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Abstract

The chromatin interaction assays 5C and HiC have advanced our understanding of genomic spatial organization,
but analysis approaches for these data are limited by usability and flexibility. The HiFive tool suite provides efficient
data handling and a variety of normalization approaches for easy, fast analysis and method comparison. Integration
of MPI-based parallelization allows scalability and rapid processing time. In addition to single-command analysis of
an entire experiment from mapped reads to interaction values, HiFive has been integrated into the open-source,
web-based platform Galaxy to connect users with computational resources and a graphical interface. HiFive is
open-source software available from http://taylorlab.org/software/hifive/.
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Background
In the more than a decade since the vast majority of the
human genome was first sequenced, it has become clear
that sequence alone is insufficient to explain the complex
gene and RNA regulatory patterns seen over time and
across cell types in eukaryotes. The context of specific se-
quences – whether from combinations of DNA-binding
transcription factors (TFs) [1–3], methylation of the DNA
itself [4, 5], or local histone modifications [4, 6] – is inte-
gral to how the cell utilizes each sequence element. Al-
though we have known about the potential roles that
sequentially distant but spatially proximal sequences and
their binding and epigenetic contexts play in regulating
expression and function, it has only been over the past
decade that new sequencing-based techniques have en-
abled high-throughput analysis of higher-order structures
of chromatin and investigation into how these structures
interact among themselves and with other genomic ele-
ments to influence cellular function.
Several different sequencing methods for assessing

chromatin interactions have been devised, all based on
preferentially ligating spatially close DNA sequence frag-
ments. These approaches include ChIA-Pet [7], tethered
chromosome capture [8], and the chromatin conformation

capture technologies of 3C, 4C, 5C, and HiC [9–12]
(Additional file 1: Figure S1). While these assays have
allowed a rapid expansion of our understanding of the
nature of genome structure, they also have presented
some formidable challenges.
In both HiC and 5C, systematic biases resulting from

the nature of the assays have been observed [13, 14],
resulting in differential representation of sequences in
the resulting datasets. While analyses at a larger scale
are not dramatically affected by these biases due to the
large number of data points being averaged over,
higher-resolution approaches must first address these
challenges. This is becoming more important as the
resolution of experiments is increasing [15]. Several
analysis methods have been described in the literature
and applied to correcting biases in HiC [14–21] and 5C
data [22–24]. There is still room for improving our
ability to remove this systematic noise from the data
and resolve finer-scale features and, perhaps more im-
portantly, for improving the usability and reproducibil-
ity of normalization methodologies.
A second challenge posed by data from these types of

assays is one of resources. Unlike other next-generation
sequencing assays where even single-base resolution is
limited to a few billion data points, these assays assess
pairwise combinations, potentially increasing the size of
the dataset by several orders of magnitude. For a three
billion base pair genome cut with a six-base restriction
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enzyme (RE), the number of potential interaction pairs
is more than half a trillion (if considering both fragment
ends) while a four-base RE can yield more than two and
a half quadrillion interaction pairs. Even allowing that
the vast majority of those interactions will be absent
from the sequencing data, the amount of information
that needs to be handled and the complexity of normal-
izing these data still pose a major computational hurdle,
especially for investigators without access to substantial
computational resources.
Here we describe HiFive, a suite of tools developed for

handling both HiC and 5C data using a combination of
empirically determined and probabilistic signal modeling.
HiFive has performance on par or better than other avail-
able methodologies while showing superior speed and
efficient memory usage through parallelization and data
management strategies. In addition to providing a simple
interface with no preprocessing or reformatting require-
ments, HiFive offers a variety of normalization approaches
including versions of all commonly used algorithmic
approaches allowing for straightforward optimization
and method comparison within a single application. In
addition to its command line interface, HiFive is also avail-
able through Galaxy, an open-source web-based platform,
connecting users with computational resources and the
ability to store and share their 5C and HiC analyses. All of

these aspects of HiFive make it simple to use and fast, and
make its analyses easily reproducible.

The HiFive analysis suite
HiFive was designed with three goals: first, to provide a
simple-to-use interface for flexible chromatin interaction
data analysis; second, to provide well-documented support
for 5C analysis; and third, to improve performance over
existing methodologies while reducing analysis runtimes.
These are accomplished through a stand-alone program
built on a Python library designed for customizable ana-
lysis and supported under the web-based platform Galaxy.

User interface
HiFive provides three methods of use: the command line;
the Internet; or as a development library. The command
line interface provides users with the ability to perform
analyses as a series of steps or as a single unified analysis.
The only inputs that HiFive requires are a description of
the genomic partitioning and interaction data, either dir-
ectly as mapped reads or counts of reads associated with
the partitioned genome (for example, fragment pairs and
their observed reads). HiFive handles all other formatting
and data processing. In addition, HiFive has been bundled
as a set of tools available through Galaxy (Fig. 1). This not
only provides support with computational resources but

Fig. 1 HiFive’s tool interface through Galaxy. HiFive tools are available through the Galaxy toolshed, providing a graphical interface and showing
tool option inter-dependencies
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also ensures simple installation of all prerequisite libraries
and packages. HiFive was also created to allow custom
creation of analysis methods as a development library for
chromatin interaction analysis through extensive docu-
mentation and an efficient data-handling framework.

Organization of HiFive
At its core, HiFive is a series of hierarchical data struc-
tures building from general to specific information.
There are four primary file types that HiFive creates, all
relying on the Numpy scientific computing Python
package for efficient data arrays and fast data access.
These structures include genomic partitioning, ob-
served interactions, distance-dependence relationship
and normalization parameters, and heatmaps of ob-
served and expected interactions. By separating these
attributes, many datasets can utilize the same genomic
partitioning and multiple analyses can be run using the
same interaction data without the need to reload or
process information.

Data processing and filtering
In order to process 5C or HiC data, the first step after
mapping is converting the data into a form compatible
with the desired workflow. HiFive appears to be nearly
alone in its ability to handle mapped data without add-
itional processing (the only exception is HiCLib [17]).
Reads can be read directly from numerous BAM-
formatted files, and this may be done as an independent
step or within the integrated one-step analysis. HiCLib
also possesses the ability to input data directly from
mapped read files. In all other cases, reads need to be con-
verted to other formats. HiCPipe [14] provides scripts for
some but not all of these processes, while HiCNorm [16]
relies on pre-binned reads. In all cases aside from HiFive,
a workflow is required to move from mapped reads to
normalization.
Filtering is accomplished in two phases, during the ini-

tial processing of reads and during project creation
(Additional file 1: Figures S2 and S3). The first phase
limits data to acceptable paired-end combinations. For
5C data, this means reads mapping to fragments probed
with opposite-orientation primers. HiC data use two cri-
teria, total insert size (a user-specified parameter) and
orientation/fragment relationship filtering. In the latter
case, reads originating from non-adjacent fragments or
from adjacent fragments and in the same orientation are
allowed, similar to Jin et al. [19] (Additional file 1: Figure
S4). The second phase, common to both 5C and HiC data,
is an iterative filtering based on numbers of interactions
per fragment or fragment end (fend). Briefly, total num-
bers of interactions for each fragment are calculated, and
fragments with insufficient numbers of interaction part-
ners are removed along with all of their interactions. This

is repeated until all fragments interact with a sufficient
number of other non-filtered fragments. This filtering is
crucial for any fragment or fend-specific normalization
scheme to ensure sufficient interdependency between
interaction subsets to avoid convergence issues.

Distance-dependence signal estimation
One feature of HiFive that is notably absent from nearly all
other available analysis software is the ability to incorporate
the effects of sequential distance into the normalization.
One exception to this is HiTC [21], which uses a loess re-
gression to approximate the distance-dependence relation-
ship of 5C data to genomic distance. This method does
not, however, allow for any other normalization of 5C data.
Another is Fit-Hi-C [25], although this software assigns
confidence estimates to mid-range contact bins rather than
normalizing entire datasets. This feature is of particular im-
portance for analysis of short-range interactions such as
this in 5C data, or for making use of counts data rather
than a binary observed/unobserved indicator. For 5C data,
HiFive uses a linear regression to estimate parameters for
the relationship between the log-distance and log-
counts (Additional file 1: Figure S5). HiC data require a
more nuanced approximation because of the amount of
data involved and the non-linear relationship over the
range of distances queried. To achieve this, HiFive uses
a linear piece-wise function to approximate the distance-
dependent portion of the HiC signal, similar but distinct
from that used by Fit-Hi-C. HiFive partitions the total
range of interactions into equally sized log-transformed
distance bins with the exception of the smallest bin, whose
upper bound is specified by the user. Mean counts and
log-transformed distances are calculated for each bin and
a line is used to connect each set of adjacent bin points
(Additional file 1: Figure S6). For distances extending past
the first and last bins, the line segment is simply extended
from the last pair of bins on either end. Simultaneously, a
similar distance-dependence function is constructed using
a binary indicator of observed/unobserved instead of read
counts for each fend pair. All distances are measured be-
tween fragment or fend midpoints.

HiFive normalization algorithms
HiFive offers three different normalization approaches.
These include a combinatorial probability model based
on HiCPipe’s algorithm called ‘Binning’, a modified
matrix-balancing approach called ‘Express’, and a multi-
plicative probability model called ‘Probability’. In the
Binning algorithm, learning is accomplished in an itera-
tive fashion by maximizing each set of characteristic
bin combinations independently each round using the
Broyden–Fletcher–Goldfarb–Shanno algorithm for max-
imum likelihood estimation.
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The Express algorithm is a generalized version of
matrix balancing. While it can use the Knight-Ruiz al-
gorithm [26] for extremely fast standard matrix balan-
cing (ExpressKR), the Express algorithm also has the
ability to take into account differing numbers of pos-
sible interactions and find corrections weighted by
these numbers of interactions. The set of valid interac-
tions is defined as set A, interactions whose fends have
both passed the above-described filtering process and
whose inter-fend distance falls within user-specified
limits. In addition, because counts are log-transformed
for 5C normalization, only non-zero interactions are in-
cluded in set A. For each interaction c between fends or
fragments i and j for HiC and 5C, respectively, in the
set of valid interactions A, correction parameter fi is
updated as in (1) for HiC and (2) for 5C.

f ′i ¼ f i
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The expected value of each HiC interaction is simply
product of the exponent of the expected distance-
dependent signal D(i,j) and the fend corrections (3).

Eij ¼ eD i;jð Þf i f j ð3Þ

5C interactions have expected values that correspond
to the log-transformed count and are the sum of each
signal component (4).

Eij ¼ D i; jð Þ þ f i þ f j ð4Þ

By scaling the row sums based on number of interac-
tions, the weighted matrix balancing allows exclusion of
interactions based on interaction size criteria without
skewing correction factors due to non-uniform restric-
tion site distribution, position along the chromosome, or
filtered fragments or fends due to read coverage. Because
it can incorporate the distance-dependent signal, the Ex-
press algorithm can operate on counts data unlike most
other matrix balancing approaches, although it also can be
performed on binary data (observed vs. unobserved) or
log-transformed counts for HiC and 5C, respectively.
This algorithm allows for adjustment of counts based
on the estimated distance-dependence signal prior to
normalization in both weighted (1 and 2) and un-
weighted (Knight-Ruiz) versions.

The multiplicative Probability algorithm models the
data assuming some probability distribution with a prior
equal to the estimated distance-dependent signal. HiC
data can be modeled either with a Poisson or binomial
distribution (Additional file 1: Figure S7). In the case of
the binomial distribution, counts are transformed into a
binary indicator of observed/unobserved and the distance-
dependence approximation function is based on this same
binary data. 5C data are modeled using a lognormal distri-
bution. In both cases only counts in the set of reads A
(described above) are modeled.
For both the Express and Probability algorithms, a

backtracking-line gradient descent approach is used for
learning correction parameters. This allows the learning
rate r to be updated each iteration t to satisfy the Armijo
criteria (5) based on the cost C, ensuring that parameter
updates are appropriate.

Armijo ¼ Ct−Ct−1r
X
i∈A

∇f ið Þ2 ð5Þ

Filtering interactions by interaction size
Chromatin topology is organized around highly reprodu-
cible regions of frequent local interactions termed ‘topo-
logical domains’ [27]. Within these structures it has been
observed that specific features can influence the frequency
of interactions in a biased and differential way up- and
downstream of them, such as transcript start sites (TSS)
and CTCF-bound sites [14]. In order to account for sys-
tematic noise and bias without confounding normalization
efforts with meaningful biological-relevant structures,
HiFive allows filtering out of interactions using interaction
size cutoffs. In order to assess the effects of filtering out
shorter-sized interactions, we analyzed data both with and
without a lower interaction distance cutoff. For HiC data
we analyzed two mouse embyronic stem cells (ESC) data-
sets with no lower limit and with a lower distance limit of
500 Kb using each of the described normalization algo-
rithms. This size was chosen to eliminate all but the weak-
est interaction effects observed for TSSs and CTCF-
bound sites [28]. HiC normalization performance was
assessed using the inter-dataset correlations. For 5C data,
there is a much smaller range of interactions. In order to
handle this, we set a lower interaction size cutoff of 50 Kb.
5C normalization performance was assessed as the correl-
ation between 5C data and HiC data of the same cell type
[27] and binned based on probed 5C fragments to create
identically partitioned sets of interactions and normalized
using HiFive’s Probability algorithm.
The differences in HiC algorithm performances with

and without the lower interaction size cutoff were var-
ied, although the largest effects were seen when data
were binned in 10 and 50 Kb bins for intra-chromosomal
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interactions and for overall inter-chromosomal interac-
tions (Additional file 1: Figure S8). Overall, excluding
short-range interactions made little difference for the Ex-
press algorithm but did improve the performance of the
Probability and Binning algorithms. The 5C algorithms
showed an opposite result, with almost universal de-
crease in performance when short-range interactions
are excluded (Additional file 1: Figure S9). As a result,
learning HiC normalization parameters using HiFive al-
gorithms was performed excluding interactions shorter
than 500 Kb and 5C analyses were performed using all
interaction sizes. All analyses subsequent to normalization
(for example, dataset correlations) were performed across
all interactions.

Analyzing 5C data
To date, limited work has focused on processing of 5C
data to remove technical biases [22–24, 29]. Of that, none
has been formalized in published analysis software. In
order to assess HiFive’s performance in normalizing 5C
data, we used two different 5C mouse ESC datasets [23,
24] and found correlations to HiC data of the same cell
type [27] and binned based on probed 5C fragments to
create identically partitioned sets of interactions (Fig. 2,
Additional file 1: Figures S9 and S10). HiC interactions
were normalized using either HiFive’s probability algo-
rithm (Fig. 2) or HiCPipe (Additional file 1: Figure S10)
and heatmaps were dynamically binned to account for

sparse coverage (see Additional file 1: Methods: 5C-HiC
data correlations). Correlations were found between all
non-zero pairs of bins (fragment level resolution) follow-
ing log-transformation. All of HiFive’s 5C algorithms
showed an improved correlation with HiC data compared
to raw data, regardless of HiC normalization approach.
The Binning algorithm showed the least improvement,
likely due to the limits on the number of bins into which
features could be partitioned and characteristics missing
from the model, such as primer melting temperature. The
standard matrix-balancing approach (ExpressKR) showed
good improvement, although not quite as good as the
Express and Probability algorithms. All of these normali-
zations were accomplished in less than one minute pro-
ceeding from a BED file and a counts file to heatmaps.

HiC analysis software comparison
Several algorithms have been proposed to handle inter-
action data normalization (Table 1). These analysis ap-
proaches can be divided into two varieties, probabilistic
and matrix balancing. The probabilistic approach is
further divided into combinatorial and multiplicative
corrections. The combinatorial probability model is im-
plemented in HiCPipe [14] and remains one of the
most popular approaches. This approach uses one or
more restriction fend characteristics partitioned into
ranges of values and iteratively learns correction values
for each combination of ranges based on a binomial

Fig. 2 5C analysis performance. HiFive normalization of 5C data and their correlation to corresponding HiC data. a Correlation of 5C data
(intra-regional only) with the same cell type and bin-coordinates in HiC data, normalized using HiFive’s probability algorithm for two different
datasets and using each of HiFive’s algorithms. b Heatmaps for a select region from each dataset, un-normalized, normalized using HiFive’s
probability algorithm, and the corresponding HiC data, normalized and dynamically binned
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distribution of observed versus unobserved fend inter-
actions. A multiplicative modeling approach is used in
the analysis software HiCNorm [16]. HiCNorm uses a
Poisson regression model using binned counts instead
of binary output and assuming that biases from fend
characteristics are multiplicative between bin combina-
tions. A different multiplicative approach is matrix
balancing, which finds a value for each row/column of
a symmetric matrix (or in this case, heatmap) such that
after multiplication of each matrix value by its associ-
ated row and column values, the sum of each row and
column is one. This has been described with at least
four different implementations in the literature [15, 17,
20, 30] although only two software packages making use
of it have been published (HiCLib [17], now included in
the R package HiTC [21] and Hi-Corrector [20]). For this
paper, we chose to use our own implementation of the
algorithm described by Knight and Ruiz [26] for compari-
son due to speed and ease of use considerations.

Method performances
To assess HiC analysis method performances we used two
different pairs of HiC datasets [15, 27, 31], finding inter-
action correlations across different restriction digests of
the same cell type genomes. The Dixon et al. data [27]
were produced using mouse ESCs digested with either
HindIII or NcoI, yielding approximately 4 Kb fragments.
The Selvaraj et al. data [31] were produced from human
GM12878 cells using HindIII, while the Rao et al. data
[15] were produced from human GM12878 cells using the
4 bp restriction enzyme MboI, producing approximately

250 bp fragments. This allowed assessment of method
performance and data handling across a range of experi-
mental resolutions. Correlations were calculated for 10
mutually exclusive intra-chromosomal (cis) interaction
ranges and across all cis interactions simultaneously for
four binning resolutions. Correlations were also calculated
for inter-chromosomal interactions for two resolutions.
HiC analysis methods showed varied performances

across interaction size ranges, resolutions, and datasets
for intra-chromosomal interactions (Fig. 3a and b). For
small interaction sizes, HiFive’s Probability and Express
algorithms performed consistently well regardless of
resolution. At longer interaction distances the Express
algorithm typically outperformed the Probability algo-
rithm. HiCNorm showed a nearly opposite performance
with poorer inter-dataset correlations for shorter-range
interactions but higher correlations at longer ranges,
relative to other methods. HiCPipe’s performance ap-
peared to depend on binning resolution. At higher resolu-
tions (≤50 Kb), HiCPipe performed worse than the
majority of methods. However at lower resolutions it
tended to outperform other methods, regardless of inter-
action size range. HiFive’s Binning algorithm had a more
consistent performance around the middle of all of the
methods across all binning resolutions, with the exception
of the 1 Mb resolution for the human data where it per-
formed the worst. Standard matrix balancing consistently
performed at or near the bottom of the group regardless
of the interaction size range or resolution.
Correlations across all intra-chromosomal interactions

showed much more consistency between analysis method-
ologies (Fig. 3c and d). This is primarily due to the fact
that the main driver of inter-dataset correlation, the inter-
action distance-counts relationship, was present in all of
the analyzed data. HiFive’s Probability and Express algo-
rithms were again top performers across almost every
intra-chromosomal comparison, although the Probability
algorithm showed a decreasing advantage with decreasing
binning resolution. HiCNorm, HiCPipe, matrix balancing,
and HiFive’s Binning algorithm were highly consistent in
terms of performance for the mouse datasets. For the hu-
man inter-dataset correlations HiCPipe and matrix balan-
cing showed a slightly better performance than average
while HiCNorm faired worse. HiFive’s Express algorithm
was still the top performer.
Inter-chromosomal datasets showed a wider range of

performances and were strongly dependent on which
datasets were being analyzed (Fig. 3c and d). For mouse
inter-chromosomal interactions, HiFive’s Probability and
Express algorithms performed much better than other
methods at the 250 Kb binning resolution, but consistent
with other methods at the 1 Mb resolution. HiCNorm
showed worse performance at both bin sizes for the
mouse datasets. HiCPipe showed the best performance at

Table 1 A comparison of HiC Analysis software algorithms and
features

Method Normalization
algorithm

Can account
for distance

Fend-level
resolution

Parallelizable

HiFive Matrix
balancing

X X X

Binning X X X

Probability X X X

HiCPipe Binning X X

HiCNorm Poisson
regression

HiCLib Matrix
balancing

X

HiTCa Poisson
regression

Matrix
balancing

X

HOMER Read
coverage

X X

Hi-Corrector Matrix
balancing

X X

aThis method is an R-based implementation of HiCLib’s and HiCNorm’s
normalization approaches
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the 1 Mb resolution, slightly above other methods, but the
second worst performance at the 250 Kb resolution. Re-
sults for the human datasets were more consistent across
resolutions. HiCNorm, HiFive’s Express algorithm, and
matrix balancing performed best in both cases with Ex-
press doing slightly better at the 250 Kb resolution and
HiCNorm at the 1 Mb resolution. The remaining methods
showed similar performance to each other, although HiF-
ive’s Probability algorithm performed slightly worse than
HiFive’s Binning algorithm and HiCPipe.
The inconsistency between results for cis and trans

interactions suggests that no approach is ideal for both
types of interactions. To further explore this we looked
at the effects of pseudo-counts in the Binning/HiCPipe
normalization scheme and the effects of distance-
dependence on normalization. Pseudo-counts are values
added to both expected and observed reads to mitigate

the impact of stochastic effects. HiCPipe showed a
stronger performance compared to HiFive’s Binning al-
gorithm at longer ranges and at larger bin sizes. We de-
termined that the primary difference was the inclusion of
pseudo-counts in all feature bins prior to normalization.
By progressively adding counts, we found that cis inter-
action correlations decreased at shorter interaction
ranges and overall, although the correlations increased
at longer ranges and for trans interactions (Additional
file 1: Figure S11).
We also performed parallel analyses using our weighted

matrix balancing algorithm, Express, with and without the
estimated distance-dependence signal removed prior to
normalization (Additional file 1: Figure S12). This showed
a similar effect to the addition of pseudo-counts, such that
leaving the distance-signal relationship intact resulted in
stronger long-range interaction correlations in larger bin

Fig. 3 HiC method comparison. Interaction correlations between datasets created with different restriction enzymes for multiple normalization
schemes across different binning resolutions. Two datasets are shown, mouse and human. Each mouse dataset was produced using a six-base
restriction enzyme. The human datasets were mixed, one produced with a six-base cutter and the other with a four-base cutter. a Data were
normalized using several approaches and compared for correlation between two mouse HiC datasets. Interactions were broken down into 10
groups of non-overlapping cis interaction ranges for four resolution levels. b Correlations for 10 different non-overlapping cis interaction ranges
at each resolution for each analysis approach. c Overall mouse dataset correlations for each resolution for intra-chromosomal (cis) and inter-chromosomal
(trans) interactions. d Overall human dataset correlations for each resolution for intra-chromosomal (cis) and inter-chromosomal (trans) interactions
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sizes, stronger 1 Mb binned trans correlations, and poorer
overall cis interaction correlations across all bin sizes.

Computational requirements
In order to determine the computational requirements of
each analysis method, we ran each analysis on an abbrevi-
ated dataset consisting of a single chromosome of cis in-
teractions from the mouse NcoI dataset starting from
loading data through producing a 10 Kb heatmap. All
normalizations were run using a single processor and pub-
licly available scripts/programs. The exception to this was
binning the counts and fragment feature data for HiC-
Norm. No script was provided for this step so one was
written in R to supplement HiCNorm’s functionality.
Runtimes varied greatly between normalization methods,

ranging from less than 7 min to approximately 12.5 h
(Fig. 4). With the exception of HiFive’s Probability algo-
rithm, HiFive performed better in terms of runtime
than all other algorithms. HiCPipe and HiCNorm both
showed long runtimes at least an order of magnitude
above other methods. The slowest approach, though,
was HiFive’s Probability algorithm. This was due to its
modeling of every interaction combination across the
chromosome. HiFive’s implementation of the Knight-
Ruiz matrix balancing algorithm, ExpressKR, showed a
dramatically faster runtime than any other approach.
This was the result of HiFive’s fast data loading and ef-
ficient heatmapping without the need for distance-
dependence parameter calculations.

Scalability
Because of the ever-increasing resolution of experiments
and the corresponding size of interaction datasets, scal-
ability is a primary concern for HiC data analysis. Al-
though we compared methods on an even playing field,
this does not reflect the complete performance picture

when considering finer-scale resolution, processing a
complete genome interaction dataset, and more available
computational resources.
There are two approaches to determining analysis reso-

lution, prior to or after normalization. Of the methods
presented, only HiCNorm determines the resolution of
analysis prior to normalization. While it performs well,
this means that the processing time and memory require-
ments scale exponentially with resolution. We were un-
able to perform any analyses at resolutions for bin sizes
smaller than 10 Kb using this approach. The remaining
methods all find correction values for individual fends,
meaning that corrections are performed prior to binning
interactions.
The increase in dataset size, either due to genome size

itself or a finer-scale partitioning of the genome, can be
offset by employing more processing power by means of
parallelization. HiCLib and HiCNorm do not appear to
have any such capability. HiCPipe does have the ability
to parallelize calculation of model bin sizes prior to
normalization and calculations for heatmap production,
although a single processor performs all of the actual
normalization calculations. HiFive, on the other hand,
has the ability to run in parallel for nearly all phases of
an analysis. The two exceptions are loading the initial
data and filtering reads, although the latter is very fast
already. All normalization algorithms, including the
Knight-Ruiz algorithm implemented in HiFive, have
been parallelized for HiC analysis using MPI. The
parallelization is implemented in such a way that the
additional memory overhead for each new process is
minimal.

Conclusions
HiC analysis remains a challenging subject, as demon-
strated by the varied performances across all method-
ologies discussed here. No single approach appears to

Fig. 4 Running time for HiC analysis methods. For each method, the runtime in minutes is partitioned into the time required for each stage of
the processes. All times were determined running methods on an abbreviated dataset of chromosome 1 for the mouse HindIII dataset using a
single processor. Note that because of several extremely long runtimes, the graph includes multiple splits
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be ideally suited for all cases, suggesting that the experi-
mental goal should drive the choice of analysis software. It
is unclear how best to assess HiC normalization perform-
ance as there is no ‘gold standard’ for determining the
quality of a HiC dataset or how well systematic noise has
been accounted for during an analysis. As seen in the dif-
ferences in correlation between mouse and human data-
sets (Fig. 3), factors such as restriction fragment size
distributions, cut site density, sequencing depth, and HiC
protocol can dramatically impact the similarity of resulting
datasets. Further, in order to detect biologically relevant
features against the background of the distance-signal re-
lationship, the data need to be transformed, typically using
a log-transformation. This skews the resulting comparison
by ignoring interactions for which no reads have been ob-
served, an increasing problem as binning size decreases or
interaction size increases. At longer ranges, non-zero bins
are sparse and dominated by macro features (such as A-B
compartments), a situation that can result in increasing
correlations (Fig. 3a and b). Two observations suggest this
is not an artifact. First, the long-range interaction correl-
ation increase is seen in the human but not mice data,
reflecting differences in genome organization. Second, the
correlation increases are seen across all methodologies
and algorithms.
Normalization software attempts to account for many of

these confounding factors and allow direct comparison
between datasets produced by different labs, protocols,
and even across species although what can reasonably be
expected in terms of this normalization process is unclear.
This question depends on many factors and we may not
have sufficient understanding of chromatin architecture
variability across a cell population to answer it accurately.
The resolution (bin size), similarity of datasets in terms of
sequencing depth, restriction fragment size distributions,
and protocol, as well as cell population size and popula-
tion similarity from which the HiC libraries were made
will all influence the correlation. At a low resolution, say
1 Mb, we should expect nearly a perfect correlation. How-
ever, at much higher resolution differences in mappability
and RE cut-site frequency will strongly influence the
correlation. Further, we need to consider the distance de-
pendence of the signal as this is the strongest driver of the
correlation and can give a false impression of comparabil-
ity between datasets.
To address these normalization challenges, we have

created HiFive, an easy-to-use, fast, and efficient frame-
work for working with a variety of chromatin conform-
ation data types. Because of the modular storage
scheme, re-analysis and downstream analysis is made
easier without additional storage or processing require-
ments. We have included several different normalization
approaches and made nearly all aspects of each algorithm
adjustable, allowing users to tune parameters for a wide

range of analysis goals. HiFive is parallelized via MPI,
making it highly scalable for nearly every step of HiC data
processing.
For 5C data, HiFive is the only analysis program avail-

able for normalization and allows easy management of
5C data. We have demonstrated that 5C data normaliza-
tions performed by HiFive greatly improve consistency
between 5C data and corresponding HiC data across
multiple datasets.
We have also shown HiFive’s performance in handling

HiC data. HiFive is consistently performing at or above
other available methods as measured by inter-dataset
correlations for cis interactions. In addition, we have
demonstrated that HiFive is tunable to achieve superior
trans performance if desired, albeit at the expense of
performance across cis interactions. HiFive has also
proved capable of handling very high-resolution data,
making it useful for the next generation of HiC experi-
mental data.
In terms of performance considerations, our analysis

suggests that, out of all of the methods considered, the
balance between speed and accuracy is best achieved by
HiFive-Express or HiFive-ExpressKR. This appears to
be true regardless of resolution or dataset size. In order
to get this performance, it is crucial to use the distance-
dependence adjustment prior to normalizing, necessitat-
ing the need to pre-calculate the distance-dependence
function. Because this requires iterating over every pos-
sible interaction, using multiple processors is highly rec-
ommended. If not possible, HiFive-ExpressKR without
distance correction is a robust fallback method. If compu-
tational resources are not a limiting factor, we recommend
HiFive-Probability. With approximately 100 CPUs, the
high-resolution human data were processed in about a
day. At fine-scale binning, this approach yields the best re-
sults of all methods.
While HiFive allows for superior normalization of data

compared to other available software under many condi-
tions, it also provides users with alternative options for
fast analysis with minimal computational requirements
at only a slight accuracy cost, opening high-resolution
HiC and 5C analysis to a much larger portion of the sci-
entific community. HiFive is available at http://taylorla-
b.org/software/hifive/. Source code is provided under an
MIT license and at https://github.com/bxlab/hifive or
installed using pip from http://pypi.python.org.
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Additional file 1: A detailed methods section, a table listing the
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library. (BZ2 578 kb)
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