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Abstract

Various efforts have been made to elucidate the cooperating proteins involved in maintaining chromatin interactions;
however, many are still unknown. Here, we present 3CPET, a tool based on a non-parametric Bayesian approach, to
infer the set of the most probable protein complexes involved in maintaining chromatin interactions and the regions
that they may control, making it a valuable downstream analysis tool in chromatin conformation studies. 3CPET does
so by combining data from ChIA-PET, transcription factor binding sites, and protein interactions. 3CPET results show
biologically significant and accurate predictions when validated against experimental and simulation data.
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Background
The expanding arsenal of techniques developed in the
last decade to explore chromatin organization helped re-
veal the compartmentalized structures of chromatin [1–5].
These structures are established by complex processes that
provide an environment for chromatin interactions and
play an important role in juxtaposing regulatory elements
to their target promoters [6, 7]. The establishment of long-
range interactions plays a fundamental role in different
cellular processes, such as the regulation of gene expres-
sion [7, 8] and the control of cell identity [9]. Additionally,
it imposes constraints on the nuclear architecture, which
influences replication timing [10] and genome mainten-
ance [11].
Investigations into the mechanisms underlying chro-

matin loop formation showed that different protein
complexes are involved in maintaining chromatin loop
formation and stability [8, 12]. In the β-globin locus,
Klf1, GATA1 and its co-factors FOG1 and Ldb1 play a
key role in the formation of the locus control region
(LCR)-promoter loop [13, 14]. Using a modified version

of the Circularized Chromosome Conformation Capture
(4C) method, namely, m4C-seq [15], researchers specu-
lated that a collaboration between the key pluripotency
transcription factors (TFs) (klf4, c-Myc, Sox2, and Esrrb)
and known loop maintainer protein complexes (Medi-
ator and Cohesion) is behind the establishment of the
Nanog locus. In contrast, architectural proteins, such as
CTCF, Cohesion, and Mediator [16, 17], demarcate
themselves from other proteins by their wide involve-
ment in shaping physical chromatin interactions.
The genome-wide analysis of the binding profiles of

architectural proteins indicated that the combinatorial
binding of co-factors contributes differently to chromatin
organization [16–18]. Chromosome Conformation Cap-
ture Carbon Copy (5C) analysis of seven genomic loci
around the key developmentally regulated genes in murine
embryonic stem cells and neuronal precursor cells [16]
shows that, within domains, different combinations be-
tween CTCF, Cohesion, and Mediator are established de-
pending on the interaction length; the Cohesion–CTCF
complex maintains intermediate-length interactions around
tissue-specific genes, while the Cohesion–Mediator com-
plex maintains interactions <100 kb. The respective knock-
down of CTCF and Cohesion done by Zuin and his
group [19] demonstrates that, even though CTCF and
Cohesion are more likely to interact with each other,
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Cohesion is mainly involved in maintaining intra-
topological domain interactions, while CTCF is important
for their segregation.
Chromatin interaction analysis by paired-end tag sequen-

cing (ChIA-PET) [4] is one of the methods for studying
genome-wide interactions that involve a target protein. In
the ChIA-PET method, DNA fragments associated with a
protein of interest are first immunoprecipitated, then li-
gated to half-linkers, followed by a proximity-ligation step
to connect adjacent DNA fragments. The resulting paired-
end tags are then sent for sequencing and analysis to detect
significant interactions. A key limitation of ChIA-PET and
Chromosome Conformation Capture (3C) -based assays is
that they can only give us some insight concerning DNA–
DNA interactions but do not tell us much about the pro-
teins that bring them together. Some candidate proteins
can be inferred using chromatin immunoprecipitation se-
quencing (ChIP-seq) motif analysis, but it still presents a
gloomy view of the gap in between.
Despite the development of biological methods to reveal

the co-factors of a protein [20], we cannot make a clear dis-
tinction between proteins involved in establishing chroma-
tin loops and those that do not. Thus, computational
methods are still essential in predicting the proteins in-
volved in the establishment of chromatin loops. However,
until now, little attention has been paid from the computa-
tional side. Lan et al. [21] tried to integrate Hi-C and ChIP-
seq data to infer the loop-maintaining protein network;
however, the problem with their approach is that Hi-C con-
tains many non-specific interactions, and they only inferred
a single co-factor network that includes different types of
transcriptional machinery (RNAP-II and RNAP-III); thus, it
does not consider the specificity of TFs and nuclear foci.
Therefore, we present a new method, 3CPET, to fill this

gap and try to associate co-factor proteins with the DNA–
DNA interactions that they may maintain in an effort to
help biologists identify loci-wise biomarkers. 3CPET is
based on the observation that a protein can be a backbone
element in some chromatin loops and dispensable in
others [22]; thus, it tries to infer the set of the most prob-
able co-factor complexes involved in maintaining the dif-
ferent spatial interaction contexts using the hierarchical
Dirichlet latent allocation model [23].

Results and discussion
Inference of chromatin maintainer networks
The rationale behind 3CPET is that TFs can use a dis-
tinct combination of coactivators, depending on the gen-
omic and spatial context. For example, studies of
Drosophila showed that the pre-initiation complex (PIC)
is assembled in a gene-dependent manner, where a PIC
lacking TFIIB and D is used for histone genes [24] while
different co-factors are recruited on genes encoding
ribosomal proteins [25]. In the β-globin locus, GATA1 is

known to maintain the LCR-loop formation [13, 14], while
it does not play an important role in other loci. Here, we
refer to each possible combination of co-factors and their
interactions as the chromatin maintainer network (CMN),
which participates in chromatin interactions and regulates
several important biological processes such as gene tran-
scription, DNA duplication etc.
Thus, to infer these sets of CMNs, 3CPET goes

through the steps shown in Fig. 1a. First, we build, for
each DNA–DNA interaction, a protein–protein inter-
action (PPI) network connecting the two interacting
DNA regions. Thus, if we had 100 DNA–DNA interac-
tions, 100 PPI networks would be built. We use this set
of networks to infer the most enriched coactivator
networks.
Given two interacting DNA regions, RA and RB, pro-

teins can be involved in establishing their interactions in
two ways. The first way is by directly binding to the
DNA, then by recruiting other proteins to interact with
them to bring the two DNA sequences together. Thus,
to build the protein networks connecting each DNA–
DNA interaction, we first used ChIP-seq data to obtain
the list of proteins involved at the boundaries of each
chromatin interaction, and then we used a reference PPI
to connect each TF in RA to all of the TFs in RB by con-
sidering the shortest path. Next, each network is con-
verted into a bag of edges, where the frequency of an
edge represents the number of short paths in which it
participates, to capture important nodes in the network
topology (Fig. 1b).
Because the publicly available PPI datasets represent a

collection of results accumulated from different in vivo
and in vitro experiments with different sources of noise
and bias [26], a filtering step is needed. Therefore, only
proteins known to localize to the nucleus and only inter-
actions that show strong co-expression levels are consid-
ered. This step is very crucial for the accuracy of the
final results because the direct use of the raw PPIs tends
to introduce non-specific proteins, especially hub
proteins.
Initially, 104,687 PPIs between 16,227 proteins were

collected from the BioGRID database. We used this net-
work in combination with gene expression and protein
cellular location data to build two context-specific net-
works for the MCF7 and K562 cell lines, respectively.
Hence, a reference network composed of 2714 proteins
and 20,989 interactions was obtained for MCF7 and a
network of 3144 proteins and 16,047 interactions for the
K562 cells. The filtered network is used as a reference
PPI for building the protein network collection that will
be passed to the hierarchical Dirichlet process (HDP) al-
gorithm to infer the CMNs. To avoid capturing general
or non-significant TF interactions, we filtered out outlier
interactions that appear in more than 80 % (maximum

Djekidel et al. Genome Biology  (2015) 16:288 Page 2 of 16



threshold) or less than 5 % (minimum threshold) of the
built networks. The rationale behind this filtering step is
that overrepresented interactions are likely to be artifacts
resulting from shortest paths related to hub proteins or
to be associated with some general proteins that do not
bring too much information. The rare interactions, on
the other hand, are some seldom or noisy interactions.
More discussion about the effect of these thresholds is
presented later in the manuscript. An R package incorp-
orating all of these steps has been developed.
Based on the above assumptions and processes, the

hierarchical Dirichlet latent allocation model [23] seems
to be the most suitable model to infer (i) the number of
CMNs and (ii) the proteins involved in each one. In a
corpus of N DNA–DNA interactions, each linked by a
network of jn edges, our goal is to find the different

groups of protein interactions that frequently appear
together.
If we suppose that we have K CMNs, (βk)k = 1

K , we may
say that a DNA–DNA interaction is maintained by the
CMN βk if the majority of the edges of the network
maintaining that DNA–DNA interaction belong to βk.
Therefore, we can consider the set of protein interac-
tions ej,n connecting a chromatin interaction as a mix-
ture of interactions sampled from different CMNs. We
use the latent multinomial random variable zj,n to indi-
cate the CMN to which a protein interaction ej,n belongs
(Fig. 1c).
However, because we do not know how many CMNs

exist, we allow the number to grow infinitely (βk)k = 1
∞.

Statistically, this scenario is equivalent to the problem of
clustering the elements of grouped data while allowing

Fig. 1 3CPET workflow. a 3CPET overflow: three types of data are provided, including DNA–DNA interactions (ChIA-PET), DNA–protein interactions
(ChIP-seq), and PPIs. The algorithm builds a network connecting each DNA–DNA interaction, then passes them to the HDP model to infer the set of
enriched networks. b Networks connecting DNA–DNA interactions are built by connecting each TF on one side to all of the TFs on the other side of
the interaction. These networks are then converted into a bag of edges, where the frequency of each edge is equal to the number of shortest paths in
which it appears. c The HDP model: each βk represents a CMN and is a distribution over all possible edges. θn represents the CMN-per-network
distribution. For each edge ejn, we associate a latent variable zjn to indicate the membership to a CMN (Bk). zjn are drawn from the
CMN-per-network distribution
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the sharing of clusters between groups. This type of
problem can generally be solved by applying a HDP
model (supplementary methods in Additional file 1).
We used a Gibbs sampling approach, in which the

number of CMNs is allowed to increase gradually, to
infer the joint prior probability. After a sufficient num-
ber of iterations (in our case 1000), the algorithm con-
verges to a steady state that allows us to infer (i) the
number of CMNs, (ii) the edges constituting each CMN,
and (iii) the probability for each DNA–DNA interaction
to be maintained by the proteins of a CMN (see ‘Materials
and methods’ and Additional file 1 for details). At the end
of the algorithm, we build each CMN by selecting the top
edges that capture a certain proportion of its cumulative
distribution function (see Additional file 2 for the in-
ferred CMNs used in this study). Discussion of the effect
of the different thresholds is discussed later.

Inference of ER-alpha associated co-factors and compari-
son with experimental data
ER-alpha is one of the extensively profiled TFs and plays
an important role in breast cancer growth and progression
[27]. Among all of the nuclear receptors, ER-alpha re-
mains one of the main targets in tamoxifen-based therapy
for breast cancer [28]. The elucidation of ER-alpha co-
factors could enable the discovery of novel therapeutic tar-
gets for tamoxifen-resistant breast cancer [29].
Initial ER-alpha ChIP-seq profiling studies showed that

ER-α preferentially binds to distal cis-regulatory elements
away from the promoters of the regulated genes [28, 30]
and recruits, in a temporal and spatial manner, a combin-
ation of collaborative factors to repress or activate its tar-
get genes [4, 20, 27, 31]. ChIA-PET analysis of ER-alpha
associated factors [4, 31] also indicated that ER-alpha
functions by establishing long-range interactions with the
help of different collaborative factors. Among the well-
known co-factors of ER-α are GATA3, FOXA1, LEF1, and
RXRA [27]; however, many of these co-factors have been
detected using protein–DNA binding assays.
Using ChIA-PET data published by Fullwood et al. [4],

we generated a corpus of 1691 highly significant ER-
alpha mediated long-range chromatin interactions in the
MCF7 cell line (Additional file 3: Figure S1). We used
these data in combination with ChIP-seq signals for 28
TFs (Additional file 4: Table S1). The MCF7-specific PPI
network was constructed by filtering non co-expressed
genes and proteins that do not locate at the nucleus. As
the paired-end tags in ChIA-PET data tend to be more
enriched in the middle of the interacting regions, we
speculated that the TFs involved in maintaining chroma-
tin interactions are also enriched near the center of
these regions. Therefore, we only considered transcrip-
tion factor binding sites (TFBSs) located 500, 750, 1000,
1500, and 2000 bp around the center of each region.

The distribution of the number of TFs recruited per re-
gion size (Fig. 2a) indicates that, as expected, the num-
ber of recruited TFs will increase by increasing the
region size, but, on average, the number of recruited TFs
is stable. On average, nine TFs are recruited per region.
We notice that the slight changes in TF recruitment do
not have a large influence on the size of the constructed
networks linking the DNA–DNA interactions (Fig. 2b, c).
From these results, we can speculate that the set of
ER-alpha collaborative factors is more or less restricted.
Depending on the region size, 3CPET inferred differ-

ent numbers of CMNs with a mean of ten (Additional
file 3: Figure S2). In the following analysis, we used the
1.5 kb related CMNs (due to their biological significance,
discussed later).
As our local PPIs were generated by considering the

shortest path in the PPI, we suspected that some over-
represented edges are artifacts of the PPI construction
process that can be obtained regardless of ChIA-PET
and ChIP-seq data. The background PPI bias effect is
discussed in more detail in the following section. To as-
sess the statistical significance of the obtained CMNs,
we did a permutation test in which, for each iteration,
we re-shuffled the TF binding sites, rebuilt the protein
networks for each chromatin interaction using the same
reference PPI, and re-inferred a new set of CMNs. The
permutation test results obtained for the 1.5 kb regions
show that two out of the ten CMNs failed to show their
non-randomness (Additional file 3: Figure S3). This is
because the nodes of these networks, on average, had a
high connectivity in the reference network, which led to
their appearance in many shortest paths as artifacts from
the background PPI independently from the information
included in ChIA-PET and ChIP-seq data. Meanwhile,
the ER-alpha dataset contains 1691 interactions and
about 200–500 DNA–DNA interactions will be filtered
in the random shuffling step, which influences the accur-
ate assessment of random interactions.
The remaining eight significant networks tend to have

different sizes, with the largest one having up to 110
proteins, mainly with elements known to be from the
same protein complex (Fig. 3a). By checking the similar-
ity between the different CMNs (Fig. 3b), we observe
that the CMNs tend to share some core elements; how-
ever, they generally have heterogeneous structures, as
the highest similarity is 16 %. These networks show a
small-world distribution, with a large number of low-
connected genes and a small number of hub proteins
holding the interactions (Additional file 3: Figure S4).
We plotted the enrichment profiles of the eight CMNs

in different ChIA-PET chromatin interactions (Fig. 3c).
Notice that different chromatin interactions tend to be
maintained by a specific network. By assessing the ex-
pression of the genes controlled by each CMN, we found
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that the expression of genes differs according to the co-
factors involved. For example, CMN 4, which controls
highly expressed genes, is mainly composed of transcrip-
tion activation proteins (Additional file 3: Figure S5),
such as enhancer-binding proteins CEPBA and P300, in
addition to ER-alpha co-factors, such as FOXA1 and
NR3C1. On the other hand, CMN 2, which controls
genes with low expression, contains some transcription

inhibition proteins mainly from the HDAC family
(Fig. 3d, e).
To assess if 3CPET can significantly associate proteins

with DNA regions, we simulated a knockdown experiment,
in which we removed the signal of three important TFs:
ER-alpha (ESR1), RXRA, and FOXA1. Then, we checked if
3CPET can predict their involvement in maintaining
chromatin interactions and significantly associate them

Fig. 2 Constructed network statistics. a This violin plot shows the distribution of the number of TFBSs per interacting DNA region in the ER-alpha
mediated interactions. Increasing the region size increases the number of overlapping TFBSs, but, on average, each region contains approximately
nine TFs. b Distribution of the number of edges per network for ER-alpha associated interactions. c Distribution of the number of nodes per
network for ER-alpha associated interactions. d Distribution of the number of TFBSs per region for RNAP-II associated interactions. On average,
each region contains 11 TFs. e Distribution of the number of edges per network for RNAP-II associated interactions. The network sizes show a
significant change when increasing the region size. f Distribution of the number of nodes per network for RNAP-II associated interactions. The
number of nodes shows a significant change when changing the region size
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with chromatin interactions. We verified then whether the
ChIP-seq signals of these TFs are significantly enriched in
the regions we claim they are enriched in by doing a per-
mutation test, in which we randomly pick an analogous
number of chromatin interactions and check whether they
show at least a similar enrichment value for the specific TF
(see ‘Materials and methods’). Figure 4a shows that 3CPET
was able to associate ESR1 and RXRA significantly with
the DNA–DNA interaction they maintain; however, even if
3CPET was able to predict the involvement of FOXA1 in
maintaining chromatin interactions, 3CPET failed to asso-
ciate it significantly with the DNA–DNA interaction that it
maintains. In addition to these factors, 3CPET was also
able to predict the involvement of other TFs not initially
included in our input signal, such as AR, ELK1, FOS, JUN,
and NR3C1, in maintaining ER-alpha associated chromatin
interactions. 3CPET was able to associate JUN and NR3C1
significantly with their predicted regions.
To detect ER-alpha non-DNA binding co-factors,

Mohamed and his group [20] developed a mass-
spectrometry-based method, rapid immunoprecipitation
mass spectrometry of endogenous proteins (RIME), and
used it to generate a list of ER-alpha interactors. We
used the results generated by RIME in addition to some
ChIP-seq data as ground truth to assess the reliability of
our predictions. Two lists of ER-α collaborative factors
were generated in the RIME experiment [20]: list A of
108 co-factors detected in three replicates and list B,
which was less significant, of 250 co-factors detected in
at least two replicates. We did a hyper-geometric test to

test the significance of the overlap between these lists
and the list of proteins inferred using different region
sizes (Table 1). Mainly, the results show a significant
overlap of the proteins in list A with the best results ob-
tained for a region of size 1.5 kb (p = 2.334 × 10-4). Be-
cause it is impossible for our algorithm to infer proteins
not in the reference PPI, we compared the overlap with
only proteins present in our reference PPI. In this way,
stronger overlap values were obtained, especially for the
1.5 kb region CMNs (2.0499 × 10-10 for list A) (Table 1).
Many of the non-overlapping proteins had a degree of 1
in the reference PPI; thus, they were not members in
many shortest paths. This indicates that there is a trade-
off in building the reference network where larger
threshold values enable us to predict more candidate
proteins with the penalty of introducing more noise.
Many studies have been conducted to reveal some of

the new drug targets that can give better recovery in
breast cancer. Members of the peroxisome proliferator-
activated receptor (PPAR) family have been revealed to
be important biomarkers in different cancers including
breast cancer. In this analysis, 3CPET was able to pre-
dict proteins such as PPARD, which has been shown to
inhibit the growth of MCF7 cells [32].

Sensitivity, robustness, and accuracy of 3CPET results
By considering the actual ER-alpha related CMNs and
the results of the RIME experiment as ground truth, we
assessed the effect of the different thresholds and of the
input data on the different aspects of the 3CPET results.

Fig. 3 Characteristics of ER-alpha associated CMNs. a Plot showing the size of the different inferred ER-alpha associated CMNs. b Heat map
showing the similarity between the CMNs. We notice a small degree of similarity, as the highest value is 16 %. c Heat map showing the degree
of association of each interaction to a protein family. Each row is a ChIA-PET interaction and each column is a CMN. The blue color indicates little
enrichment. The redder the color is, the more it is enriched. d Expression of the genes controlled by each CMN. Very distinct expression patterns
are noticed for the different groups of controlled genes. e Heat map showing similarity between the expressions of the genes maintained by the
different CMNs. RPKM reads per kilobase per million
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We studied the influence of three essential thresholds:
the minimum and maximum thresholds used to filter
outlier interactions in the local network construction
step and the threshold used to select top edges used to
build the CMNs. Basically, four types of analysis were
performed.
The first analysis studied the effect induced by the dif-

ferent thresholds on the performance of 3CPET from
two aspects. First, by checking the overlap with RIME
data, a prediction result is deemed potentially useful if it
has a more significant overlap with RIME data. Second,
by measuring the degree bias of 3CPET results toward
the background PPI, the extent to which a bad back-
ground PPI construction can affect our results can be
checked.
The tile plot in Fig. 4b shows the effect of varying the

three thresholds on the ability of 3CPET to predict
RIME data significantly. We notice that regardless of the

minimum and maximum values, the overlap significance
with RIME data improves with increasing CMN con-
struction thresholds, which is expected as more ele-
ments are introduced. However, if we compare the speed
of convergence toward significant results between when
we only filter overrepresented interactions (minimum =
0, top row) and when we only filter interactions with
low frequency (maximum = 1, right column), we see that
the filtering of overrepresented interactions leads to a
faster convergence toward significant results, as the user
needs to select about 40 % of the top edges to get a sig-
nificant overlap, while they need to select about 50 % of
the top edges to get significant results when only lowly
represented interactions are removed. This indicates that
overrepresented PPI interactions, which are generally as-
sociated with hub proteins (as they tend to attract many
short paths) or are associated with general TFs, can be
considered more as artifacts than real players in main-
taining chromatin interactions. Of course, the import-
ance of overrepresented interactions varies depending
on how confident we are about the background PPI and
how specific is the target protein used to generate ChIA-
PET data. We may expect the co-factors of more general
proteins, such as RNAP-II, to contain many artifacts
compared to the more specific ones. Thus, users can
adopt flexible thresholds when studying specific proteins

Table 1 Overlap with RIME list A and list B

Flanking region size A_ALL B_ALL A_PPI B_PPI

500 7.1502E-04 0.7301 2.4248E-09 1.2201E-04

1000 3.5526E-04 0.6426 4.5359E-10 5.5431E-05

1500 2.3344E-04 0.5583 2.0499E-10 3.1794E-05

2000 3.3734E-04 0.5676 5.8403E-10 4.4591E-05

Fig. 4 Biological validation. a Knockdown simulation results, in which we omitted ChIP-seq signals from ER-alpha (ESR1), FOXA1, and RXRA, and
checked if 3CPET can predict the involvement of these proteins and can significantly recover the DNA interactions in which they may participate.
The x-axis represents the TFs predicted by 3CPET not used in our dataset. The purple bars represent the observed proportion (OP) of the regions
that actually contain the predicted proteins. The yellow bar represents the probability of obtaining similar enrichment in a random manner. Four
out of seven predicted TFs were significantly enriched in the regions we claimed. b Tile plot showing the impact of the minimum and maximum
thresholds using in filtering outlier interactions in the network corpus construction step, and the threshold used to build the CMNs. In each tile,
we calculate the overlap p value between the list of predicted proteins and the proteins of list A in the RIME experiment. Overall, increasing the
CMN construction threshold leads to better accuracy. Results that are more accurate can be obtained by filtering overrepresented interactions.
c Accuracy of 3CPET results using simulated data. We simulated an interaction corpus of different sizes (500, 100, 1500, 2000, and 2500). We used
11 CMNs to sample a network for each interaction. The area under the curve (AUC) values were calculated using a multi-class receiver operating
characteristic (ROC) analysis in which we checked whether 3CPET can truly re-assign interactions to their true CMN
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and stricter ones when dealing with proteins that are
more general.
The previous results imply the possible existence of a

bias in 3CPET results toward hub proteins of the back-
ground PPI network. To check this assumption, we veri-
fied if the CMN proteins maintain a degree of
connectivity similar to the background PPI. In other
words, highly connected proteins are still highly con-
nected in our results and vice versa. Thus, we calculated
their degree of correlation in the CMN proteins and
their degree in the background PPI (Additional file 3:
Figure S6).
Overall, increasing the CMN construction threshold

introduces more bias from the background PPI; however,
a maximum correlation value of 0.5 is observed in the
extreme case. This indicates that the background PPI
construction step is very important in influencing the
final results and the mere use of a public PPI without
preprocessing can lead to false results. Cautious users
can adopt a threshold of 40 % to 50 % to get a good
balance.
To measure the performance of 3CPET quantitatively,

we did a simulation analysis in which we generated 11
CMNs and used them to sample our input networks
corpus. We checked the performance of 3CPET from
two sides: its ability to predict the original CMNs and
its ability to associate DNA–DNA interactions with
their original CMNs. As the HDP inference is based on
a Gibbs sampling process, the number of predicted
CMNs differs in each run. Additional file 3: Figure S7
shows a case in which 3CPET successfully predicts all
of the 11 CMNs and a case in which it predicts fewer
CMNs (in this case, nine). We notice that in the latter case
(Additional file 3: Figure S7b), the predicted CMNs consti-
tute a mixture of the original ones; however, in the first
case, all the 11 CMNs were recovered with a high degree
of similarity (Additional file 3: Figure S7a). Amazingly,
3CPET accurately predicts the enrichment of the chroma-
tin interaction to the original CMNs (Additional file 3:
Figure S8). When the predicted CMN is a mixture, the as-
sociated CMNs are enriched in the chromatin interactions
originally maintained by the mixture of the original
CMNs.
To quantify this behavior, we calculated the accuracy

of 3CPET in associating chromatin interactions with their
original CMNs (see ‘Materials and methods’). Figure 4b
shows the area under curve (AUC) values of the multi-
class receiver operating characteristic (ROC) analysis
given different data sizes. Notice that the increase in the
number of chromatin interactions leads to predictions that
are more accurate. This implies that, when more data are
available and when the user carefully selects accurate in-
puts, 3CPET results can lead to predictions that are more
useful.

The simulation results indicated that there is a certain
influence of the library complexity on the final results.
To investigate this question further, we simulated differ-
ent library complexity values from the real data and
checked its influence on the significance of the final
3CPET output. For ChIA-PET data, library complexity
indicates the percentage of paired-end tags that lead to
significant interactions discoveries. Thus, in our simula-
tion, we suppose that the initial data is the full library
and each time we sample a percentage from it. Ten sam-
ples were generated for each case. If we plot the distri-
bution of the overlap probabilities with RIME data
(Additional file 3: Figure S9), we notice that the overlaps
get more significant with increasing experimental quality
(more interactions detected) (Additional file 3: Figure
S9a). However, low-quality experimental data leads to
very variable results (Additional file 3: Figure S9b), but
starting from 60 %, the variance gets tighter and even
with 20 % complexity, fewer outlier results are obtained.
This can be explained by the stability of the ChIP-seq
signal, as the main ER-alpha core co-factor signal is
highly enriched regardless of the number of discovered
interactions (Additional file 3: Figure S10). Still, the
fewer interactions are discovered, the more statistical
power is lost and this opens the doors for more false
positive discoveries. Consequently, if we plot the dis-
tribution of the number of the newly discovered pro-
teins (the ones not included in the input ChIP-seq
signal), we notice different runs on low-quality data
can lead to very different results, while more stable re-
sults are obtained with an improvement in data quality
(Additional file 3: Figure S11).
Another question that one may ask is how robust are

the 3CPET results to input perturbations? To investigate
this question, we run 3CPET separately on the ER-alpha
ChIA-PET replicates and checked the similarity of the
obtained CMNs to those predicted using just the com-
mon interactions. We clustered the predicted CMNs in
each replicate according to their similarity to the CMNs
in the common chromatin interactions (Additional
file 3: Figure S12). The similarity to the CMN in the
common interactions differs according to the used
threshold; using minimum and maximum thresholds
of 0.05 and 0.8, respectively, leads to very robust results
with only one CMN of replicate 2 that showed no similar-
ity to the common CMNs (Additional file 3: Figure S12a).
However, when relaxing the maximum threshold to 0.95
and comparing with the common CMNs obtained using
the same thresholds, we notice that many replicate CMNs
failed to cluster with the common CMNs (Additional
file 3: Figure S12b). The relaxing of the filtering
thresholds enabled the introduction of more candidate
proteins and increased the sensitivity of 3CPET to the in-
put interactions. When the overlap between the replicates
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is not very high, it is advisable to run 3CPET on the com-
mon interactions and use tighter filtering thresholds.
To sum up, we can assert that overall 3CPET has

a reasonable performance and shows stable behavior
and sensitivity. A good selection of high-quality in-
puts have the potential to reveal new significant co-
factor candidates.

Controlling the number of CMNs and the sparsity of the
results
The previously discussed minimum and maximum
thresholds control the way in which the local PPI net-
work corpus is prepared. However, once this corpus is
passed to 3CPET, the final output depends on the behav-
ior of the HDP algorithm. HDP is composed of three
main layers. The first layer is the base measure H that
constitutes the source of CMNs (βk)k = 1

∞. The second
layer is the global measure G0 that helps in sampling a
discrete number of CMNs from H to be shared along
the entire corpus. The third layer uses the probability
measures Gj, to select the appropriate CMNs for the
edges of the jth local PPI from G0.
These three layers are controlled by three parameters

η, γ, and α. The first parameter η is used to indicate our
prior belief on the way the edges belong to CMNs. In
other words, it shows how each βk puts its weight on
each edge. In our settings, this behavior is inherent to
the Dirichlet distribution (Additional file 3: Figure S13).
Smaller η values lead to a sparser edge-per-CMN distri-
bution, while larger η leads to a more uniform one. The
γ parameter is the concentration parameter used to con-
trol how G0 puts its mass on each CMNs. Smaller γ
values favor the concentration of the mass on a small
number of CMNs while larger γ values give almost simi-
lar preferences to all the CMNs. The α parameter also
has a similar effect but on the local PPI level, with
smaller α values favoring the edges of a PPI belonging to
a small number of CMNs and larger α values allowing
edges to be part of different CMNs.
Two criteria, sparsity and the number of topics, can

mainly be used to describe the impact of the HDP pa-
rameters on the final results. Sparsity enables users to
control the number of CMNs allowed to maintain a
DNA–DNA interaction and how CMNs are allowed to
share common edges. By combining the results from
Additional file 3: Figures S14 and S15, we notice that η
is the main player in controlling the sparsity, whether on
the edge-to-CMN level or the PPI-to-CMN level, with
higher values of η leading to less sparse results. Add-
itionally, we observe that γ values larger than 1 com-
pared to values smaller or equal to 1, enable the local
PPI networks to have fewer CMNs (Additional file 3:
Figure S15), and at the same time, leading to a sparser
edge-to-CMN distribution (Additional file 3: Figure S14).

For fixed η and γ, increasing α helps slightly in decreasing
the sparsity. γ = 0.01 is a special case because, as we will
see later, there were only one or two CMNs, and thus all
the edges had a certain probability of belonging to them.
In fact, the sparsity levels are the results of the

increase in the number of CMNs. As we can see in
Additional file 3: Figure S16, γ values larger than 1 lead
to an increase in the number of CMNs per DNA–DNA
interaction. When combined with smaller η values,
CMNs will have their mass concentrated on a small
number of edges, which leads to a higher sparsity as
shown in Additional file 3: Figure S15. From Additional
file 3: Figure S16, we notice also that an increase in η
values leads to a decrease in the number of clusters. We
notice the same trend when varying α with fixed η and
γ. These trends can be understood by examining the
sampling scheme shown in the supplementary method
in Additional file 1.
In our case, we used η = 0.01 to enable edge-to-CMNs

sparsity, and γ = α = 1, to give an unequal probability to
all CMNs to control DNA–DNA interactions. However,
users can tune these parameters according to their pre-
vious knowledge about the protein of interest. For very
specific proteins, maybe the users will be interested in
having a small number of CMNs, while for a general
protein, the user can allow more CMNs to be detected
to increase the granularity.

RNAP-II chromatin maintainer networks
Transcription is a complex dynamic process that relies on
different proteins. The elucidation of proteins and TFs
interacting with the transcriptional machinery can help us
to make a step forward in understanding the transcriptional
regulome. To explore the protein apparatus recruited by
the transcriptional machinery to maintain chromatin inter-
actions, we used K562 ChIA-PET interactions with RNAP-
II as bait [33]. As the number of common interactions be-
tween the RNAP-II replicates (30,396) is about three
times the number of common interactions for ER-
alpha (3019), we had the opportunity to use a tighter
filter value (≥5) to generate a corpus of 17,253 DNA–
DNA interactions (Additional file 3: Figure S17). Like
the ER-alpha workflow, we only considered co-
expressed proteins known to localize at the nucleus.
In addition, we used the ChIP-seq signal of 37 TFs
(Additional file 4: Table S2).
From Fig. 2d, we can see that, in contrast to ER-alpha,

the number of TFs binding to the interacting DNA re-
gions shows a more concentrated distribution profile with
the majority of the interactions bound by the 11 TFs.
Meanwhile, for ER-α, a more broad distribution is present.
However, the size of the networks connecting the DNA–
DNA interactions shows a significant change between the
different region sizes (Fig. 2e, f ). Thus is because the
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RNAP-II background co-expression PPI is more con-
nected than the ER-alpha one. Thus, the length of the
shortest paths connecting two DNA fragments is shorter
in the RNAP-II network, which is the opposite of ER-α,
where the connection of two DNA fragments needs more
proteins, leading to bigger networks.
We used regions of size 1500 bp around the center of

DNA interactions for the downstream analysis because
they represent the typical enhancer size. By applying
3CPET, eight CMNs were obtained (Fig. 5a). Many of
the transcription-related proteins were predicted to be
involved in the maintenance of chromatin interactions,
such as CREBBP, which is known to play the role of a
scaffold in stabilizing transcriptions, the enhancer-
associated protein P300, and some of the Mediator com-
plex proteins, such as MED1, in addition to architectural
proteins, such as CTCF and RAD2 [34–36].
Analysis of curated human protein complexes from

the CRUM database [37] shows that all inferred CMNs
contain elements of the RNAP-II core complex, with
CMNs 1, 2, and 4 more enriched for chromatin remod-
eling complexes, such as SWI/SNF and BAF, while the
others are more enriched for the PIC-related proteins,
with CMNs 7 and 8 containing a TATA-binding protein-
free TAF-containing complex.
To estimate the number of true predictions, we

checked if the ChIP-seq signal of some predicted pro-
teins is significantly enriched in the regions claimed by

3CPET in Fig. 5a. Therefore, we used the ChIP-seq sig-
nal of 13 proteins, for which published data were avail-
able but not included in our input dataset. Among these
13 ChIP-seq signals are some proteins known to main-
tain chromatin interactions, such as CTCF and P300.
Eleven out of the 13 predicted TFs showed a significant
enrichment in the claimed regions (Additional file 3:
Figure S18). Mainly, the predicted proteins showed
high abundance, with 64 % of the real signal located
in the predicted regions.
To assess if the regions enriched for each network

encoded different functionality, we considered the genes
located 2.5 kb around the center of the interaction re-
gions with more than 50 % enrichment for a specific
CMN and compared their gene ontology (GO) annota-
tion (Fig. 5d). The correlation between the gene expres-
sions of the genes maintained by each network showed
that groups of CMNs control different co-expressed
genes (Fig. 5b, c), with networks 7 and 8 maintaining co-
expressed genes involved mainly in cell-cycle, transcrip-
tion, and chromatin regulation (Fig. 5d). CMNs 2, 1, and
3 controlled co-expressed genes involved in metabolic
process regulation. CMNs 4 and 6 regulated genes re-
lated to chromatin assembly. However, CMN 5, mainly
composed of SWI/SNF elements, controlled translation
and mRNA metabolite process related genes and showed
a higher expression profile compared with the others
(Fig. 5b, c, and d).

Fig. 5 Characteristics of RNAP-II associated CMNs. a Heat map showing the degree of association of each interaction to a protein family. Each
row is a ChIA-PET interaction and each column is a CMG. The blue color indicates little enrichment. The redder the color is, the more it is enriched.
b Expression of the genes controlled by each CMN. c The clustering of the expression of genes per CMN indicates that the genes controlled by CMNs
4, 5, and 6 demarcate themselves from the others. d Gene ontology enrichment analysis of the genes controlled by the different RNAP-II associated
CMNs. MNN 5 tends to control mRNA metabolite process related genes, while 6 and 4 maintain genes related to chromatin assembly.
Genes controlled by CMNs 1, 2, and 3 tend to be more general, and the ones controlled by 7 and 8 are mainly involved in the cell
cycle. RPKM reads per kilobase per million
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Compared with the ER-alpha gene regulation re-
sults, the expression profile of the genes controlled by
the RNAP-II related CMNs does not show a very vis-
ible variation between the different regions, which in-
dicates that some co-factors play a substitutable role
and do not have a large influence on the expression
of genes involved in chromatin interactions. However,
for ER-α, the results show that different combinatorial
recruitment patterns have an impact on the way
genes are regulated.
The β-globin locus is one of the most intensively stud-

ied loci in hematopoietic cells. With the development of
3C-based methods, it has been used as a model system
in understanding the mechanisms of chromatin loop es-
tablishment [13, 14, 38, 39]. β-globin is a multi-gene
locus composed of several globin genes and is regulated
through regulatory elements located mainly at the LCR
[40] through loop formation. Several proteins have been
shown to be involved in LCR β-globin loop formation,
such as GATA1, LMO2, and CTCF.
In our dataset, two β-globin loops were enriched. The

outer loop connects the LCR to the region between the
Aγ and δ genes, and an inner loop connects the ε gene
to the Gγ gene (Additional file 3: Figure S19). 3CPET
predicted the enrichment of two networks in this region,
with the outer loop showing an enrichment for the
RNAP-II and CTCF related network (CMN 3) and the
network involving the GATA1 and P300 network (CMN
1). Meanwhile, the inner loop showed high enrichment
for the transcription-related network (CMN 3). The re-
sults of literature mining show the enrichments of these
two networks for both terms β-globin and RNAP-II
(Additional file 4: Table S3).

3CPET as an R package
To facilitate the execution and analysis of the data using
the proposed method, we implemented 3CPET as an R
package (Fig. 6, Additional file 5). The package has three
main functionalities:

1. It contains functions to manipulate and load ChIA-PET
interactions, ChIP-seq signals, and the PPI.

2. In addition, it has methods to run the HDP model
and cluster the DNA interactions according to their
enrichment profiles, as well as the ability to perform
GO and expression analysis.

3. The package also has a set of functions to
visualize and generate different plots in the R
environment or interactively using a web interface
based on Shiny.

Using the 3CPET web interface (Fig. 6a), users can
display statistics related to the raw data, the number
of ChIA-PET regions per chromosome, and the TF

abundance distribution per region. Users also can
analyze 3CPET results (Fig. 6b), where they can
interact with the inferred networks, and display their
occupancy profile and the DNA regions maintained
by each network. R3CPET is available under a GPL
(≥2) license at: http://www.bioconductor.org/packages/
release/bioc/html/R3CPET.html.
The time and space complexity depends on many fac-

tors, such as the number of Gibbs iterations, the sparsity
of the results, and the number of topics. In Additional
file 3: Figure S20, we plotted the memory occupancy of
R3CPET when running the HDP algorithm on ER-alpha
data. We notice that, overall, 3CPET occupies 94–
97 Mb, which is a reasonable amount. Increasing η leads
to a slight increase in memory occupancy as the data are
less sparse (Additional file 3: Figures S14 and S15). From
the execution time perspective, we notice that there is
not a fixed pattern, but overall larger η values lead to
longer execution times, which is mainly due to the re-
duced sparsity of the internal structures (Additional file 3:
Figure S21). One may expect that the increase of the
number of inferred CMNs has an influence on the exe-
cution time; however, from Additional file 3: Figure S22,
we notice that there is no clear correlation between the
number of inferred CMNs and execution time, which
indicates that sparsity is the main player in controlling
the execution time. Overall, it takes 3CPET from 20 to
30 min to calculate the final results; the fastest case is
about 5 min.
As expected, the memory and time requirements for

3CPET gradually increase with the DNA–DNA corpus
size. The plots in Additional file 3: Figure S23 clearly
indicate a linear scaling of its time and memory re-
quirements. The results shown in Additional file 3:
Figure S23 show the trends obtained using the HDP
parameters η = 0.01 and γ = α = 1, but similar require-
ments for data size are observed for different param-
eter values.

Conclusions
We have developed 3CPET, a tool based on a non-
parametric Bayesian approach, to infer the set of the
most probable protein networks that could be involved
in maintaining chromatin interactions, making it a
valuable downstream analysis tool in chromatin con-
formation studies. Our results show that a protein can
be a backbone element in establishing some interac-
tions and disposable in others. We also showed that
the combinatorial recruitment of co-factors can have a
large influence on the expression of the regulated
genes, such as for ER-alpha, while it can also maintain
the same functionalities with a smaller influence on
the way in which regulated genes are expressed, as for
RNAP-II.

Djekidel et al. Genome Biology  (2015) 16:288 Page 11 of 16

http://www.bioconductor.org/packages/release/bioc/html/R3CPET.html
http://www.bioconductor.org/packages/release/bioc/html/R3CPET.html


3CPET exploits a HDP, which has the advantage of
non-parametrically inferring (i) the number of distinct
co-factor networks involved in maintaining chromatin
interactions and (ii) the set of proteins in each net-
work. Although the inference can be done using dif-
ferent clustering methods, the most widely used
methods require a pre-existing knowledge of the
number of networks or put certain assumptions on
the distribution of the data.
We tested our approach for chromatin interactions as-

sociated with both ER-alpha and RNAP-II. For ER-alpha,
3CPET was able to predict many of the well-known co-
factors, such as FOXA1, RXRA, NCOR1, and KLF1,
among others, and showed a significant overlap with the
RIME experiment results. The analysis of RNAP-II re-
lated interactions also enabled us to predict many pro-
teins known to be involved in transcriptional machinery
and enhancer binding. In both analyses, 3CPET was able
to predict architectural proteins, such as CTCF and
Cohesion.
We also performed a different type of analysis to

investigate the performance and stability of our ap-
proach. We investigated the influence of the different
thresholds on the input to 3CPET and we ran a simu-
lation and robustness analysis to evaluate the accur-
acy and the stability of our method. Conjointly, we
performed a comprehensive study on the influence of
the HDP algorithm parameters on the number of in-
ferred CMNs and the sparsity of the assignments to
give general guidance to users. We showed that
smaller HDP parameter values are more suitable in
the study of specific proteins while larger values can
be used to study general proteins. In addition, we did
a basic time and memory profiling study of 3CPET to
give an idea of the conditions affecting its time and
memory requirements.

Overall, 3CPET showed reasonable performance and
good stability. However, due to the dynamic nature of
the protein interactions, we do not claim that the ele-
ments of the inferred networks are involved in maintain-
ing the interactions at the same time, as some of them
may take part in different stages of the transcription
regulation process and others are involved in different
stimulation conditions.

Materials and methods
Gene expression data
Gene expression data were downloaded from the GEO
repository. For the MCF7 cell line, we used the dataset
GSE848 [41], which contains a collection of 30 time-
course microarray samples on which MCF7 cells were
stimulated using different selective estrogen receptor
modulators, such as raloxifene and estradiol. For K562
cell lines, we used the GSE11670 [42] dataset, which
contains six time-course samples for ICL670-treated
K562 cells.

ChIA-PET data
For the MCF7 cell lines, we used common interactions
between replicates 1 and 2 from the processed ChIA-
PET data in the GEO dataset GSM970212 [4]. We used
common ChIA-PET interactions [36] (E-GEOD-33664)
between the two ChIA-PET replicates, with saturated
Pol-II for the K562 cell lines. The data for both K562
and MCF7 were processed, by the original authors,
using ChIA-PET tools [43] that use a hyper-geometric
model to handle systematic bias and detect significant
interactions.

ChIP-seq data
We used the available TF ChIP-seq data signal (Additional
file 4: Table S1) in the ENCODE project for the MCF7 cell

Fig. 6 Results produced by the R3CPET package. a Screenshot showing an example of the web interface of the 3CPET package for raw data
analysis. b Screenshot showing an example of the web interface of the 3CPET package for results analysis
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lines [44]. For the K562 cell lines, we used 37 ChIP-seq
signals from the ChIPBase database [45], which contains
ChIP-seq peaks from different experiments, including
ENCODE. The other 13 ChIP-seq signals used for
validation were downloaded from the ENCODE pro-
ject. We only considered common peaks for signals
with more than one replicate or experiment results
in the same cell line (K562 or MCF7).

Reference PPI construction
We built the reference PPI by combining physical PPI
information from the BioGRID database and an esti-
mated co-expression network. First, the co-expression
expression network was built using the weighted gene
co-expression network analysis method, which tries to
build a small-world co-expression network by raising the
absolute value of the correlation between genes to a power
β (soft threshold) until a good fit is found [46]. We used
a soft threshold of 5 for MCF7 and 6 for K562 to obtain
a small-world co-expression network (Additional file 3:
Figure S23).
After calculating the weights, we calculated a topo-

logical overlap index that indicated the topological prox-
imity between edges, given the weights obtained using
the soft threshold. This index enables us to detect iso-
lated nodes and nodes with very limited connectivity. In
our case, we removed all nodes that show connectivity
less than 50 % of that for all nodes. The use of the me-
dian here as a threshold gives more stable results than
the use of the mean or other descriptive statistics. Fi-
nally, an unweighted adjacency matrix was used to build
the co-expression network. As our aim is to capture
physical interactions, we used the co-expression network
to filter out the BioGRID PPI network to keep only co-
expressed connections.

Chromatin maintainer network inference
A hierarchical Dirichlet model is suitable for classifi-
cation problems in which data are organized into
groups and the elements of each group constitute a
mixture of clusters. In our case, local PPI networks
are groups of edges composed of a mixture of CMNs
and we want the CMNs to be shared across the local
PPI. HDPs have been widely used in document classi-
fication, where the words of each document are seen
as a mixture of words sampled from different topics
(for example, a bioinformatics document is a mixture
of biology, statistics, and programming in different
proportions). The aim of using HDP is to find the
number of clusters in a given data corpus and the
mixing proportions in each group while allowing the
sharing of these clusters between groups (for example,
group 1 can have elements from cluster 1 and also
group 2).

As we do not know how many clusters are in our
corpus of networks, we suppose that this number
can grow to infinity (βk)k = 1

∞ and we will suppose
that they are sampled from a continuous base distri-
bution H. The mere sampling of the cluster atoms βk
from H cannot guarantee that two chromatin interac-
tions are maintained by the same CMN, as the prob-
ability of sampling the same CMN again from H is
very low. Thus, the HDP algorithm introduces an-
other layer in which we sample a discrete number of
atoms into the distribution G0 from which the other
chromatin interactions can sample their correspond-
ing CMNs, which allow the sharing of CMNs, as
shown for example in Fig. 3c (for detailed mathemat-
ical formulas, check the supplementary methods in
Additional file 1).
In our case, we used the HDP code published by the

original author and integrated it into our R3CPET pack-
age with some minor modifications [23]. In this imple-
mentation, the burn-in period depends on the data size.
Here the burn-in is done in one Gibbs sweep with re-
sampling after processing ten local PPI networks. There-
fore, for ER-alpha, the burn-in period was more than
100 samples and for RNAP-II, the burn-in step consisted
of more than 1500 samples. After the burn-in period,
the inferred CMNs were reported after 1000 Gibbs-
sampling sweeps.

Check the significant enrichment of the inferred TFs
To check if 3CPET can accurately predict the binding of
TFs to chromatin interactions, we used some TFs as a
control. Thus, we did not include their ChIP-seq peak in
the input of 3CPET and we checked if they significantly
bind to the regions claimed by 3CPET.
Let TFi be a TF predicted by 3CPET and let N be the

number of interactions we claimed to be controlled by
the networks in which TFi participates. Let STFi be the
real ChIP-seq signal of TFi; then, the observed propor-
tion of interactions truly bound by TFi can be calculated

as OP ¼ STFi∩Nj j
N where | . | is the number of interactions

interacting with the signal.
To check if this proportion is signify enriched than

would be expected by chance, we generated a null distri-
bution in which we randomly select N interactions from
our ChIA-PET data 500 times and calculate the prob-
ability of observing an enrichment larger than the ob-
served OP.

CMN similarity
As described in the HDP process (see additional
methods in Additional file 1), each CMN represents a
distribution over the possible edges in our corpus. Thus,
comparing two CMNs is similar to comparing two
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distributions. In our analysis, we used the Jensen–Shannon
diversion to calculate the similarity:

sim p; qð Þ ¼ 1−JS p; qð Þ
and

JS p; qð Þ ¼ 1
2

D p; pþ qð Þ=2ð Þ þ D q; pþ qð Þ=2ð Þ½ �

where D p; qð Þ ¼
XT

i¼1
pei log pei=qei

� �
and T is the total

number of different edges in our corpus.

CMN validation: permutation test
To check if the obtained CMNs are generated due to the
input data or due to the influence of the background
PPI, we perturbed the input data by randomizing the
existing chromatin interactions and the binding posi-
tions of the TFs, then fed them to 3CPET while keeping
the background PPI intact. The significance is then
assessed by comparing the degree of overlap of the pre-
dicted CMNs to the randomly interfered ones. This de-
sign enable us to detect the CMNs that were
constructed due to the influence of hub nodes in the
background PPI as they tend to attract the short paths
toward them. We calculated the p value as follows.
Let Ni be a CMN with ni edges and let Ni

' be a CMN
with ni

' edges inferred from the random input. We check
if they significantly overlap as follows.
Let M be the number of nodes in Ni ∪ Ni

' . The number
of possible edges is

E ¼ M M−1ð Þ
2

:

The number of common edges between Ni and Ni
' is c.

Then, for each iteration the p value is equal to, we ob-
tain c common edges by randomly taking two groups of
ni edges from the complete graph. The general formula
can be summarized as follows:

P ¼
Xmin E Nið Þ; E N

0
ið Þf g

i¼c

Ci
E Nið Þ � C

E N
0
ið Þ−i

E

C
E N

0
ið Þ

E

where E(.) indicates the number of edges in the network.
After 1000 iterations, we correct the p values using the

statmod package in R.

Simulation
The simulation process consisted of generating a corpus
of networks and their enrichment profiles on the ChIA-
PET data. We used the 11 CMNs predicted by 3CPET
using minimum and maximum thresholds of 0.05 and
0.9 to generate the network corpus. For each chromatin
interaction, we sample the CMN profile associated with
it, then we use these proportions to sample edges from

the 11 CMNs by first sampling an indicator variable zi
then sampling an edge from the CMN βzi . The size of
the networks was uniformly sampled between 10 and
200 edges.
In the examples in Additional file 3: Figures S7 and S8,

we sampled edges only from the CMN with the highest
proportion to get a heat map that can be visually
compared.

Multi-class ROC analysis
To estimate the accuracy of 3CPET predictions, we did
a multi-class ROC analysis in which we checked if
3CPET can accurately assign chromatin interactions to
their corresponding CMNs. Therefore, for each chroma-
tin interaction, we assigned a label li that indicates the
CMN associated with it. As the number of CMNs differs
each time we run 3CPET due to the Gibbs sampling
process, some of the estimated CMNs can represent a
mixture of two original CMNs. Hence, we defined a
mapping function f between the original (CMNk)k = 1

11

and the inferred ones (CMNk
' )k
K as

f kð Þ ¼ arg max
x

sim CMNk ; CMNx
0ð Þ; x ¼ 1;…;K :

We hypothesized that if a CMNx' showed a similarity
to an original CMNk, then they should also maintain the
same chromatin interactions. Consequently, if CMNx' is a
mixture of two original CMNs, than it should also main-
tain their corresponding chromatin interactions. Hence,
our multi-class ROC analysis can literally be expressed as

AUC ¼ multi−class ROC f labelsoriginal
� �

; labelspredicted
� �

:

In the plot in Fig. 4c, for each data size, we calculate
the mean AUC after 100 simulations.

Literature mining
To assess if a network is significantly enriched for a cer-
tain concept, we first used the literature mining method in
[47] to construct a concept-related gene co-occurrence
network G. Let P be the set of all proteins in the union of
our 11 networks, TP = P ∩ G be the number of proteins
annotated for this particular concept, ci =Vi ∩ G be the
number of proteins in network Vi that exist also in G.
Then, the p value for getting more ci proteins related to
the concept from a set of P proteins having TP of them
annotated for the concept is calculated as

P ¼
XTP

k¼ci

Ck
TP � C Vij j−k

Pj j−TP
C Vij j

Pj j

where | . | represents the size of the set.
The p values were then corrected using a Benjamini–

Hochberg test.
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3CPET R package
The 3CPET method has been implemented as an R pack-
age under the name R3CPET. R3CPET is available at Bio-
conductor (http://www.bioconductor.org/packages/release/
bioc/html/R3CPET.html) under a GPL (≥2) license. The
source code is also available at Bioconductor and our Git
repository at https://github.com/sirusb/R3CPET.
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