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Abstract

Genome-wide 3C technologies (Hi-C) are being increasingly employed to study three-dimensional (3D) genome
conformations. Existing computational approaches are unable to integrate accumulating data to facilitate studying
3D chromatin structure and function. We present HSA (http://ouyanglab.jax.org/hsa/), a flexible tool that jointly
analyzes multiple contact maps to infer 3D chromatin structure at the genome scale. HSA globally searches the latent
structure underlying different cleavage footprints. Its robustness and accuracy outperform or rival existing tools on
extensive simulations and orthogonal experiment validations. Applying HSA to recent in situ Hi-C data, we found the
3D chromatin structures are highly conserved across various human cell types.
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Background
Three-dimensional (3D) chromatin conformation plays
crucial roles in diverse genome functions, such as tran-
scriptional regulation [1], DNA methylation [2], replica-
tion [3] and cohesin binding [4]. Elucidating 3D chromatin
conformation can provide a mechanistic understanding of
various biological processes and human diseases. There-
fore, it is important to capture 3D chromatin confor-
mation and relate it to genome function. 3D chromatin
conformation has traditionally been studied by cytogenic
methods, such as florescent in situ hybridization (FISH)
[5]. Recently, several experimental technologies have been
developed to capture chromatin conformations at multi-
ple scales. For instance, the chromosome conformation
capture (3C) technique has been used to study chromatin
structure in living cells [6]. It derives the circularized chro-
mosome conformation capture (4C) [7], which is able to
detect many genomic loci interacting with a DNA region
of interest. It is further extended to carbon copy chromo-
some conformation capture (5C), which allows for large-
scale detection of 3D chromatin interactions [8]. Further,
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Hi-C was introduced to dissect 3D chromatin structure
at the genome-scale [9]. Another technology, chromatin
interaction analysis by paired-end tag sequencing (ChIA-
PET), detects genome-wide chromatin interactions medi-
ated by a protein of interest [10]. These technologies have
generated large amounts and diverse types of data. To
interpret these data appropriately and advance biological
understanding, it is crucial to develop statistically sound
approaches to their modeling and analysis.
Here, we focus on Hi-C for a genome-scale analysis of

chromatin conformations. Hi-C data are usually summa-
rized into a contact map, which reflects the physical prox-
imity between pairs of genomic loci at the genome scale.
In a Hi-C contact map, an off-diagonal entry represents
the number of paired-end reads spanning two different
loci. The complex steps of Hi-C experiments introduce
various biases, such as restriction enzyme cutting, GC
content and sequence uniqueness [11]. For instance, Hi-C
employs different restriction enzymes, such as NcoI (rec-
ognizing CCATGG) and HindIII (recognizing AAGCTT),
which results in different genomic cutting sites and, con-
sequently, contact maps. Some existing efforts are nor-
malizing Hi-C contact maps to reduce systematic biases
buried in the Hi-C experiments, either parametrically [12]
or non-parametrically [11].
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One of the most important goals of a Hi-C data anal-
ysis is to reconstruct 3D chromatin structures of the
genome. Elucidating the 3D chromatin structure of the
genome is important as it improves the mechanistic
understanding of various gene regulatory events that are
orchestrated in the nucleus of living cells. Also, trans-
forming contact maps to 3D chromatin structures can be
regarded as a dimension-reduction (noise filtering) pro-
cedure, as the degrees of freedom reduce from O(N2)
to O(3N), where N is the number of genomic loci. The
improvement is substantial, especially at the genome
scale, as N is typically very large when many loci are
involved.
A Hi-C experiment requires millions of cells. There-

fore, chromatin interactions captured by Hi-C reflect the
consensus structural conformation of the whole popula-
tion of cells. Some existing computational efforts infer
the consensus 3D chromatin structure. Some are based
on optimization of target functions with pre-specified
constraints [13], e.g., ChromSDE [14] (employing a semi-
definite programming approach), ShRec3D [15] (combin-
ing shortest-path distance with multidimensional scaling)
and others [16–19]. However, these optimization-based
models may be trapped in local optima, particularly at
low signal coverage (the percentage of non-zero entries
in a contact map), and do not consider Hi-C exper-
imental uncertainties. Statistical approaches have been
developed tomodel the uncertainties in Hi-C experiments
explicitly. For instance, MCMC5C [20] models Hi-C data
through a Gaussian model. In this model, there are no
bias removal steps, and the Gaussian variance estimate
is ad hoc. To overcome these limitations, BACH [21]
and PASTIS [22] employ Poisson models combining bias
removal with 3D structure reconstruction. Due to limited
availability of data, the reliability of these models remains
to be tested when reconstructing 3D chromatin structure
at the genome scale (for a more comprehensive review,
see [23]).

Importantly, all these existing approaches for 3D chro-
matin structure reconstruction are designed for single-
track Hi-C data from only one restriction enzyme. It is
likely that one can obtain improved 3D models through
integrative modeling of multi-track Hi-C data combin-
ing different restriction enzymes. Moreover, few existing
methods consider the local dependence of neighboring
loci, thus they are sensitive to the sparsity of Hi-C con-
tact maps. In addition, none of the existing methods has
been assessed on a wide range of independent experimen-
tal data. Finally, no approaches have been shown to give
consistent performance at the genome scale across vari-
ous cell types. In this paper, we propose a novel approach
named HSA, to reconstruct 3D chromatin structures at
the genome scale by leveraging multi-track Hi-C data
and modeling the local dependence of neighboring loci
explicitly. To our knowledge, this is the first approach inte-
grating multi-track Hi-C data for 3D chromatin structure
reconstruction at the genome scale.We assess HSA exten-
sively through simulations and real applications on Hi-C
data from four cell lines. We also apply HSA to a recent
in situ Hi-C study of eight cell lines. We use orthogonal
data sets from FISH and ChIA-PET experiments avail-
able for the cell lines as independent validations of the
reconstructed 3D chromatin structures. The assessments
demonstrate improved performance of HSA over a num-
ber of existing approaches across different cell lines at the
genome scale. The study provides insights on the conser-
vation of 3D chromatin structure across various human
cell types.

Results and discussion
Method overview
An overview of HSA is illustrated in Fig. 1. HSA takes
one or more Hi-C contact maps of the same resolution as
input to reconstruct a consensus 3D chromatin structure.
It utilizes the generalized linearmodel (GLM)with an iter-
ative algorithm, which combines Hamiltonian dynamics

Fig. 1 Overview of HSA for 3D chromatin structure reconstruction from multi-track Hi-C data. HSA integrates multiple Hi-C contact maps from
different restriction enzymes to reconstruct the underlying 3D chromatin structure. Color from blue to red represents chromosome position from
the start to the end. 3D three-dimensional, GLM generalized linear model, SA simulated annealing
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with simulated annealing (SA), a global search strategy to
explore the model space. It provides an option of Markov
modeling when the contact maps have low signal cover-
age. The input for HSA can be either raw contact maps
with count data or normalized contact maps obtained
through existing approaches, such as Yaffe et al. [11].
The details of the HSA method are described in Section
“Materials and methods”.

Assessments and comparisons on simulated data
In the simulation, we compared HSA with seven pub-
lished methods: BACH [21], ChromSDE [14], ShRec3D
[15], MCMC5C [20], AutoChrom3D [24], PASITS [22]
and TADbit [25]. We used contact maps simulated from a
regular helical structure (see Section “Materials andmeth-
ods” for detailed derivations). We applied the methods
to the simulated contact maps (see Additional file 1 for
detailed implementation of each method). To test the
effect of sparsity in the contact maps on the accuracy of
the methods, we simulated contact maps at three signal
coverage levels: 90 %, 70 % and 25 %. The true structures
and the fitted structures from the eight methods at the
three signal coverage levels are shown in Additional file 1:
Figure S1. We calculated the Pearson correlation coefficients

(PCCs) and the root-mean-square deviations (RMSDs)
between the true structures and the fitted structures for
the eight methods (Fig. 2). Specifically, PCC measures
the correlation between the real structure and predicted
structure across the pairwise spatial distances among all
loci. RMSD is calculated as the minimum root mean of
squared distances between the 3D coordinates of each loci
in the real and predicted structures (see Additional file 1
for detailed derivations). Clearly, HSA outperforms the
others with the lowest RMSDs and the highest PCCs at all
three signal coverage levels. To demonstrate the advantage
of multi-track fitting uniquely implemented in HSA, we
used HSA for joint modeling of the contact maps at 70 %
and 25 % signal coverages. This multi-track fitting outper-
forms all its single-track counterparts and has even better
performance than some methods at 90 % signal coverage.
This suggests that combining information from multiple
contact maps may improve the accuracy of 3D chromatin
structure reconstruction. Another unique feature of HSA
is the option ofMarkovmodeling. To investigate the utility
of this feature, we applied BACH, HSA without Markov
modeling, and HSA with Markov modeling on a contact
map with 10 % signal coverage. HSA with Markov mod-
eling clearly outperforms the other two with the lowest

Fig. 2 Assessment and comparison of 3D chromatin structure reconstruction methods for a regular helical structure. The fitted structures of the
eight methods were compared to the true regular helical structure and a PCC and b RMSD were calculated. PCC Pearson correlation coefficient,
RMSD root-mean-square deviation
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RMSD and the highest PCC (Additional file 1: Figure S2).
We also assessed the eight methods using contact maps
simulated from a random-walk structure at 30 % signal
coverage levels (see Section “Materials and methods” for
detailed derivations). Again, HSA outperforms all the oth-
ers with the lowest RMSDs and the highest PCCs (Table 1
and Additional file 1: Figure S3). We found that HSA with
Markov modeling becomes increasingly important as the
signal coverage goes down from 30 % to 10 % (Additional
file 1: Table S1 and Additional file 1: Figure S4). Based on
these simulation results, we suggest Markov modeling in
HSA when the signal coverages in contact maps are less
than 10 %.
The above simulations are based on the consensus

structure assumption, i.e., there is only one true structure
underlying a contact map. Among the tested methods,
BACH, MCMC5C and TADbit are based on the assump-
tion that there is an ensemble of structures underlying a
contact map. To compare methods when the true struc-
tures are not unique, we employed the toy models used in
developing the TADbit method [26]. In each toy model, a
contact map was simulated from multiple structures with
a certain noise level and structural variation. We applied
BACH, MCMC5C and HSA to the contact maps of the
toy models. We also extracted the structure predicted by
TADbit based on the lowest integrativemodeling platform
objective function model for each contact map [26]. We
then compared the predicted structure of each method to
all the underlying structures of each toy model. We cal-
culated the PCCs and RMSDs of each method at each
combination of noise levels and structural variations in
the toy models. As seen in Figs. 3 and 4, although HSA
is a consensus-structure-based model, its performance
is comparable to TADbit and better than BACH and
MCMC5C on the toy models based on the ensemble
structure assumption.

Table 1 PCCs and RMSDs between the random-walk structure
and the fitted structures on contact maps with 30 % signal
coverage

Method RMSD PCC

HSA-Markov 1.26 0.93

HSA 1.44 0.91

BACH 1.45 0.86

ChromSDE 2.44 0.37

MCMC5C 1.50 0.32

ShRec3D 1.59 0.85

PASTIS 2.66 0.09

Autochrom3D 2.48 0.33

TADbit 2.11 0.43

Application to Hi-C data of four cell lines
We applied HSA to the Hi-C data of four cell lines: mESC
[27], GM06990 [9], K562 [9] and MCF7 [28]. mESC and
GM06990 have Hi-C contact maps of both NcoI and
HindIII, while K562 andMCF7 have those of HindIII only.
To demonstrate the advantage of integrating information
from multi-track Hi-C contact maps, we fitted HSA for
both multi-track and single-track. For comparison, we
also applied BACH [21], ChromSDE [14] and ShRec3D
[15] to the same data sets. We fitted HSA and other mod-
els using the same inputs. Specifically, we fitted HSA and
BACH using the raw contact maps with enzyme cut frag-
ment length, GC content and mappability as covariates
for bias correction. We also fitted HSA, ChromSDE and
ShRec3D using the normalized contact maps processed by
the same pipeline [11], since the latter two do not have an
internal bias correction process.
Multi-track and single-track fittings of HSA result in

consistent 3D structures, as shown in Fig. 5. At 200-
kilobase (kb) resolution, the 3D structures of the entire
chromosome 14 of GM06990 show relatively smaller dif-
ferences when fitted by HSA on NcoI and HindIII contact
maps jointly, NcoI contact map only, and HindIII con-
tact map only (Fig. 5a–c). The lowest value of pairwise
PCCs between the three structures is 0.76. The 3D struc-
tures fitted by BACH on NcoI and HindIII contact maps
exhibit a larger difference (PCC= 0.53) with some notable
outlier loci (Fig. 5d, e). ShRec3D-derived 3D structures
from NcoI and HindIII contact maps have the largest
difference (Fig. 5f, g, PCC = 0.37). ChromSDE was com-
putationally overburdened on the contact maps at 200-kb
resolution when tested on our computer cluster (Bright
Cluster Manager v5.2, CentOS 6.0, 128 GB of RAM per
system board).
We then reconstructed the 3D structure of each chro-

mosome at 1-Mb resolution to compare the four methods
across all four cell lines. To measure how well the fitted
3D structures explain the input contact maps, we trans-
formed the pairwise distances in 3D into a fitted contact
map by the power-law relationship Fij ∼ dα

ij , where Fij
is the (i, j) entry of the fitted contact map, dij is the 3D
distance and α is the track-specific power-law coefficient.
Specifically, we estimated α as βc1 by the GLM framework
of HSA. For BACH and ChromSDE, α was estimated by
their respective models. For ShRec3D, we estimated α by
fitting a GLM between the normalized contact maps and
ln(dij) with the Poisson link function. Then, we calculated
the PCCs between the input and fitted contact maps for
all chromosomes.
As shown in Fig. 6, HSA-derived 3D structures fit the

input Hi-C data better than the other three methods
across all four cell lines in most cases. Notably, HSA fits
equally well on both raw and normalized contact maps,
while all the other three methods only work on one input
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Fig. 3 Comparison of HSA, TADbit, BACH and MCMC5C based on the PCCs between the fitted structures and the structures of the toy models. The
structural variation level of the toy models increases from left to right. The noise level of the toy models increases from top to bottom. Each box plot
indicates the distribution of the average PCC between the fitted structure and the underlying true structures of the toy models across all
chromosomes. PCC Pearson correlation coefficient

data type. For normalized contact maps, HSA fits are
clearly better than ChromSDE and ShRec3D (Fig. 6b, d, f
and h), which is likely due to the superiority of the global
search strategy of SA employed in HSA. The increase of
goodness-of-fit is the largest for MCF7 (Fig. 6h), in which
the contact maps are very sparse (5–13 % signal coverages
across chromosomes).

Moreover, multi-track and single-track fittings of Hi-C
data by HSA result in consistent goodness-of-fit, which
indicates the robustness of HSA in identifying the same
underlying 3D structure probed by different restriction
enzymes. We found that the 3D structures derived by
multi-track HSA fitting explain the contact maps of
NcoI and HindIII equally well. This lies in the ability

Fig. 4 Comparison of HSA, TADbit, BACH and MCMC5C based on the RMSDs between the fitted structures and the structures of the toy models. The
structural variation level of the toy models increases from left to right. The noise level of the toy models increases from top to bottom. Each box plot
indicates the distribution of the average RMSD between the fitted structure and the underlying true structures of the toy models across all
chromosomes. RMSD root-mean-square deviation
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Fig. 5 The 3D structures of chromosome 14 of GM06990 at 200-kb resolution reconstructed by different methods. a HSA on the contact maps of
NcoI and HindIII. b HSA on the contact map of NcoI. c HSA on the contact map of HindIII. d BACH on the contact map of NcoI. e BACH on the
contact map of HindIII. f ShRec3D on the contact map of NcoI. g ShRec3D on the contact map of HindIII. Color from blue to red represents
chromosome position from the start to the end

of HSA to calculate track-specific power-law coeffi-
cients for distance transformation when fitting multi-
track Hi-C contact maps. As shown in Fig. 7, HSA
derives different power-law coefficients for different
contact maps, in which NcoI has a smaller power-
law coefficient than HindIII does across all chromo-
somes in GM06990. This indicates that simply pooling
different contact maps together is suboptimal, as the
discrepancy in power-law coefficients breaks the addi-
tivity. Also note that the power-law coefficient has a
high variability among chromosomes, which suggests
that it might be inappropriate to assume a universal
power-law coefficient for 3D reconstruction across all
chromosomes.
The high correlations between predicted structures and

input contact maps indicate our model can explain well
the Hi-C data. But it is not a measure of the method
accuracy per se. In the following sections, we sought to use
orthogonal data, such as those from FISH and ChIA-PET,
to validate our predictions with Hi-C data.

Validations and comparisons using FISH data
We validated the 3D chromatin structures reconstructed
from Hi-C contact maps with independent FISH data

available for the cell lines mESC and GM06990. In mESC,
FISH probes span a 32-Mb region on chromosome 2 and
a 65-Mb region in chromosome 11 at 40-kb resolution
[29]. We applied all four methods except for ChromSDE
(which ran out of memory) on Hi-C contact maps at 40-
kb resolution. HSA was fitted using the raw contact maps
of NcoI and HindIII jointly, those of NcoI only, and those
of HindIII only. BACH was fitted using the raw contact
maps of NcoI only and those of HindIII only. ShRec3D
was fitted using the normalized contact maps of HindIII.
We then calculated the PCCs between the predicted dis-
tances based on the 3D structures and the corresponding
FISH-measured distances between the probed loci pairs.
Each FISH locus overlaps with two binned loci in the
Hi-C contact maps. So we tried different combinations
(e.g., left–left, left–right, etc.) of the two bins at both ends
of the FISH-probed loci pair when calculating the pre-
dicted distances and obtained a range of PCCs for each
FISH data set. The PCCs of multi-track fitting of HSA
are most robust (Fig. 8a) and significantly higher than
those of single-track HSA on NcoI, BACH on NcoI, and
ShRec3D on HindIII (p < 0.02 under a right-tailed T-test,
Additional file 1: Table S2). This wasmarginally significant
when comparing the PCCs of multi-track HSA with those
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Fig. 6 Average PCC between the input contact maps and the power-law transformed distances at 1-Mb resolution for different methods across four
cell lines. a Comparison of HSA and BACH on the raw contact maps in mESC. b Comparison of HSA, ChromSDE and ShRec3D on the normalized
contact maps in mESC. c Comparison of HSA and BACH on the raw contact maps in GM06990. d Comparison of HSA, ChromSDE and ShRec3D on
the normalized contact maps in GM06990. e Comparison of HSA and BACH on the raw contact maps in K562. f Comparison of HSA, ChromSDE and
ShRec3D on the normalized contact maps in K562. g Comparison of HSA and BACH on the raw contact maps in MCF7. h Comparison of HSA,
ChromSDE and ShRec3D on the normalized contact maps in MCF7. The error bars are standard deviations. HSA-multi HSA using multiple raw contact
maps as the input, HSA-multinorm/singlenorm HSA using multiple normalized contact maps/a single normalized contact map as the input,
HSA-single HSA using a single raw contact map as the input, PCC Pearson correlation coefficient

of single-track HSA on HindIII (p = 0.0619) or BACH on
HindIII (p = 0.0853), in which the former is mainly due
to an outlier while the latter has evidently larger variance
(Fig. 8a). In GM06990, FISH probes span chromosomes
14 and 22 at 200-kb resolution [9]. We were able to
reconstruct the 3D structures of the entire chromosomes
using HSA, BACH and ShRec3D using 200-kb resolution
Hi-C maps, while ChromSDE ran out of memory. Again,
HSA is more robust and accurate compared to BACH
and ShRec3D, in which the PCCs of multi-track HSA are
significantly higher than those of the other six approaches
(p ≤ 0.0003 under a right-tailed T-test, Additional file 1:
Table S3).

Validations and comparisons using ChIA-PET data
We further validated the 3D chromatin structures using
publicly available ChIA-PET data of RNA PolII in mESC
[30], K562 [31] and MCF7 [31]. These ChIA-PET data
provide genome-wide chromatin interactionsmediated by
RNA PolII. We reasoned that the 3D distances between
loci pairs with ChIA-PET interactions (loops) are smaller
than those of non-interacting pairs (non-loops) among
the RNA PolII anchors. So we extracted all genomic
loci involved in interactions detected by ChIA-PET for
each cell line, and divided all possible loci pairs into
two groups depending on whether they were involved
in ChIA-PET detected interactions. The predicted spatial
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Fig. 7 Power-law coefficients of NcoI and HindIII in GM06990 across different chromosomes. a Power-law coefficients fitted by HSA on the raw
contact maps at 1-Mb resolution. b Power-law coefficients fitted by HSA on the normalized contact maps at 1-Mb resolution. c Power-law
coefficients fitted by HSA on the raw contact maps at 200-kb resolution

distance between each loci pair was calculated based on
the reconstructed 3D chromatin structures. Indeed, we
found dramatic difference between loops and non-loops
in HSA-derived 3D structures (Fig. 9) in all cell lines
tested. RNA PolII mediated loops are significantly closer

to each other than non-loops are in 3D (p = 0). Moreover,
the difference between the two groups is relatively larger
in the 3D chromatin structures reconstructed by HSA,
compared to those of BACH, ChromSDE and ShRec3D.
The increased performance is especially remarkable on

Fig. 8 Box plots of the PCCs between FISH measured distances and predicted distances by different methods on Hi-C contact maps. a Comparison
of HSA, BACH and ShRec3D in mESC at 40-kb resolution. b Comparison of HSA, BACH and ShRec3D in GM06990 at 200-kb resolution. The
normalized NcoI contact map is not available for mESC at 40-kb resolution. BACH-n BACH fitting on the raw contact maps of NcoI, BACH-h BACH
fitting on the raw contact maps of HindIII, HSA joint fitting on the raw contact maps of NcoI and HindIII, HSA-h HSA fitting on the raw contact maps
of HindIII, HSA-n HSA fitting on the raw contact maps of NcoI, PCC Pearson correlation coefficient, ShRec3D-h ShRec3D fitting on the normalized
contact maps of HindIII, ShRec3D-n ShRec3D fitting on the normalized contact maps of NcoI
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Fig. 9 The 3D distances of RNA PolII ChIA-PET identified loops and non-loops among RNA PolII anchors in the 3D structures reconstructed by
different methods on Hi-C contact maps at 1-Mb resolution. a Comparison of HSA and BACH on the raw contact maps in mESC. b Comparison of
HSA, ChromSDE and ShRec3D on the normalized contact maps in mESC. c Comparison of HSA and BACH on the raw contact maps in K562. d
Comparison of HSA, ChromSDE and ShRec3D on the normalized contact maps in K562. e Comparison of HSA and BACH on the raw contact maps in
MCF7. f Comparison of HSA, ChromSDE and ShRec3D on the normalized contact maps in MCF7. HSA joint fitting on the raw contact maps of NcoI
and HindIII, HSAnorm joint fitting on the normalized contact maps of NcoI and HindIII, 3D three-dimensional

sparse Hi-C contact maps in MCF7. This indicates that
HSA is more precise in reconstructing 3D chromatin
structures at the genome scale, as validated by RNA PolII
ChIA-PET data.

Application to in situ Hi-C data of eight cell lines
We further applied HSA to the contact maps of seven
human cell lines (GM12878, HMEC, HUVEC, IMR90,
K562, KBM7 and NHEK) and one mouse cell line (CH12-
LX) from a recent in situ Hi-C study [32]. We fitted HSA
based on the contact maps of 1-Mb, 100-kb and 25-kb
resolution. All fitted contact maps correlate well with the
input contact mapsatall three resolutions (Additional file 1:
Figure S5). To investigate the similarities of the 3D chro-
matin conformations of different cell types, we overlaid
the fitted structures of the seven human cell lines at 1-Mb
(Fig. 10), 100-kb (Additional file 1: Figure S6) and 25-kb
(Additional file 1: Figure S7) resolution. Strikingly, at all three
resolutions, these diverse sets of human cell types display
similar global conformations. We further investigated the
consistency of the local regions of the fitted structures
across the seven human cell lines. Specifically, for each
genomic locus and its neighboring 20 loci, we calculated
the PCCs and Spearman correlation coefficients between
any pair of the local structures of the seven human cell

lines within that neighborhood region. We found that
over 70 % of genomic loci at 25-kb resolution have PCCs
or Spearman correlation coefficients ≥0.7 across all pair-
wise comparisons of the seven human cell lines, and the
percentage goes to more than 90 % at 100-kb resolu-
tion (Additional file 1: Figure S8). This suggests that the
genome conformations of diverse cell types are conserved,
as revealed by the fitted 3D chromatin structures.

Conclusions
We have developed HSA - a novel method for improved
chromatin structure reconstruction at the genome scale.
Its joint modeling framework has the advantage of com-
bining information frommulti-trackHi-C contactmaps of
different restriction enzymes. The underlying chromatin
structure is characterized by a GLM with Markov mod-
eling. HSA searches the model space through an itera-
tive algorithm combining SA with Hamiltonian dynamics,
allowing efficient global model exploration.
The proposed method can handle diverse types of

inputs of Hi-C data, including both normalized and
unnormalized contact maps. It is especially effective for
sparse contact maps, which are very common for Hi-
C data. It models the local dependence of neighboring
loci explicitly by Markov chains. The algorithm showed
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Fig. 10 Overlay of the 3D conformations of all chromosomes at 1-Mb resolution inferred from in situ Hi-C data for the seven human cell lines

substantial improvement when the Hi-C contact map is
sparse (say, 10 % signal coverage).
We tested our method through extensive simulations

with known underlying structures. We found that our
method is more accurate and robust than or comparable
to existing methods at various signal coverage levels. We
demonstrated that the performance on sparse contact
maps is significantly improved by multi-track fitting and
Markov modeling.
We applied the proposed HSA method to Hi-C data

sets of diverse cell types from humans and mice. We
found that our model fits the data better than a num-
ber of existing methods. We also employed orthogonal
FISH and ChIA-PET data as independent validation of
our reconstructed 3D structures. We demonstrated that
our method outperforms a number of existing approaches
across various cell lines. Importantly, the application of
HSA to in situ Hi-C data reveals striking consistency
across different human cell types, which suggests there
are certain invariant 3D conformations of the genome,
despite the dynamic temporal and spatial variations. This
finding complements the well-known conservation of the
topologically associated domains of the genome [27].
Our study points to two potential directions for fur-
ther exploration. First, it will be interesting to study
the motion of the chromatin as a polymer to under-
stand why and how it generates different 3D confor-
mations across cell types while maintaining a certain
invariant topology. Second, our multi-track modeling
can be extended to analyze different cell types jointly

to extract the principal rules underlying 3D genome
folding.
The application of HSA to all chromosomes of a dozen

human and mouse cell lines demonstrates the feasibility
of genome-scale 3D chromatin structure reconstruction.
The running time of HSA remains reasonable up to 25-kb
resolution for in situ Hi-C data (∼2000 loci per chromo-
some). In general, the running time of HSA increases by
an order ofO(N2) withN as the number of loci, and by an
order of O(C) with C as the number of tracks (Additional
file 1: Table S4).
Chromatin conformation is known to play essential

roles in genome function. High-throughput technologies
such as Hi-C are generating genome-scale data sets for
dissecting chromatin conformations in various biologi-
cal conditions. The demonstrated ability of our method
applied to diverse organisms and cellular conditions will
deepen our understanding of 3D chromatin structure as
the basis for regulating cellular functions.

Materials andmethods
The HSA algorithm
Given a specific region in a genome of interest, we assume
there are C contact maps (C ≥ 1) treated by C restriction
enzymes. The available loci in the cth track of the maps
are defined as those containing the corresponding 6-mer
sequence recognized by the cth restriction enzyme with
mappability score over a certain cutoff [11].
If the inputs are the raw contact maps containing the

counts of paired-end reads for any two loci, we model the
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read counts between any two available loci of the cth track
using a GLM as below:

nicjc ∼ Poisson(μicjc), c = 1, . . . ,C

ln(μicjc) = βc0 + βc1 ln(dicjc) +
∑

k
βckxicjck

dicjc = ‖Sic − Sjc‖2
ic, jc ∈ G(c) � {i ∈ N | Locus i is available for track c},

(1)

where nicjc and dicjc represent the contact frequency
and 3D distance between loci ic and jc, respectively.
Sic indicates the 3D coordinate of the underlying
locus ic. βc1 ln(dicjc) reflects the power-law relation-
ship between contact frequency and 3D distance [8]
where βc1 is the power-law coefficient. xicjck is the kth
covariate for bias correction. Following Hu et al. [12],
we include enzyme-cutting fragment length, GC content,
and mappability as the covariates. The corresponding
regression coefficients are denoted by βc0, βc1 and
βck .
Since restriction enzymes have varied cutting sites

across the genome, the proposed joint modeling of
multiple Hi-C tracks is able to cover more genomic
loci by considering the union of available loci from all
tracks. For simplicity, we note the coordinates of the
ith locus after the union as Si (i ∈ ∪C

c=1G(c)). When
counts are the random variables of interest, Poisson
and negative binomial models are the two commonly
used approaches. For single-track Hi-C data, existing
research has shown that Poisson regression and negative
binomial regression have similar performance [12, 22].
Thus, for each track c, we employ a Poisson regression
model to characterize the counts of sequencing reads for
simplicity.
Genomic loci of local proximity have innate correlations

as connected residues in a polymer. We characterize the
adjacency relationship of neighboring loci by a Gaussian
Markov chain hidden in the contact maps to capture the
local dependence of genomic loci:

S1 = (0, 0, 0)T

Si|Si−1 ∼ N(ASi−1 + b,�),
(2)

where A and b are the coefficients that characterize the
transition of coordinates between loci i − 1 and i. � is
the covariance matrix. The parameters A and b can be
chosen empirically to reflect the polymer’s helix tendency
as a priori information [33]. For simplicity, we set A as an
identity matrix I3, b as a zero vector, and � = (1/λ)I3
(λ ≥ 0). Denote the union of the genomic loci ∪C

c=1G(c) as
{l1, l2, . . . , ln} with l1 = 1 and li < li+1, where n is the total

number of loci. Given Sl1 , Sl2 , . . . , Sln , the log-likelihood of
our model is:

ln(L(n, S | μicjc , ic, jc ∈ G(c), ic < jc, i ≤ n, c ≤ C))

=
C∑

c=1

∑

ic,jc

[− exp(ln(μicjc)) + nicjc(ln(μicjc))
]

−3(n − 1)
2

ln(2π) +
n∑

i=2
λ(li − li−1)d2lili−1

,

(3)

where the first term is the conventional log-likelihood
of the GLM under a Poisson link function, the second
term is a constant, and the last term reflects a distance
penalty. The distance penalty controls the smoothness of
the coordinates of neighboring loci with a tuning param-
eter λ. At the extreme scenario λ = 0, it corresponds
to a GLM entirely relying on the contact maps without
smoothing. Smoothing is necessary when the contact map
is sparse. We set λ = O(

√
n) during parameter initial-

ization and λ = 1 in iterations when the density of the
contact map is under 10 %, and λ = 0 in other cases.
When the input data are normalized contact maps

obtained through a certain bias correction approach such
as [11], we replace nicjcc by the corresponding normal-
ized intensity in the log-likelihood function without bias
correction terms.
Parameters in HSA are estimated through an iterative

algorithm. We first fit the GLM without the distance
power-law term (βc1 ln(dicjc)) to initialize βck , k 	= 1.
Then, we sequentially optimize the coordinate Sli based
on the locations of its previous min(5, i) loci under the
log-likelihood with Markov property to get an initial
structure. We then use SA combined with Hamiltonian
dynamics to explore the model space under the GLM,
and update all coefficients iteratively. SA is a probabilistic
method for locating a good approximation to the global
optimum in a high-dimensional search space. It has been
a popular tool for molecular structure prediction [34, 35].
The use of SA with Hamiltonian dynamics allows the
efficient global exploration of the model space.
HSA is open-source software available from http://

ouyanglab.jax.org/hsa/. The source code and user man-
ual of HSA are provided under the GNU General Public
License (GPL) at http://dx.doi.org/10.5281/zenodo.45514.

Simulated contact maps
We simulated contact maps based on the regular helical
structure and the random-walk structure. We generated
the (i, j) entry of a contact map as a Poisson-distributed
random number nij. The parameter λij of the Poisson dis-
tribution is based on the power-law conversion of the
distance matrices of the real structures λij = c/dα

ij . We
set α = 1.5 and tuned c to make the signal coverage (the
percentage of non-zero entries in a contact map) at 90 %,

http://ouyanglab.jax.org/hsa/
http://ouyanglab.jax.org/hsa/
http://dx.doi.org/10.5281/zenodo.45514
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70 % and 25 %. According to [14], we simulated uniformly
distributed random numbers in (0, 1) for the covariates,
including enzyme-cutting fragment length, GC content
and mappability, and used them as input for BACH and
HSA. For the comparison at 10 % signal coverage, we
simulated the λij as

λij = cxij1xij2xij3
d1.5ij

with xijk = xikxjk , where xik (k = 1, 2, 3) were uniformly
distributed in (0, 1). We simulated the contact maps at
90 %, 70 % and 25 % signal coverage levels from the regular
helical structure specified as:

x(t) = 2 sin(t/3), y(t) = 2 cos(t/3),
z(t) = t/20, t = 1, . . . , 100.

We also simulated the contact maps at 10 % signal cov-
erage levels from the regular helical structure specified
as:

x(t) = sin(t/3), y(t) = cos(t/3),
z(t) = t/3, t = 1, . . . , 100.

Finally, we simulated the contact maps for the random-
walk structure as Poisson-distributed random numbers.
The Poisson distribution parameter

λij = cx1/3ij1 x1/4ij2 x1/2ij3

d1.5ij

and xijk = xikxjk , where xik (k = 1, 2, 3) were uniformly
distributed in (0, 1). All the simulated contact maps and
structures are available at http://ouyanglab.jax.org/hsa/.

The toy models
The toy models are the very six toy chromosomes con-
structed by Trussart et al. [26]. The contact maps and the
underlying structures were downloaded from http://sgt.
cnag.cat/3dg/datasets/. The 3D structures reconstructed
by TADbit were obtained directly from the aforemen-
tioned website.We applied HSA, BACH andMCMC5C to
all the 168 contact maps to obtain their respective recon-
structed structures. Denotations of the noise and struc-
tural variation levels of the contact maps were kept the
same as in the aforementioned website. Specifically, alpha
denotes the simulated experimental noise level, whose
value is related to the decay of the Gaussian function
[26] between the probability of interactions and the 3D
Euclidean distances. A set represents the structural vari-
ation level. The nth set was generated by extracting 100
conformations separated by a time step of 10n iterations
in the simulation [26].

Hi-C data
The Hi-C data used in our study are from four cell lines:
mESC, GM06990, K562 and MCF7. A description of each
of these follows:
mESC: The mapped reads are accessible at Gene

Expression Omnibus (GEO) under the accession number
GSE35156. Raw and normalized contact maps at 40-kb
resolution [27] were downloaded from [36]. Raw and nor-
malized contact maps at 1-Mb resolution were obtained
from [14]. The normalized contact maps were all pro-
cessed by the approach of [11].
GM06990: The mapped reads are accessible at GEO

under the accession number GSE18199. The normalized
contact maps at 1-Mb resolution [9] were downloaded
from [37]. We used the pipeline of [11] to obtain normal-
ized contact maps at 200-kb resolution.
K562: The mapped reads are accessible at GEO under

the accession number GSE18199. We used the pipeline
[11] for normalization.
MCF7: The raw data are from [28].

We used the pipeline [11] for normalization.
All raw contact maps were modeled with covariates

including enzyme cut fragment length, GC content and
mappability calculated according to [12].

FISH data
We obtained the published FISH data sets in mESC [29]
from [21]. FISH data in GM06990 [9] were downloaded
from GEO under the accession number GSE18199. The
average inter-locus distances were used as the reference
distance between loci. Different structures were scaled as
done in [21]. Specifically, suppose we have p structures
andM FISH measured distances:

FISHi ∼
p∑

k=1
disti · δik , i = 1, . . . ,M

δij = 1if loci pair i is in structure k, and 0 otherwise.
(4)

We performed this linear regression without an inter-
cept and used the estimated βk to scale the kth structure.
The FISH distances and predicted structures and contact
maps are available at http://ouyanglab.jax.org/hsa/ and
http://dx.doi.org/10.5281/zenodo.45513.

ChIA-PET data
We obtained the published RNA PolII ChIA-PET data
sets in mESC from [30], in K562 from [31] and in MCF7
from [31]. RNA PolII mediated loops within 10 Mb in
genomic distance were used as the benchmark. In the
ChIA-PET data sets of MCF7 and K562, the original
RNA PolII anchors were annotated according to the hg19
reference genome. To make them compatible with the

http://ouyanglab.jax.org/hsa/
http://sgt.cnag.cat/3dg/data sets/
http://sgt.cnag.cat/3dg/data sets/
http://ouyanglab.jax.org/hsa/
http://dx.doi.org/10.5281/zenodo.45513
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Hi-C contact maps, we used the liftover program from
the UCSC Genome Browser to obtain the annotations
according to the hg18 reference genome. To make the 3D
structures reconstructed by different methods compara-
ble, we scaled all pairwise distances among RNA PolII
anchors by the maximum distance in each reconstructed
3D structure.

In situ Hi-C data
In situ Hi-C data were downloaded from GEO with acces-
sion number GSE63525 [32]. We followed the KRnorm
way specified in GSE63525_OVERALL_README.rtf in
the above GEO site to get intra-chromosomal normalized
contact maps at 1-Mb, 100-kb and 25-kb resolution.
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