2:e270.

14. Vogel C, Marcotte EM. Insights into the regulation of protein
abundance from proteomic and transcriptomic analyses. Nat Rev Genet.
2012;13:227–32.

15. Wu L, Candille SI, Choi Y, Xie D, Jiang L, Li-Pook-Than J, et al. Variation and
genetic control of protein abundance in humans. Nature. 2013;499:79–82.

16. Albert FW, Treusch S, Shockley AH, Bloom JS, Kruglyak L. Genetics of single-
cell protein abundance variation in large yeast populations. Nature. 2014;
506:494–7.

17. Battle A, Khan Z, Wang SH, Mitrano A, Ford MJ, Pritchard JK, et al. Genomic
variation. Impact of regulatory variation from RNA to protein. Science. 2015;
347:664–7.

18. Chick JM, Munger SC, Simecek P, Huttlin EL, Choi K, Gatti DM, et al. Defining
the consequences of genetic variation on a proteome-wide scale. Nature.
2016;534:500–5.

Wang et al. Genome Biology  (2018) 19:83 Page 14 of 15

https://doi.org/10.1186/s13059-018-1451-z
https://doi.org/10.1186/s13059-018-1451-z
https://doi.org/10.1186/s13059-018-1451-z
https://doi.org/10.1186/s13059-018-1451-z
https://doi.org/10.1186/s13059-018-1451-z
https://github.com/siddisis/project_primate_ribo


19. Laurent JM, Vogel C, Kwon T, Craig SA, Boutz DR, Huse HK, et al. Protein
abundances are more conserved than mRNA abundances across diverse
taxa. Proteomics. 2010;10:4209–12.

20. Khan Z, Ford MJ, Cusanovich DA, Mitrano A, Pritchard JK, Gilad Y. Primate
transcript and protein expression levels evolve under compensatory
selection pressures. Science. 2013;342:1100–4.

21. Ingolia NT, Ghaemmaghami S, Newman JRS, Weissman JS. Genome-wide
analysis in vivo of translation with nucleotide resolution using ribosome
profiling. Science. 2009;324:218–23.

22. Ingolia NT, Lareau LF, Weissman JS. Ribosome profiling of mouse embryonic
stem cells reveals the complexity and dynamics of mammalian proteomes.
Cell. 2011;147:789–802.

23. Albert FW, Muzzey D, Weissman JS, Kruglyak L. Genetic influences on
translation in yeast. PLoS Genet. 2014;10:e1004692.

24. McManus CJ, May GE, Spealman P, Shteyman A. Ribosome profiling reveals
post-transcriptional buffering of divergent gene expression in yeast.
Genome Res. 2014;24:422–30.

25. Artieri CG, Fraser HB. Evolution at two levels of gene expression in yeast.
Genome Res. 2014;24:411–21.

26. Stadler M, Fire A. Conserved translatome remodeling in nematode species
executing a shared developmental transition. PLoS Genet. 2013;9:e1003739.

27. Cenik C, Cenik ES, Byeon GW, Grubert F, Candille SI, Spacek D, et al.
Integrative analysis of RNA, translation, and protein levels reveals distinct
regulatory variation across humans. Genome Res. 2015;25:1610–21.

28. Bazzini AA, Johnstone TG, Christiano R, Mackowiak SD, Obermayer B,
Fleming ES, et al. Identification of small ORFs in vertebrates using ribosome
footprinting and evolutionary conservation. EMBO J. 2014;33:981–93.

29. Blekhman R, Marioni JC, Zumbo P, Stephens M, Gilad Y. Sex-specific and
lineage-specific alternative splicing in primates. Genome Res. 2010;20:180–9.

30. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray
expression data using empirical Bayes methods. Biostat. 2007;8:118–27.

31. Oshlack A, Wakefield MJ. Transcript length bias in RNA-seq data confounds
systems biology. Biol Direct. 2009;4:14.

32. Dohm JC, Lottaz C, Borodina T, Himmelbauer H. Substantial biases in ultra-
short read data sets from high-throughput DNA sequencing. Nucleic Acids
Res. 2008;36:e105.

33. Martin-Perez M, Villén J. Determinants and regulation of protein turnover in
yeast. Cell Syst. 2017;5:283–294.e5.

34. Pickrell JK, Marioni JC, Pai AA, Degner JF, Engelhardt BE, Nkadori E, et al.
Understanding mechanisms underlying human gene expression variation
with RNA sequencing. Nature. 2010;464:768–72.

35. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-seq: an
assessment of technical reproducibility and comparison with gene
expression arrays. Genome Res. 2008;18:1509–17.

36. Law CW, Chen Y, Shi W, Smyth GK. voom: Precision weights unlock linear
model analysis tools for RNA-seq read counts. Genome Biol. 2014;15:R29.

37. Bader DM, Wilkening S, Lin G, Tekkedil MM, Dietrich K, Steinmetz LM, et al.
Negative feedback buffers effects of regulatory variants. Mol Syst Biol. 2015;
11:785.

38. Pollard KS, Hubisz MJ, Rosenbloom KR, Siepel A. Detection of nonneutral
substitution rates on mammalian phylogenies. Genome Res. 2010;20:110–21.

39. Kirchner S, Ignatova Z. Emerging roles of tRNA in adaptive translation,
signalling dynamics and disease. Nat Rev Genet. 2015;16:98–112.

40. Rutherford SL, Lindquist S. Hsp90 as a capacitor for morphological
evolution. Nature. 1998;396:336–42.

41. Queitsch C, Sangster TA, Lindquist S. Hsp90 as a capacitor of phenotypic
variation. Nature. 2002;417:618–24.

42. Taipale M, Jarosz DF, Lindquist S. HSP90 at the hub of protein homeostasis:
emerging mechanistic insights. Nat Rev Mol Cell Biol. 2010;11:515–28.

43. Vembar SS, Brodsky JL. One step at a time: endoplasmic reticulum-
associated degradation. Nat Rev Mol Cell Biol. 2008;9:944–57.

44. Dubnikov T, Ben-Gedalya T, Cohen E. Protein quality control in health and
disease. Cold Spring Harb Perspect Biol. 2017;9:a023523.

45. Ravid T, Hochstrasser M. Diversity of degradation signals in the ubiquitin–
proteasome system. Nat Rev Mol Cell Biol. 2008;9:679.

46. Mueller S, Wahlander A, Selevsek N, Otto C, Ngwa EM, Poljak K, et al. Protein
degradation corrects for imbalanced subunit stoichiometry in OST complex
assembly. Mol Biol Cell. 2015;26:2596–608.

47. Asher G, Reuven N, Shaul Y. 20S proteasomes and protein degradation
“by default.”. BioEssays. 2006;28:844–9.

48. Ruggiano A, Foresti O, Carvalho P. Quality control: ER-associated
degradation: protein quality control and beyond. J Cell Biol. 2014;204:
869–79.

49. Ishikawa K, Makanae K, Iwasaki S, Ingolia NT, Moriya H. Post-translational
dosage compensation buffers genetic perturbations to stoichiometry of
protein complexes. PLoS Genet. 2017;13:e1006554.

50. Sung M-K, Reitsma JM, Sweredoski MJ, Hess S, Deshaies RJ. Ribosomal
proteins produced in excess are degraded by the ubiquitin–proteasome
system. Mol Biol Cell. 2016;27:2642–52.

51. Wagner A. Energy constraints on the evolution of gene expression. Mol Biol
Evol. 2005;22:1365–74.

52. Weinberg DE, Shah P, Eichhorn SW, Hussmann JA, Plotkin JB, Bartel DP.
Improved ribosome-footprint and mRNA measurements provide insights
into dynamics and regulation of yeast translation. Cell Rep. 2016;14:
1787–99.

53. Li H, Durbin R. Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics. 2009;25:1754–60.

54. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The
Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:
2078–9.

55. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics. 2010;26:841–2.

56. UCSC Genome Browser Home. https://genome.ucsc.edu/
57. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K, et al.

Evolutionarily conserved elements in vertebrate, insect, worm, and yeast
genomes. Genome Res. 2005;15:1034–50.

58. Lift Genome Annotations. https://genome.ucsc.edu/cgi-bin/hgLiftOver
59. Robinson MD, Oshlack A. A scaling normalization method for differential

expression analysis of RNA-seq data. Genome Biol. 2010;11:R25.
60. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers

differential expression analyses for RNA-sequencing and microarray studies.
Nucl Acids Res. 2015;43(7):e47.

61. Smyth GK. Linear models and empirical bayes methods for assessing
differential expression in microarray experiments. Stat Appl Genet Mol Biol.
2004;3:Article3.

62. Storey JD. The positive false discovery rate: a Bayesian interpretation and
the q-value. Ann Statist. 2003;31:2013–35.

63. Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E.
PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucl Acids Res.
2015;43:D512–20. https://www.phosphosite.org/staticDownloads

64. The UniProt Consortium. UniProt: a hub for protein information. Nucl Acids
Res. 2015;43:D204–12. http://www.uniprot.org/downloads.

65. Chatr-Aryamontri A, Breitkreutz B-J, Oughtred R, Boucher L, Heinicke S, Chen
D, et al. The BioGRID interaction database: 2015 update. Nucleic Acids Res.
2015;43:D470–8. https://downloads.thebiogrid.org/BioGRID

66. Aken BL, Achuthan P, Akanni W, Amode MR, Bernsdorff F, Bhai J, et al.
Ensembl 2017. Nucleic Acids Res. 2017;45:D635–42. https://www.ensembl.
org/biomart

67. Wang SH, Hsiao CJ, Khan Z, Pritchard JK. Post-translational buffering leads to
convergent protein expression levels between primates. NCBI GEO. Datasets.
(2018). https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE71808.

68. Wang SH, Hsiao CJ, Khan Z, Pritchard JK. Post-translational buffering leads to
convergent protein expression levels between primates. Github. (2018).
https://github.com/siddisis/project_primate_ribo.

Wang et al. Genome Biology  (2018) 19:83 Page 15 of 15

https://genome.ucsc.edu/
https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://www.phosphosite.org/staticDownloads
http://www.uniprot.org/downloads
https://downloads.thebiogrid.org/BioGRID
https://www.ensembl.org/biomart
https://www.ensembl.org/biomart
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE71808
https://github.com/siddisis/project_primate_ribo

	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Inter-species variation in levels of protein translation
	Estimating divergence in translation efficiency
	Attenuation of regulatory divergence
	Relaxed transcriptional regulation of buffered genes

	Discussion
	Conclusions
	Methods
	Study design
	Cell culture and ribosome profiling
	Data processing
	Preprocessing, mapping, and counting
	Data quality assessment
	Data transformation

	Differential expression test
	Enrichment analysis

	Additional files
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Competing interests
	Publisher’s Note
	Author details
	References

