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Abstract

Chromosome conformation capture methods are being increasingly used to study three-dimensional genome
architecture in multiple cell types and species. An important challenge is to examine changes in three-dimensional
architecture across cell types and species. We present Arboretum-Hi-C, a multi-task spectral clustering method, to
identify common and context-specific aspects of genome architecture. Compared to standard clustering,
Arboretum-Hi-C produced more biologically consistent patterns of conservation. Most clusters are conserved and
enriched for either high- or low-activity genomic signals. Most genomic regions diverge between clusters with similar
chromatin state except for a few that are associated with lamina-associated domains and open chromatin.

Background
The three-dimensional (3D) organization of the genome
is emerging as an important layer in the regulation of gene
expression [1–10]. Recent advances in high-throughput
chromosome conformation capture (3C, particularly 4C,
5C, and Hi-C) technology allow us to examine the 3D
organization of a genome in an unbiased and compre-
hensive manner [1, 8]. Genome-wide 3C data sets are
becoming increasingly available for multiple species and
tissues and have enabled us to examine the folding and
organizational principles of the genome and identify long-
range interactions among genomic loci [1, 11]. In par-
ticular, studies in yeast have shown that such long-range
interactions are enriched for loci involving tRNA genes,
centromeres, early origins of replication [4], and tran-
scription factories for regulation of gene expression [12].
In mammalian systems, such interactions are organized
into architectural units known as compartments and
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topologically associated domains (TADs).While the inter-
actions can be cell-type- [13] or species-specific [14, 15],
the compartments and TADs are likely conserved across
developmental stages [3, 16] and across species [14]. How-
ever, our understanding of the extent of conservation and
context-specificity of these interactions is incomplete.
The availability of genome-wide 3C data sets for mul-

tiple species and tissues gives us the unique opportunity
to compare chromatin organization across tissues and
organisms to identify the principles of this organization.
In parallel, statistical techniques have been developed
to normalize these data, identify significant interacting
genomic loci [17–19], and identify different types of orga-
nizational units from these data [20]. Clustering and
dimensionality reduction approaches, in particular, have
emerged as important analytical tools for Hi-C data
[8, 9, 19, 21]. Rao et al. clustered high-resolution in situ
Hi-C data and found six main clusters exhibiting dis-
tinct patterns of chromatin state [9]. Principal component
analyses of Hi-C data for each chromosome revealed a
compartment structure [8], where regions within each
compartment are more likely to interact than regions
from two different compartments. Imakaev et al. found
that the first eigenvector of the genome-wide normal-
ized contact count map exhibited similar properties as
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the two-compartment model [21]. The second and third
eigenvectors exhibited variation along the chromosomal
arms, with increased magnitude in the centromeric and
telomeric regions for the second and third eigenvectors,
respectively.
While current clustering and dimensionality reduction

techniques have provided useful insights into genome
organization, there are several key issues that need to be
addressed. First, unlike traditional functional genomics
data such as genome-wide mRNA level or histone mod-
ification measurements, 3C data specify contact counts
among pairs of genomic loci. A graph-based representa-
tion provides a natural representation of these Hi-C data
[22] and incorporating Hi-C interaction information as a
graph prior was recently shown to improve chromatin-
mark-based genome segmentation and annotation [23].
Graph-clustering methods, such as spectral clustering
[24, 25], when applied to graph data, are more advanta-
geous than using conventional clustering. However, to our
knowledge, graph-clustering methods, especially across
multiple cell types and species, have not been explored
with Hi-C data. It is currently unknown whether such
methods have any advantages over traditional cluster-
ing methods that do not capture the graph nature of 3C
data.
The second issue is that methods that systematically

compare these maps across multiple tissues or multiple
organisms are scarce [3]. In particular, given such contact
count matrices from two or more cell types, tissues, or
organisms, it is not immediately clear how to identify clus-
ters simultaneously in both cell types and also compare
them to identify common and context-specific patterns.
The systematic comparison of the general 3D organiza-
tion of the genome across multiple conditions, cell types,
and organisms is still a largely unexplored computational
challenge.
In this paper, we first perform a comprehensive analysis

of different clustering approaches (hierarchical, k-means,
and spectral) using different distance measures. Our anal-
ysis shows that spectral clustering methods tend to out-
perform existing non-graph-based methods, producing
higher quality clusters based on statistical enrichment of
multiple one-dimensional regulatory genomic signals. We
next develop a multi-task version of our spectral clus-
tering algorithm and apply it to Hi-C data in four cell
lines, two each from human and mouse. Compared to
an independent clustering method, our multi-task clus-
tering method finds more biologically consistent pat-
terns of conservation and divergence. Using the inferred
clusters, we perform a systematic comparative study of
the extent of conservation and divergence in chromo-
some contact preferences between matched cell lines of
different species, and between cell lines of the same
species. Our results indicate that most regions maintain

their chromosome contact preferences between cell lines,
and regions that diverge between species and cell lines
are enriched for lamina-associated domains (LADs) and
architectural proteins.

Results
Graph-based clustering of Hi-C data recovers better
clusters than non-graph-based clustering
To assess the utility of graph-based clustering for Hi-C
data over non-graph-based clustering, we compared
three algorithms: (1) hierarchical clustering, (2) k-means,
and (3) spectral clustering. Hierarchical clustering and
k-means have been used widely to analyze functional
genomics data sets such as gene expression [26] and chro-
matin marks [27]. The spectral clustering algorithm is a
graph-based clustering method that clusters the eigenvec-
tors of the Laplacian operator on a graph [25]. For all three
clustering methods, we considered different distance met-
rics: (1) Euclidean distance, (2) Pearson’s correlation, (3)
Spearman’s correlation, (4) contact counts, and (5) log2 of
contact counts. In total, we had 15 clustering approaches
that differed by clustering algorithm and distance metric.
We applied each clustering method to Hi-C data from

the humanH1 embryonic stem cell (hESC) line [3], binned
into 2755 1-Mbp bins. Each method was applied to obtain
k = 10 clusters (Methods). We evaluated the quality
of clusters from each clustering method using five dif-
ferent statistical measures: (1) the Davies–Bouldin index
(DBI), (2) the silhouette index (SI), (3) the difference in
contact counts between regions in the same cluster and
between regions from different clusters (delta contact
count), (4) the number of clusters enriched for a regula-
tory signal (e.g. transcription factor occupancy or histone
modification), and (5) analysis of variance (ANOVA) of a
regulatory signal. DBI measures the within-cluster scat-
ter and is a number between 0 and 1; the lower the value
the better the clustering. SI assesses the boundaries of
clustering and ranges between −1 and 1; the lower the
value the worse the clustering. The Kolmogorov–Smirnov
(KS) test was used to assess whether a particular fea-
ture was significantly high in a cluster compared to the
genomic background. ANOVA was used to examine how
well the clusters explain the variation in a particular reg-
ulatory signal. DBI, SI, and the delta contact count served
as internal validation metrics of clustering that need only
the data being clustered, while the number of enriched
clusters and ANOVA served as measures of external
validation.
A comparison of different clustering approaches

showed considerable variation among the different meth-
ods (Fig. 1). For example, using DBI and SI, hierarchical
clustering with 1-Pearson’s correlation as a distance mea-
sure was among the best performing methods (Fig. 1a,
b), but it was among the worst when using the number



Fotuhi Siahpirani et al. Genome Biology  (2016) 17:114 Page 3 of 18

a

e

Davies-Bouldin index (lower is better) Silhouette index (higher is better)

3 2

11

6 8 9 4

14

13
12

1

b Silhouette index (higher is better)

c Delta contact count (higher is better) d Number of enriched clusters (higher is better)

6

50

100

150

200

250

300

10
75

15

S
pe

ar
m

an

E
uc

lid
ea

n

P
ea

rs
on

lo
g2

 C
on

t. 
cn

ts
C

on
t. 

cn
ts

S
pe

ar
m

an

E
uc

lid
ea

n
P

ea
rs

on

lo
g2

 C
on

t. 
cn

ts
C

on
t. 

cn
ts

S
pe

ar
m

an

E
uc

lid
ea

n
P

ea
rs

on

lo
g2

 C
on

t. 
cn

ts
C

on
t. 

cn
ts

SpectralKmeansHierarchical

-

S
pe

ar
m

an

E
uc

lid
ea

n

P
ea

rs
on

lo
g2

 C
on

t. 
cn

ts
C

on
t. 

cn
ts

S
pe

ar
m

an

E
uc

lid
ea

n
P

ea
rs

on

lo
g2

 C
on

t. 
cn

ts
C

on
t. 

cn
ts

S
pe

ar
m

an

E
uc

lid
ea

n
P

ea
rs

on

lo
g2

 C
on

t. 
cn

ts
C

on
t. 

cn
ts

SpectralKmeansHierarchical

14

3 5
1 4

8
10 12 9

13

2

11
76

15

2 5
8

6 4
9 11

15

12

3
1

10

13

7

14

S
pe

ar
m

an

E
uc

lid
ea

n

P
ea

rs
on

lo
g2

 C
on

t. 
cn

ts
C

on
t. 

cn
ts

S
pe

ar
m

an

E
uc

lid
ea

n
P

ea
rs

on

lo
g2

 C
on

t. 
cn

ts
C

on
t. 

cn
ts

S
pe

ar
m

an

E
uc

lid
ea

n
P

ea
rs

on

lo
g2

 C
on

t. 
cn

ts
C

on
t. 

cn
ts

SpectralKmeansHierarchical

S
pe

ar
m

an

E
uc

lid
ea

n

P
ea

rs
on

lo
g2

 C
on

t. 
cn

ts
C

on
t. 

cn
ts

S
pe

ar
m

an

E
uc

lid
ea

n
P

ea
rs

on

lo
g2

 C
on

t. 
cn

ts
C

on
t. 

cn
ts

S
pe

ar
m

an

E
uc

lid
ea

n
P

ea
rs

on

lo
g2

 C
on

t. 
cn

ts
C

on
t. 

cn
ts

SpectralKmeansHierarchical

8.5

13

3

13 13 13 13

3 3

8.5

3 3

6

8.5 8.5

Spearman

Euclidean
Pearson

log2 Cont. cnts
Cont. cnts

Spearman

Euclidean
Pearson

log2 Cont. cnts
Cont. cnts

Spearman

Euclidean
Pearson

log2 Cont. cnts
Cont. cnts

Spectral

Kmeans

Hierarchical
11
13
2
15
14
4
5
2
7
9
6
12
2
10
8

R
ep

Ti
m

e

Fig. 1 Evaluation of different clustering methods. Shown are a comparison of three clustering methods using different measures: a Davies–Bouldin
index. b Silhouette index. c Difference in contact counts within and between clusters. d Number of clusters with an enriched regulatory signal.
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of enriched clusters or ANOVA (Fig. 1d, e). To compare
the different clustering approaches across all these mea-
sures, we, therefore, ranked each method on a scale of 1 to
15 (appropriately adjusting ties) on each of the evaluation
metrics, and computed the average rank for each method.
Based on the average rank, the top five methods were
spectral clustering on contact count (1), hierarchical clus-
tering with 1-Spearman’s correlation as the distance mea-
sure (2), spectral clustering with Spearman’s correlation
(3), spectral clustering with Euclidean distance (4), and k-
means using Euclidean distance (5). Thus, three among
the top five rankingmethods were spectral clustering vari-
ants. We next inspected the patterns of enrichment in
the clusters from each method. We found that clusters
obtained from spectral clustering with Spearman’s cor-
relation (Fig. 2) were most distinct in their patterns of
enrichment compared to the other variants of spectral
clustering (Additional file 1: Figure S1) and hierarchical
clustering (Additional file 1: Figure S2, Additional file 2).
In particular, spectral clustering with Spearman’s correla-
tion found three clusters that were significantly enriched
with open chromatin signatures (described in detail in the
next section, Fig. 2d). In contrast, clusters from hierar-
chical clustering were unbalanced and all the activating
marks were concentrated in one cluster. Thus, the clusters
obtained from spectral clustering on Spearman’s corre-
lation are likely more biologically meaningful based on
external validation measures and are comparable to hier-
archical clustering approaches for internal validation met-
rics. Based on these observations, we selected spectral
clustering (Spearman’s correlation) for our subsequent
analysis. We note that our clustering framework is flexible
and can use other definitions of graph weights as well.

Spectral clustering can incorporate both cis and trans
interactions and identifies twomajor types of clusters
Inspection of the chromosomal coverage of our clusters in
hESC showed that most (six of ten) clusters cover multiple
chromosomes, revealing cis and trans interactions (Fig. 2a,
Methods). Spectral clustering of only trans interactions
finds a similar number of multi-chromosomal clusters
suggesting that our clustering is robust and that intra-
chromosomal interactions do not overshadow the inter-
chromosomal interactions (Additional file 1: Figure S3,
Additional file 2).
To interpret our clusters functionally and relate

them to downstream gene expression programs, we
tested our clusters for statistical enrichment of multi-
ple genome-wide regulatory signals including chromatin
marks (H3K4me1, H3K4me2, H3K4me3, H3K36me3,
H3K79me2, H4K20me1, H3K9ac, H3K27ac, H3K27me3,
and H3K9me3), LADs, early versus late replication tim-
ing (RepTime), general transcription factors (POLII, TAF,
TBP, CTCF, P300, and CMYC), cohesin components

(RAD21 and SMC3), open chromatin from DNase I
hypersensitivity assays, number of genes, and various
classes of repeat elements [short interspersed nuclear ele-
ments (SINEs), long interspersed elements (LINEs), and
long terminal repeats (LTRs)].
We found that clusters C0, C1, and C2 were signifi-

cantly enriched with gene-rich regions, open chromatin
(DNase I), SINE, and activating and repressive marks,
with the exception of H3K9me3, which varied between
the clusters (KS test P < 0.05, Fig. 2d, e). Cluster C0
was also moderately enriched for LADs while C1 and
C2 were depleted in LADs. The remaining seven clusters
were associated with LADs, LINEs, and LTRs, and were
depleted for genes and chromatin marks. The clusters
comprising entirely regions from one chromosome were
associated with LADs and either LINE (C7 and C8) or
LTRs (C6). We also observed that SINE and LINE enrich-
ments are exclusive: SINEs tend to be with clusters with
high genomic activity (i.e. enriched for different chro-
matin marks and gene-rich regions), while LINE and LTR
elements are associated with LAD clusters. Our observa-
tion that the clusters associated with gene-rich regions
are depleted in LADs and clusters associated with gene-
poor regions are enriched for LADs is in agreement with
previous studies that showed LADs are relatively gene
poor [28]. Because the clusters appeared to be discrimi-
nated based on activity, we asked if DNase I footprints can
explain the association of all other marks. We observe sig-
nificant conditional mutual information between each sig-
nal and the clustering assignments given DNase I, which
suggests there is information to be gained by the cluster-
ing that is not captured in the DNase I signal (Additional
file 1: Methods, Additional file 1: Figure S4). Further-
more, the observed values of the different evaluation
metrics (SI, DBI, and delta contact counts) are signifi-
cantly higher than random, suggesting that we are not
over-clustering (Additional file 1: Methods and Additional
file 1: Figure S5).
In parallel, we clustered the genomic regions using k-

means on their one-dimensional signal profiles (Fig. 2f)
and compared these clusters to the spectral clusters based
on a hypergeometric test. Several of the Hi-C clusters
weremutually enriched in these k-means clusters (Fig. 2g),
suggesting that these two partitions of the data are mutu-
ally consistent with each other. For example, the spectral
clusters C1 and C2 (with high genomic activity) had sig-
nificant overlap with the k-means clusters C0 and C4.
However, the Hi-C clusters do not have a one-to-onemap-
ping with the one-dimensional signal k-means clusters
(e.g. the C3 k-means cluster had significant overlap with
the C4, C6, and C7 spectral clusters), suggesting that the
Hi-C clusters capture additional information that is spe-
cific to the 3D organization of the genome. We repeated
this analysis for Hi-C data in a mouse ESC (mESC) line
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from Dixon et al. [3] (Additional file 1: Figure S6 and
Additional file 2), and observed similar patterns, suggest-
ing that our clusters are capturing generalizable properties
of chromosomal organization.
To test the sensitivity of our conclusions to fixed-sized

bins, we also considered regions defined by TADs. Briefly,
we aggregated the counts in TADs defined in Dixon et al.
[3] and clustered the resulting matrix (Additional file 1:
Methods). We observed similar patterns of enrichment in
these clusters and found that 43 % of the total bases were
co-clustered when using a fixed bin size and clusters of
TADs (Additional file 1: Figure S7, Additional file 2). We
also repeated our analysis of the hESC data for multiple
resolutions, 100 and 500 kbp. There was a significant over-
lap of base pair coverage between clusters at different res-
olutions (64 % for 100 and 500 kbp, 53 % for 100 kbp and
1 Mbp, and 71 % for 500 kbp and 1 Mbp), which is signif-
icantly greater than random (Additional file 1: Table S1).
Furthermore, we could find a one-to-one mapping for
the majority of the clusters, and the mapped clusters also
exhibited similar patterns of enrichment as the 1-Mbp
regions (Additional file 1: Figure S8).

Hi-C data clusters from spectral clustering recapitulate
known and novel higher-order organizational units
To examine the relationship between our spectral clus-
ters and major chromosomal architectural units such as
compartments on individual chromosomes [8], we applied
k = 2 clustering to our data. A compartment is defined
by a subset of regions on a chromosome that densely
interact with each other, but are depleted for interactions
with other regions on the chromosome. We obtained the
cluster assignment for all regions in a chromosome and
compared these cluster assignments to the compartments
(Additional file 1: Figure S9 and Methods). The major-
ity of the chromosomes (except for chromosomes 16, 19,
20, 21, and 22) were partitioned into two clusters by our
approach, indicating the presence of compartment-like
structures in our clustering results. Pairs of regions that
were clustered together by spectral clustering tended to be
in the same compartment as assessed by two independent
measures of co-clustering. In the majority of the chro-
mosomes (18 out of 23), these measures are significantly
higher than what is expected by chance (F score: 60–80 %,
t test P < 3.49×10−5, and Rand index: 50–80 %, t test P <

1.45 × 10−5, Additional file 1: Figure S9), suggesting that
spectral clustering with k = 2 can also recover aspects
of compartments. Chromosomes 16, 19, 20, 21, and 22
are not detectable as separate clusters with k = 2, likely
because they tend to co-localize in the nucleus [8]. The
application of the spectral clustering method at higher
resolution (e.g. 40 kbp instead of 1 Mbp), can recover
TAD-like structures (Additional file 1: Figure S10a, b, c,
d, and Additional file 1: Methods). In addition, applying

the clustering method to each chromosome separately
can also recover clusters with significant overlap with
the compartment (Additional file 1: Figure S10e, f, g).
These results further suggest that graph-based clustering
approaches can be a general and powerful approach for
recovering different organizational units of the genome,
spanning both cis (within one chromosome) and trans
(between chromosome) interactions.

Arboretum-Hi-C: A multi-task spectral clustering algorithm
for comparative analysis of Hi-C data
Having determined that spectral clustering is a power-
ful approach for analyzing Hi-C data from one cell line,
we next developed a new approach, Arboretum-Hi-C, to
compare systematically the 3D organization across mul-
tiple cell types and species. Arboretum-Hi-C combines
two clustering strategies: spectral clustering and multi-
task clustering (Fig. 3). Multi-task clustering is a special
case of multi-task learning [29], where the goal is to solve
multiple learning tasks simultaneously. Arboretum-Hi-C
takes as input n different Hi-C data sets (n = 3 in Fig. 3),
representing possibly different cell lines or species, a tree
describing the hierarchical relationship between the data
sets, the number of clusters k, and a mapping of regions
between the different data sets. The Hi-C data sets rep-
resent observed data as the leaves of the tree (Fig. 3). As
output, Arboretum-Hi-C returns the cluster assignments
of regions in each Hi-C data set. Arboretum-Hi-C is based
on a previous multi-task clustering approach, Arboretum
[30], which uses a generative probabilistic model to cluster
expression data from multiple species while accounting
for the hierarchical relationships among the species as
described by a phylogenetic tree (Methods). However,
instead of expression matrices at each leaf node, we now
have Hi-C interaction graphs. Edges in these graphs are
weighted, with edge weights corresponding to Spearman’s
correlation since this gave the best results among different
distance metrics. However, our general approach is appli-
cable to different definitions of edge weight (e.g. contact
count between a pair of regions). To cluster these graphs,
we apply Gaussian mixture model-based clustering to the
first k eigenvectors of each graph’s Laplacian (Additional
file 1: Methods).

Major modules of chromosome contact interactions are
shared between human andmouse cell lines
We applied Arboretum-Hi-C to two human and two
mouse cell lines that were studied in Dixon et al. [3]. Two
of these cell lines represent the undifferentiated ESC state
in both organisms (hESC and mESC, respectively), and
the other two cell lines represent examples of a termi-
nally differentiated cell state (IMR90 human fibroblasts
and mouse cortex, referred to as hIMR90 and mCor-
tex, respectively). We first examined 1318 1-Mbp human
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Fig. 3 Overview of Arboretum-Hi-C. Given n graphs of genomic regions, each representing a Hi-C data set in n species or cell lines, our method
clusters the regions based on their interactions, while exploiting the relatedness (shown as the hierarchy) among the data sets. The figure shows an
example of three Hi-C data sets with two clusters. The example shows that some regions keep their cluster assignments in all species, while other
regions (diverged regions) change their cluster based on changes in their interactions with other regions. Dashed lines represent a mapping of
regions from one data set to another. For cell lines of the same species, this mapping is trivial as the same regions are studied. For multiple species,
this mapping requires one to find orthologous regions between species

and mouse regions that constitute one-to-one ortholo-
gous regions (Methods). Results at a higher resolution
(500 kbp) are described subsequently.
We considered two possible hierarchical relationships

of these four data sets (Additional file 1: Figure S11 and
Additional file 1: Methods) and used the probabilistic
framework of Arboretum-Hi-C to select between these
two trees. In one tree, the cell lines from the same species
were closer to each other, and in the other, the embry-
onic cell lines from the two species were closer to each
and the differentiated cell lines were closer to each other.
We observed that the first tree, in which the Hi-C data
within a species were closer to each other, had a greater
data likelihood (Additional file 1: Figure S11). There-
fore, we performed our subsequent analysis with this tree
topology.
Application of Arboretum-Hi-C to these four data

sets identified ten clusters of interacting regions, sev-
eral of which exhibited conserved patterns of inter-
actions (Fig. 4). The multi-task clustering framework
of Arboretum-Hi-C provides a correspondence between

clusters of one cell line/species to the clusters of another
cell line/species. That is, cluster Ci from hESC would
correspond to cluster Ci of mESC (and all other data sets
examined), where i ranges from 0 to k − 1. This corre-
spondence or mapping of clusters between different data
sets (as further described and validated below) enables
a systematic comparison of patterns of interactions and
the regions that participate in these interactions. We visu-
ally examined the patterns of these clusters based on
the eigenvectors (Fig. 4a) as well as Spearman’s correla-
tion matrices for regions in each cluster (Fig. 4b). Several
clusters exhibited conserved patterns of eigenvectors and
interactions across all four data sets (C1 and C2), while
some clusters were more similar between cell lines of
the same species [C6 (human) and C5], and some clus-
ters captured similarity in the ESC state between species
(C3 and C4).
To examine the extent of conservation at the region

level, we examined these clusters in two ways. First, we
extracted the core conserved set of regions by obtaining
those regions that were in the same cluster in all species
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and cell lines (Fig. 4c). We observe a striking pattern
of conservation of interactions in this conserved set of
regions. For some clusters, this represented a high frac-
tion of their elements (>30 % for clusters C3, C4, and
C7), or a moderate fraction (10–30 % for clusters C0, C1,
C2, and C5), while for some clusters this represented a
small fraction (<10 % for clusters C6, C8, and C9). Cluster
C3 was the most conserved, with 44 % of its regions in
the conserved core set. Second, we compared the clusters,
one pair of cell line/species at a time, using the signif-
icance of overlap of orthologous regions of one cluster
from one species (or cell line), and another species (or cell
line). We quantified the overlap in orthologous regions
using the negative log of the hypergeometric test P value
as described in Roy et al. [30], and visualized them using
red-blue heat maps (Fig. 5a), for every pair of species
or cell lines. The off-diagonal elements of the heat map
denote the shared chromosomal organization between
clusters of different IDs, and the diagonal elements mea-
sure the extent of conservation between clusters of the
same ID (Fig. 5a, red-blue heat maps). We found that
between hESC and mESC (same cell type but different
species), there were a larger number of strong red diagonal
elements compared to hESC and mCortex.
To compare the extent of conservation between the

clusters identified by Arboretum-Hi-C to clusters iden-
tified by applying spectral clustering to the data sets
independently, we calculated the difference in the diag-
onal elements and off-diagonal elements for every pair
of Hi-C data sets over multiple random initializations
of the algorithm. We find that using Arboretum-Hi-C
there is greater conservation between clusters (Fig. 5b
box plot of Arboretum-Hi-C clusters) of the matched cell
lines (hESC vs mESC) than between different cell lines
(hESC vs mCortex). In contrast, independent clustering
of the Hi-C data using non-multi-task spectral clustering
did not discriminate between the cell lines and estimated
a similar extent of conservation for both matched and
different cell lines (Fig. 5b). Overall, the patterns of con-
servation and divergence from the non-multi-task cluster-
ing may not be as biologically meaningful as those from
Arboretum-Hi-C.
To assess the extent to which conserved chromosomal

modules exhibit similar regulatory signals and validate
the mapping of clusters between data sets identified by
Arboretum-Hi-C, we examined these clusters for enrich-
ment of regulatory signals (Fig. 6). Arboretum-Hi-C
mESC and hESC clusters of the same ID exhibited similar
patterns of enrichment. In particular, clusters C0, C1, and
C2, in both hESC and mESC were associated with gene-
rich, open chromatin, chromatin mark modified, LAD-
depleted regions (Fig. 6a, b). Similarly, clusters C3, C4,
C7, C8, and C9 were gene poor and associated with LADs
and repeat elements. SINEs tend to be associated with

gene-rich, active chromatin, mark modified regions, while
LINEs and LTRs are associated with LADs and gene-poor
regions. Overall, we found that Arboretum-Hi-C clusters
in both species could be grouped into clusters with high
(C0, C1, and C2) and low genomic activity (C3, C4, C7, C8,
and C9). While some clusters exhibited additional signal
enrichment (e.g. mESC C9, H3K9me3, and DNase I), clus-
ters with the same ID exhibited similar patterns of enrich-
ment, despite not being completely orthologous, thus val-
idating the correspondence of chromosomal cluster IDs of
Arboretum-Hi-C.
To assess the effect of bin size in the definition of

orthology mapping of the regions and the subsequent
Arboretum-Hi-C analysis, we repeated our experiments
at a higher resolution of 500 kbp, clustering a total
of 2342 regions. As observed in the 1-Mbp case, we
found conserved modules between human and mouse
cell lines that could be matched based on their enrich-
ment patterns (Additional file 1: Figure S12a, b and
Additional file 2). Furthermore, we observed significant
overlap between clusters obtained at 500-kbp resolution
and 1-Mbp resolution (Additional file 1: Figure S12c),
suggesting that changes in the bin size at this resolu-
tion (1 Mbp to 500 kbp) does not significantly affect
the resulting clusters. To test whether intra-chromosomal
interactions create a bias by overshadowing the inter-
chromosomal interactions, we repeated our analysis after
removing any interactions that are between regions of the
same chromosome in human or mouse (Additional file
1: Methods). As in independent clustering, we observe
significant overlap between clusters derived from inter-
chromosomal interactions and clusters using both inter-
and intra-chromosomal interactions (Additional file 1:
Figure S13).

Changes in chromosome contact modules between human
andmouse cell lines
We next examined module divergence between species
and module dissimilarity between cell lines by inspect-
ing the off-diagonal elements of the red-blue heat maps
in Fig. 5a. This analysis relied on our characterization of
clusters into high and low activity described in the previ-
ous section.We found that most of the module transitions
were between clusters of the same type, that is, from
low activity to low activity, or from high activity to high
activity (Table 1). However, there were a few examples of
transitions between modules with high and low genomic
activity that we discuss below.

Changes in high and low activitymodules between species
are associated with LADs and chromatin activity
We found three examples of transitions between species-
specific modules of different activities. One transition was
between hESC C9 and mESC C0 involving 29 regions
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spanning a total 29Mbp. The C9 cluster is associated with
LADs, whereas C0 is associated with open chromatin and
histone modification marks (Fig. 6a, b, c). Comparison
of regulatory features of these 29 regions (hES_9 mES_0)
against regions that maintained their cluster assignment

in C9 (hES_9 mES_9) and C0 (hES_0 mES_0) in hESC
showed that these switched regions were less LAD-rich
than the regions in cluster C9 (KS test P < 8.02 × 10−2,
Fig. 6e). In mESC, where these regions were assigned
to C0, a cluster with high activity, they tended to have
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Table 1 Number of significant divergence events between pairs
of clusters of different types in each pair of cell lines

hIMR90

High activity Low activity

hESC
High activity 3 1

Low activity 4 3

mESC

High activity Low activity

hESC
High activity 1 1

Low activity 2 7

mCortex

High activity Low activity

hESC
High activity 3 1

Low activity 2 5

mESC

High activity Low activity

hIMR90
High activity 3 2

Low activity 0 7

mCortex

High activity Low activity

hIMR90
High activity 3 2

Low activity 1 6

mCortex

High activity Low activity

mESC
High activity 2 1

Low activity 3 5

hESC human embryonic stem cell, hIMR90 IMR90 human fibroblast,mCortex mouse
cortex,mESC mouse embryonic stem cell

a lower propensity of LADs than other regions associ-
ated with C9 (KS test P < 8.66 × 10−5), and more
like other elements of C0. These regions exhibit a similar
tendency for the number of genes and DNase I elements
(Fig. 6e(ii), (iii)). A second transition, also between a
high- and low-activity module, was from hESC C8 (low
activity) to mESC C0 (high activity, Fig. 6a, b, c) and
included 21 regions. In both hESC and mESC, these
regions have significantly lower LAD content than the
regions with conserved assignments to cluster C8 (KS test
P < 4 × 10−3, Additional file 1: Figure S14a). In addi-
tion, in hESCs, these regions have a significantly higher
LAD content than regions that are in cluster C0 in both
species (KS test P < 1 × 10−4). Similarly, DNase I and
gene count in human regions that switch are intermediate

between the conserved members of C8 and C0 in both
human and mouse (Additional file 1: Figure S14b, c).
The third transition was in a different direction involv-
ing regions in a high-activity module in human (C1)
and a module C5 in mouse, which was not significantly
enriched for any signals in mouse, but is likely a low-
activity cluster based on the enrichment profile of the
orthologous human C5. Although, the human regions that
transitioned to module C5 in mouse did not exhibit a
significantly different distribution in LADs, they exhib-
ited a significantly depleted pattern of enrichment for
DNase I (KS test P < 7.89 × 10−3) and gene count
(KS test P < 2.18 × 10−2 when comparing diverged
regions to C1 in mouse, Additional file 1: Figure S14d,e).
Overall, these results suggest that the regions that switch
their chromatin interaction preference between species
are associated with different one-dimensional signals than
the regions that maintain their interaction preference
between species.

Changes inmodule assignment between cell lines are
associated with CTCF and RAD21 binding sites
In addition to transitions in modules between species,
we found several examples of transitions between clus-
ters with high and low activity among cell lines of the
same species (five within human and four within mouse,
Table 1). One example of such transitions is between clus-
ter C9 (low activity) of hIMR90 and cluster C1 (high
activity) of hESC. Figure 6f shows the pattern of corre-
lation of contact counts for the regions in clusters C1
and C9 and regions that change their cluster assign-
ment. To relate these transitions to the binding profiles of
general transcription factors, we examined the distribu-
tion of binding of transcription factors measured in both
cell lines, namely CEBPB, CTCF, MAFK, POLR2A, and
RAD21 (Fig. 6g and Additional file 1: Figure S15). Among
these transcription factors, CTCF and RAD21 appeared to
discriminate hESC regions that remained in C1 and those
that were in C9 in hIMR90 (KS test P < 6.04 × 10−4

and P < 1.12 × 10−4, respectively). Similarly, in hIMR90,
these regions were more enriched than the regions that
were in cluster C9 in both cell lines (KS test P < 6.20 ×
10−2 for CTCF and P < 3.05 × 10−2 for RAD21). This
differential enrichment suggests that CTCF and RAD21,
which are known to be major players in chromosomal
architecture and organization [31], likely contribute to
cell-type-specific behavior between a differentiated and
undifferentiated cellular state.

Conclusions
Chromosome conformation capture (3C) assays [2], such
as 4C [32], 5C [33], and Hi-C [8], as well as factor-
specific ChIA-PET studies [34], are being increasingly
applied to more cell types and species [3, 7, 14, 35–39].
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Computational approaches for analyzing such data sets,
and more importantly, comparing such maps across
multiple tissues, are still in their infancy [20]. Here
we performed a systematic analysis of graph-based and
non-graph-based clustering methods for Hi-C data. Our
comparisons showed that graph-based clustering with
different distance metrics tends to outperform non-
graph-based clustering, suggesting that incorporating the
graph-based nature of Hi-C (and other 3C) data is advan-
tageous for clustering. We developed Arboretum-Hi-C, a
novel graph-based multi-task clustering approach to find
common and cell-line- and species-specific patterns of
interacting chromosomal regions. The multi-task nature
of our analysis framework enables us to uniformly map
and compare clusters across multiple Hi-C data sets. Fur-
thermore, representing the relationship of these data sets
as a tree enables us to study the extent of similarity of
the corresponding species or cell lines. Simultaneous clus-
tering of multiple data sets using the Arboretum-Hi-C
framework showed that chromosome conformations in
mESCs and hESCs are more similar to each other than
between human and mouse differentiated cell states.
The ability tomatch clusters from one cell line or species

to another becomes increasingly complicated as the num-
ber of cell lines or species increases. Arboretum-Hi-C
addresses this challenge by using a multi-task clustering
framework that also exploits the hierarchical relationships
among cell types and species and where cluster IDs are
tied to the topmost node in the hierarchy. Our approach
provides a one-to-one mapping between clusters identi-
fied across multiple species or cell lines, which enables a
systematic comparison of sets of regions across species
and cell lines. We validated this one-to-one mapping in
mouse and hESC lines by showing that the clusters of
the same IDs are also enriched for similar regulatory
signals (e.g. C1 of both hESCs and mESCs are associ-
ated with gene-poor LAD regions). We observed striking
conservation between the modules inferred across the
species for matched cell lines, which is consistent with
a recent comparative study done in liver for four mam-
malian species [14]. We note that Arboretum-Hi-C is a
data-driven approach and we used the data likelihood
to decide between alternative tree topologies that could
relate the Hi-C data sets studied.
Our clustering approach also enabled us to study the

context specificity of chromosomal interactions within
and between species in a single unified framework.
A change in cluster assignment between cell lines or
between species suggests that those regions interact
with other chromosomal regions. Such transitions are
likely associated with the overall cell-line-specific or
species-specific behaviors. We found that most of these
changes are between modules with similar regulatory sig-
nals (that is, most transitions are between clusters with

low activity and low activity, or high activity and high
activity).
The occurrence of CTCF and RAD21 in regions that

switch their chromosomal interaction cluster between cell
lines is consistent with the role of these proteins as key
determinants of the 3D organization of the genome. In
particular, CTCF was shown to be associated with the
divergence of TADs between species [14]. CTCF is also
associated with cell-line-specific changes in TADs [3, 23].
The presence of a LAD in regions that diverged their
chromosomal contact preferences suggests a possible role
of LADs in contributing raw material to the evolution
of regulatory regions. However, with only two species,
it is difficult to establish whether the changes in one-
dimensional signals are the cause or consequence of the
topological reorganization. As the number of species with
available Hi-C data increases, we will be able to address
these questions in a more principled manner. By com-
paring differentiated cells and undifferentiated cells from
human and mouse, we were also able to examine the
extent of conservation between matched cell types. We
found that the modules identified in mESCs were more
similar to hESCs. While this served as a useful validation
of our data-driven clustering, having matched differen-
tiated cell lines would greatly improve the comparative
power of our approach.
We demonstrated our approach on relatively large

regions (1 Mbp) as well as variable-sized regions defined
by TADs (Additional file 1: Figure S7) to enable the iden-
tification of large-scale chromosomal interactions that
include both cis and trans interactions. However, our
approach can also be applied in cis one chromosome
at a time to identify TAD-like structures (Additional
file 1: Methods and Additional file 1: Figure S10) as well
as to find compartments (Additional file 1: Figure S9).
These results suggest that this is a powerful and flexible
clustering algorithm to identify known and novel chro-
mosomal organizational units. Most of our analysis was
done at a relatively coarse resolution, which remains fixed
during the clustering procedure. An important extension
is to have a flexible multi-resolution clustering algorithm
that can adaptively select the distance measure depending
upon the resolution.
In summary, we have performed a systematic analysis of

different clustering methods for high-throughput 3C data
sets that measure the 3D proximity of pairs of genomic
regions. We also presented an algorithm to perform clus-
tering across multiple species and identified patterns of
significant conservation as well as species-specific and
cell-line-specific divergence. As such Hi-C maps become
available for diverse cell types and species [9, 14, 40–42],
methods such as ours will be increasingly useful for
systematic comparisons to identify common and context-
specific properties of genome architecture, revealing
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principles governing the organization of chromatin and its
impact on complex phenotypes.

Methods
Data set description and pre-processing
We used the publicly available Hi-C data for two human
cell lines (H1ES and IMR90) and two mouse cell lines (J1
ES and cortex) from Dixon et al. (GEO accession code
GSE35156 [3]). Paired reads were aligned to the refer-
ence genomes (hg19 for human and mm9 for mouse),
aggregated in different resolutions (1 Mbp, 500 kbp, and
100 kbp bins), and then normalized to correct for known
biases using iterative correction and eigenvector decom-
position (ICE) [21]. The data sets are deeply sequenced
with 600–900 million reads, enabling us to examine both
intra- and inter-chromosomal interactions. After binning
and normalization, we had a total 2755, 5465, and 27,179
bins in human at 1-Mbp, 500-kbp, and 100-kbp resolution,
respectively. In mouse, we had 2469, 4901, and 24,213 bins
at 1-Mbp, 500-kbp, and 100-kbp resolution, respectively.

Clustering algorithms for one data set
We considered three classes of clustering algorithms: hier-
archical, k-means, and spectral clustering, each with five
different distance metrics: Euclidean distance, Pearson’s
correlation, Spearman’s correlation, contact counts, and
log2 contact counts. We further adapted the distance to
suit each method as described below.

Determining the number of clusters
We treat the number of clusters as an input parameter for
the clustering algorithms examined. For our analysis, we
inspected the interaction patterns obtained from spectral
clustering. Specifically, we permuted the adjacency matrix
to create a randomized graph, and compared the distribu-
tion of eigenvalues of the Laplacian of the original graph
and the randomized graph. We observed that the differ-
ence in eigenvalues between the random and the original
graph was not significant beyond the first 15, and there-
fore, we set 15 to be the upper limit on the number of
clusters. We learned k ∈ 2, 5, 10, 15 clusters and manually
inspected their contact count profiles and decided that
k = 10 provides the best results.

Hierarchical clustering
To perform hierarchical clustering with contact count and
log2 of contact counts as distances, we subtracted the
maximum value of the count (or log2 count) matrix from
the given matrix. For the other three distance metrics,
given the log2 of the genome-wide normalized contact
count matrix, we calculated the distance of all pairs of bins
using the pdist function in Matlab. To define the clus-
ters, we used average linkage (using the linkage func-
tion) and the cluster function (with option maxclust
set to k) to find k clusters. Using Euclidean distance and

Spearman’s correlation, we observed a number of very
small clusters (<10 elements) and one very large cluster.
Because assessing statistical enrichment of signals is diffi-
cult for such small clusters, we applied a post-processing
step to obtainmore balanced clusters. Specifically, we kept
partitioning the largest cluster until we reached k clus-
ters with at least ten elements, and then added the clusters
with less than ten elements to the largest cluster.

k-means
For Euclidean distance and Pearson’s correlation, we used
the kmeans function in Matlab. This function does not
provide clustering using Spearman’s correlation distance,
so we implemented k-means with 1-Spearman’s corre-
lation as the distance measure. To cluster with contact
counts and log2 of contact counts, we also implemented
a modified version of k-means similar to the k-means
algorithm described in Yaffe et al. [19].

Spectral clustering
Our spectral clustering algorithm is motivated by the fact
that the Hi-C interactionmap can be viewed as a weighted
graph with vertices representing regions. The weight of
the edge between a pair of regions can correspond to the
contact count between the two regions (or log2 of contact
count) or a more indirect but global measure of similar-
ity of the interaction profile of those regions (e.g. using
a Spearman’s or Pearson’s correlation). A graph-based
framework was recently shown to capture several topolog-
ical properties of chromosome organization in yeast [22]
and improve chromatin-mark-based genome annotation
[23], suggesting that a graphical representation serves as a
powerful representation for Hi-C data. Spectral clustering
is a graph-clustering method that uses the eigenvectors of
the Laplacian of a graph for clustering [24, 25, 43].
We used the algorithm described by Rohe et al. [24],

which is based on clustering the eigenvectors correspond-
ing to the largest eigenvalues of the graph Laplacian
matrix. For each variant of similarity measure, we created
a different weighted graph, with the weight representing
the similarity measure. Let A denote an n × n adjacency
matrix, where n is the total number of regions. Let A(i, j)
denote the edge weight between regions i and j. For the
Euclidean distance, A(i, j) = M − ei,j where ei,j is the
Euclidean distance between row i and row j of the log2 of
the normalized contact count matrix, and M is the maxi-
mum observed Euclidean distance. Thus, two regions that
have a large value of ei,j will be less similar to each other
than two regions with a small value of ei,j. For the Pear-
son’s or Spearman’s correlation, A(i, j) = ci,j if ci,j ≥ 0,
and A(i, j) = 0 otherwise, where ci,j is the correlation
between row i and row j of the log2 of the normalized con-
tact count matrix. For the normalized contact counts and
log2 of normalized contact counts, A(i, j) was set to the
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corresponding count or log2 of the contact count between
regions i and j. The Laplacian of the graph is defined as
L = D−1/2AD−1/2 where D is a diagonal matrix with
each element D(i, i) = ∑

k ai,k . Thus, the Laplacian gives
a normalized degree distribution of all vertices. We used
the eigs function in Matlab to calculate the eigenvec-
tors and eigenvalues of the Laplacian. Once we have the
eigenvectors, the k-means algorithm is used to cluster the
matrix X = {X1,X2, . . . ,Xk} where Xi is a column vector
in Rn and X1,X2, . . . ,Xk are the first k eigenvectors of L,
corresponding to the k largest eigenvalues of L.

Description of cluster evaluation criteria
We used five different statistical measures to assess the
quality of our clusters.

Davies–Bouldin index
We defined the DBI as

DBI = 1
k

k∑

i=1
maxj �=iDi,j

where

Di,j = d̄i + d̄j
di,j

.

In the traditional definition of DBI, d̄i is defined as the
distance of elements in cluster i to its center, and di,j is the
distance of the centers of clusters i and j. Because in some
of our clustering methods we do not have a center for the
clusters, we defined d̄i as the average distance of all pairs
of elements in cluster i, and di,j as the average distance of
pairs of elements where one element was in cluster i and
the second element was in cluster j. We used 1-Spearman’s
correlation as the distance metric.

Silhouette index
We defined the SI as

SI = 1
k

k∑

i=1

1
|Ci|

∑

j∈Ci

sj

where

sj = bj − aj
max{aj, bj}

and aj is defined as the average distance of element j to all
other members of its own cluster (Ci), and bj is the average
distance of element j to the members of the second best
cluster (the cluster other than Ci with lowest average dis-
tance to element j). We used 1-Spearman’s correlation as
the distance metric.

Delta contact counts
This measure was defined on the log of the contact count
matrix. For each cluster Ci, let ini denote the average log
of contact counts for pairs of regions in that cluster, and

outi denote the average log of contact counts for pairs of
regions where one region is in cluster Ci and the other
region is not. We define the delta contact count, D, as

D = 1
k

k∑

i=1
ini − outi.

We expect that for a good cluster, the pairs of regions
within the cluster should have higher contact counts.
Therefore, the higher the value ofD, the higher the quality
of the clusters.

Number of enriched clusters
For each cluster and each genomic signal, we used the
KS test to compare the distribution of the values of the
given signal for the regions inside and outside the cluster.
We test whether the values inside the cluster are signifi-
cantly higher than values outside the cluster. If the P value
returned by the KS test was lower than 0.05, we consid-
ered that cluster enriched for the given signal.We counted
the number of clusters that were enriched for at least one
signal. To calculate the P value of the KS test we used the
kstest2 function of Matlab with the smaller switch.

ANOVA test
To test how well our clusters can separate the regulatory
signals, we performed a one-way ANOVA test for each
given signal and the cluster assignments for all regions
examined. We used the anova1 function of Matlab, and
used the sum of − log of P values over all the given signals
to rank the clustering methods.

Arboretum-Hi-C: a multi-task clustering approach for
multiple Hi-C data sets
To perform multi-task clustering between the four cell
lines, we first found a one-to-one mapping between
orthologous 1-Mbp (and 500-kbp) bins between human
and mouse and extracted contact count matrices corre-
sponding to orthologous regions (see below). Next, we
calculated the eigenvectors of the Laplacian as described
above (spectral clustering with Spearman’s correlation).
We ran Arboretum on the eigenvectors that had an orthol-
ogous region in the other species as described in detail
below.

Orthologymapping between regions in human andmouse
To define the orthologous pairs of regions between human
andmouse at a particular resolution r, we split the genome
of each species into contiguous regions of r base pairs (1
Mbp or 500 kbp). We used a stringent criterion to define
the orthology by requiring these regions to satisfy two fil-
ters. First, we used blastn with the option -evalue
1E-5 to align these regions to each other. For each pair
of regions hi and mj from human and mouse, we sum
the number of base pairs aligned between the two regions
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[A(hi,mj)]. For a region hi in human, we find the region
from mouse mj with the longest alignment to it: mj =
argmaxmj′A(hi,mj′). Similarly, for a region mj in mouse,
we find the region hi in human with the longest alignment
to it. We accept a pair of regions (hi,mj) as orthologous if
they are reciprocal hits.
Our second filter used whole-genome alignments speci-

fied in chain files from the UCSC Genome Bioinformatics
website (http://genome.ucsc.edu/) [44, 45]. We read the
chain files and for each chain of alignments, we iterate
over the alignment segments and add the length of the
aligned segment to the corresponding pair of regions in
human and mouse. For each region in human, we select
the region in mouse with the largest sum of aligned seg-
ments (and vice versa for mouse to human) and selected
the best reciprocal hits. We further filter these orthol-
ogous pairs by removing any pair with a sum of seg-
ments <0.1r (1 Mbp or 500 kbp). There is a significant
agreement between the orthology mapping produced by
the two approaches (∼95 % of the pairs produced from
blastn are also in the other map). Our final set of
orthologous mappings for input to Arboretum-Hi-C was
obtained by taking the intersection of orthologous pairs
from the above two filtering approaches. This results in
1318 orthologous regions between human and mouse at
1-Mbp resolution and 2342 regions at 500-kbp resolution.

Arboretum algorithm formulti-task clustering
Arboretum was developed to cluster multiple expres-
sion data sets, one from each species, while exploiting
the gene and species tree phylogenies in the clustering
using a probabilistic framework [30]. This approach favors
orthologous genes having the same cluster assignment
between species subject to the support in the data. Instead
of clustering the expression of the genes, here we use
Arboretum to cluster the eigenvectors of the Laplacian of
the graphs produced from the Hi-C data; and rather than
clustering the eigenvectors of each cell line separately, we
cluster multiple Hi-C data sets simultaneously. To run
Arboretum, we need amapping between the elements that
are being clustered (e.g. 1-Mbp regions) and also a tree
structure to capture the relationships between data sets
from different species and cell lines. We experimented
with different tree structures and selected the one that
gave us better likelihood (Additional file 1: Methods and
Additional file 1: Figure S11).

Comparison of cluster similarity between pairs of cell
lines/species
We used the hypergeometric test to compute the signifi-
cance of similarity between pairs of clusters for each pair
of cell lines/species. Given the matrix of − log10 of the
hypergeometric test’s P value for pairs of clusters, the con-
servation score was defined as the sum of the diagonal

elements (clusters with matched IDs) minus the sum of
the off-diagonal elements (clusters with different IDs).
Because independent spectral clustering does not provide
a mapping of cluster assignments across data sets, we first
used the Hungarian algorithm [46] to find the best one-to-
one matching between the two given cluster assignments
thatmaximizes the overlap betweenmatched clusters, and
using this matching we calculated the conservation score
(as described above).

Compartment identification and comparison to spectral
clustering clusters
To define compartments, we followed the procedure
described in Lieberman et al. [8]. We used the raw contact
counts (before applying ICE for normalization) and cal-
culated the genome-wide average contact count Is for all
possible genomic distances s. For each chromosome, we
defined a matrixM by dividing the contact counts of pairs
of regions at distance s by Is. We computed the Spearman’s
correlation for entries in M and took the first principal
component of this correlation matrix. We defined the two
compartments based on positive and negative values of
the first principal component.
To compare the spectral clusters to the two compart-

ments in each chromosome, we used two different mea-
sures: the F score and the Rand index. To calculate the F
score, we first count the number of pairs of regions that
were in the same cluster in spectral clusters s, the num-
ber of pairs of regions that were in the same compartment
c, and the number of pairs of regions that were grouped
together in bothmethods o. We defined precision p = o/s,
recall r = o/c, and F score

f = 2pr
p + r

.

We defined the Rand index as

R = o + b(n
2
)

where b is the number of pairs of regions that were in dif-
ferent modules in both methods and n is the number of
regions.

One-dimensional genomic signals for interpretation of
clusters
To interpret the clusters obtained by the different cluster-
ing methods examined, we obtained a number of genomic
signals representing binding profiles of transcription fac-
tors, chromatin state, and density of genes and repeat
elements. We aggregated these signals into fixed-size bins
(1 Mbp or 500 kbp) or into variable-sized bins defined by
TADs. Below we refer to both fixed- and variable-sized
bins.

http://genome.ucsc.edu/
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Number of genes
We downloaded the annotation files for hg19 and mm9
assembly from the Ensembl website [47]. We aggregated
the genes in a bin and counted the number of genes in
each and used these counts as a signal for each bin.

Transcription factors
We used the transcription factor narrow peak files from
ENCODE [42] for CEBPB, CMYC, CTCF, JUND, MAFK,
P300, POL2, POLR2A, RAD21, SMC3, TAF1, and TBP for
hESCs, and CEBPB, CTCF, MAFK, POLR2A, and RAD21
for the IMR90 cell line. We aggregated the peaks in each
bin and counted the number of peaks in each bin. The
number of peaks per bin was used as a signal for the bin.

DNase I and histonemarks
We used peak files from ENCODE [42] for DNase I,
H3k4me1, H3k4me2, H3k4me3, H3k9ac, H3k9me3,
H3k27ac, H3k27me3, H3K36me3, H3k79me2, and
H4k20me1 in hESC, and DNase I, H3k4me1, H3k4me3,
H3k9ac, H3k9me3, H3k27ac, H3k27me3, and H3k36me3
in mESC. We aggregated the peaks in a bin and counted
the number of peaks in each bin and used these counts as
features.

LADs and replication timing
We downloaded LADs from Meuleman et al. [28] and
used the percentage of 1-Mbp bins covered with LADs
as a feature. We also downloaded replication timing data
from Ryba et al. [48] for hESC, and from Hiratani et al.
[49] for mESCs, and used the average of the replication
timing ratio (log2 of early to late) in each bin as a feature
value. The LAD and replication timing data were aligned
to hg18, and we used liftOver to map them to hg19
coordinates [44].

Other sequence features
We downloaded SINE, LINE, and LTR repeats from the
UCSC Genome Bioinformatics website (http://genome.
ucsc.edu/) [45]. For each type of repeat, we counted the
number of repeats in each bin and used these counts as
features.
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