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Abstract

Analysis of Hi-C data has shown that the genome can be divided into two compartments called A/B compartments.
These compartments are cell-type specific and are associated with open and closed chromatin. We show that A/B
compartments can reliably be estimated using epigenetic data from several different platforms: the Illumina 450 k
DNA methylation microarray, DNase hypersensitivity sequencing, single-cell ATAC sequencing and single-cell
whole-genome bisulfite sequencing. We do this by exploiting that the structure of long-range correlations differs
between open and closed compartments. This work makes A/B compartment assignment readily available in a wide
variety of cell types, including many human cancers.
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Background
Hi-C, a method for quantifying long-range physical inter-
actions in the genome, was introduced by Lieberman-
Aiden et al. [1], and it was reviewed in Dekker et al. [2]. A
Hi-C assay produces a so-called genome contact matrix,
which – at a given resolution determined by sequencing
depth – measures the degree of interaction between two
loci in the genome. In the last 5 years, significant efforts
have been made to obtain Hi-C maps at ever increasing
resolutions [3–8]. Currently, the highest resolution maps
are 1 kb [7]. Existing Hi-C experiments have largely been
performed in cell lines or for samples where unlimited
input material is available.
In Lieberman-Aiden et al. [1], it was established that

at the megabase scale, the genome is divided into two
compartments, called A/B compartments. Interactions
between loci are largely constrained to occur between loci
belonging to the same compartment. The A compartment
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was found to be associated with open chromatin and the
B compartment with closed chromatin. Lieberman-Aiden
et al. [1] also showed that these compartments are cell-
type specific, but did not comprehensively describe differ-
ences between cell types across the genome. In most sub-
sequent work using the Hi-C assay, the A/B compartments
have received little attention; the focus has largely been on
describing smaller domain structures using higher resolu-
tion data. Recently, it was shown that 36 % of the genome
changes compartment during mammalian development
[8] and that these compartment changes are associated
with gene expression; they conclude “that the A and B
compartments have a contributory but not determinis-
tic role in determining cell-type-specific patterns of gene
expression”.
The A/B compartments are estimated by an eigenvector

analysis of the genome contact matrix after normaliza-
tion by the observed–expected method [1]. Specifically,
boundary changes between the two compartments occur
where the entries of the first eigenvector change sign.
The observed–expected method normalizes bands of the
genome contact matrix by dividing by their mean. This
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effectively standardizes interactions between two loci sep-
arated by a given distance by the average interaction
between all loci separated by the same amount. It is
critical that the genome contact matrix is normalized
in this way, for the first eigenvector to yield the A/B
compartments.
Open and closed chromatin can be defined in different

ways using different assays such as DNase hypersensitiv-
ity or chromatin immunoprecipitation (ChIP) sequencing
for various histone modifications. While Lieberman-
Aiden et al. [1] established that the A compartment is
associated with open chromatin profiles from various
assays, including DNase hypersensitivity, it was not deter-
mined to what degree these different data types measure
the same underlying phenomena, including whether the
domain boundaries estimated using different assays coin-
cide genome-wide.
In this manuscript, we show that we can reliably esti-

mate A/B compartments as defined using Hi-C data by
using Illumina 450 k DNA methylation microarray data
[9] as well as DNase hypersensitivity sequencing [10, 11],
single-cell whole-genome bisulfite sequencing (scWGBS)
[12] and single-cell assay for transposase-accessible chro-
matin (scATAC) sequencing [13]. Data from the first two
assays are widely available for a large number of cell types.
In particular, the 450 k array has been used to profile a
large number of primary samples, including many human
cancers; more than 20,000 samples are readily available
through the Gene Expression Omnibus (GEO) and The
Cancer Genome Atlas (TCGA) [14]. We show that our
methods can recover cell-type differences. This work
makes it possible to study A/B compartments compre-
hensively across many cell types, including primary sam-
ples, and to investigate further the relationship between
genome compartmentalization and transcriptional activ-
ity or other functional readouts.
As an application, we show how the somatic muta-

tion rate in prostate adenocarcinoma (PRAD) is dif-
ferent between compartments and we show how the
A/B compartments change between several human can-
cers; currently TCGA does not include assays measuring
chromatin accessibility. Furthermore, our work reveals
unappreciated aspects of the structure of long-range cor-
relations in DNAmethylation and DNase hypersensitivity
data. Specifically, we observe that both DNA methylation
and the DNase signal are highly correlated between dis-
tant loci, provided that the two loci are both in the closed
compartment.

Results and discussion
A/B compartments are highly reproducible and are
cell-type specific
We obtained publicly available Hi-C data on Epstein–Barr
virus (EBV)-transformed lymphoblastoid cell lines (LCLs)

and fibroblast cell lines and estimated A/B compartments
by an eigenvector analysis of the normalized Hi-C contact
matrix (“Materials and methods”). The contact matrices
were preprocessed with iterative correction and eigen-
vector decomposition (ICE) [15] and normalized using
the observed–expected method [1]. As in Lieberman-
Aiden et al. [1], we found that the eigenvector divides the
genome into two compartments based on the sign of its
entries. These two compartments have previously been
found to be associated with open and closed chromatin;
in the following, we will use open to refer to the A com-
partment and closed to refer to the B compartment. The
sign of the eigenvector is arbitrary; in this manuscript, we
select the sign so that positive values are associated with
the closed compartment (“Materials and methods”). In
Fig. 1, we show estimated eigenvectors at 100-kb resolu-
tion from chromosome 14 across two cell types measured
in multiple laboratories with widely different sequencing
depth, as well as variations in the experimental proto-
col. We observed a very high degree of correspondence
between replicates of the same cell type; on chromosome
14, the correlation between eigenvectors from experi-
ments with the same cell type is greater than 0.96 (ranges
from 0.96 to 0.98). The agreement, defined as the per-
centage of genomic bins that are assigned to the same
compartment in two different experiments, is greater than
92 % (ranges from 92.6 % to 96.0 %) on chromosome 14.
These measures vary little between chromosomes; a full
depiction is available in Additional file 1: Figure S1.
Using high-resolution data does not change the esti-

mated A/B compartments as seen in Additional file 1:
Figure S2. Note that the Hi-C datasets have been pro-
cessed into unadjusted contact matrices using differ-
ent alignment and filtering pipelines (see “Materials and
methods” for details); this shows that the choice of align-
ment and filtering method has negligible impact on esti-
mation of A/B compartments.
Figure 1 shows the A/B compartments are cell-type spe-

cific, with a variation between cell types that exceeds
technical variation in the assay; this has been previously
noted [1, 8]. The correlation between eigenvectors from
different cell types is around 0.60, in contrast to 0.96+
between eigenvectors from the same cell type.
ICE normalization removes anymarginal dependence of

the contact matrix on GC content by forcing the marginal
sums of the contact matrix to be constant [15]. Despite
this, Imakaev et al. [15] found high correlation (0.80)
between the first eigenvector of the contact matrix and
GC content of the underlying bin, and interpreted this
as a biological association and not technical bias. To
investigate further whether this dependence is a result of
technical bias or a biological association, we computed the
dependence for multiple experiments (Additional file 1:
Figure S3). Like the eigenvector itself, we found that
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Fig. 1 A/B compartments are reproducible and cell-type specific. The figure displays data on all of chromosome 14 at 100-kb resolution. The first
eigenvector is shown for the observed–expected normalized (a) HiC-EBV-2009, (b) HiC-EBV-2012 and (c) HiC-EBV-2014 datasets. d The difference
between (b) and (c). The first eigenvector is shown for the observed–expected normalized (e) HiC-IMR90-2013 and (f) HiC-IMR90-2014 datasets, and
(g) their difference. h The difference between (c) and (f), which is greater than the technical variation depicted in (d) and (g). This establishes that
Hi-C compartments are highly reproducible between experiments in different laboratories and that compartments are cell-type specific

the dependence shows little variation between experi-
ments done on the same cell line but in different labs,
and some variation between cell lines (Additional file 1:
Figures S3 and S4). This comparison includes two cell
line experiments performed in the same laboratory with
the same experimental protocol. That the effect of GC
content depends on the cell line suggests that the rela-
tionship at least partly reflects biology. Various biological
entities are correlated with GC content, including gene
density [16]; it is therefore not inconceivable that open
and closed chromatin has a biological association with GC
content. It is possible computationally to adjust for the
dependence on GC content by regressing out the fitted
LOESS curve displayed in Additional file 1: Figure S3; like
Imakaev et al. [15], we currently believe that doing so will
remove some biological signals.
In the remainder of the manuscript, we use the most

recent data, i.e. HiC-EBV-2014 and HiC-IMR90-2014, to
represent eigenvectors and A/B compartments derived
from Hi-C data in these cell types.

Predicting A/B compartments from DNAmethylation data
To estimate A/B compartments using epigenetic data
other than Hi-C, we first concentrate on DNA methy-
lation data assayed using the Illumina 450 k microarray
platform. Data from this platform are widely available
across many different primary cell types. To compare with
existing Hi-C maps, we obtained data from 288 EBV-
transformed LCLs from the HapMap project [17].
DNA methylation is often described as related to active

and inactive parts of the genome. Most established is high
methylation in a genic promoter leading to silencing of the
gene [18]. As a first attempt to predict A/B compartments
from DNA methylation data, we binned the genome and
averaged methylation values across samples and CpGs
inside each bin. Only CpGs more than 4 kb away from
CpG islands were used; these are termed open sea CpGs
(“Materials and methods”). We found that high levels of
average methylation were associated with the open com-
partment and not the closed compartment; this might be
a consequence of averaging over open sea probes. Figure 2
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Fig. 2 The methylation correlation signal is a better predictor of A/B compartments than the average methylation signal. The figure displays data on
all of chromosome 14 at 100-kb resolution. a The smoothed, average methylation signal on the beta-value scale for the 450 k-EBV dataset. The
signal has been centered by the mean and the sign has been reversed so that values close to one correspond to low methylation values. b The first
eigenvector of the HiC-EBV-2014 Hi-C dataset. c The smoothed first eigenvector of the binned correlation matrix of the 450 k-EBV dataset. We see
that (c) correlates better with (b) than (a)

depicts data from such an analysis for LCLs on chromo-
some 14 at a 100-kb resolution. It shows there is some
agreement between estimated compartments from Hi-C
and this analysis, with a correlation of 0.56 and a com-
partment agreement between datasets of 71.7 % on this
chromosome. In this analysis, we implicitly assume that
there is no variation in compartments between different
individuals for the same cell type.
Surprisingly, we found that we could improve consid-

erably on this analysis by doing an eigenvector analysis
of a suitably processed between-CpG correlation matrix
(Fig. 2). This matrix represents correlations between any
two CpGs measured on the 450 k array, with the corre-
lation being based on biological replicates of the same
cell type. The correlation eigenvector shows strong agree-
ment with theHi-C eigenvector, certainly higher thanwith
the average methylation vector (Fig. 2). Quantifying this
agreement, we found that the correlation between the two
vectors is 0.85 and the compartment agreement is 83.8 %
on chromosome 14. Genome-wide, the correlation is 0.71
and the agreement is 79 % (Table 1); chromosome-specific
measures are depicted in Additional file 1: Figure S5;
we tend to perform worse on smaller chromosomes.
Again, this analysis implicitly assumes lack of variation in
compartments between biological replicates.
Closely examining differences between the 450 k-based

predictions and the Hi-C-based estimates, we found that
almost all disagreements between the two methods occur
when an entry in one of the two eigenvectors is close to
zero; in other words, where there is uncertainty about the
compartment in either one of the two analyses. Excluding
bins where the 450 k-based prediction is close to zero, that
is bins that have an absolute eigenvector value less than
0.01, we got an agreement of 88.8 % (14.2 % of the bins
excluded). Excluding bins where either the 450 k-based
prediction is close to zero or the Hi-C eigenvector is close
to zero, we got an agreement of 93 % (24.8 % of the bins
excluded).

Our processing of the correlation matrix is as follows
(see “Materials and methods” for details); the ratio-
nale behind our choices will be explained later in the
manuscript. First, in our correlation matrix, we only
included so-called open sea CpGs; these CpGs are more
than 4 kb away from CpG islands. Next, we binned each
chromosome into 100-kb bins and computed which open
sea CpGs are inside each bin; this varies between bins
due to the design of the 450 k microarray. To get a single
number representing the correlation between two bins, we
took the median of the correlations of the individual CpGs
located in each bin. We obtained the first eigenvector of
this binned correlation matrix and gently smoothed the
signal by using two iterations of a moving average with a
window size of three bins.
The sign of the eigenvector is chosen so that the sign

of the correlation between the eigenvector and column

Table 1 Correlation and agreement between Hi-C and
450 k-based eigenvector estimates of genome compartments.
Thresholding refers to excluding genomic bins where the entries
of the relevant eigenvector have an absolute value less than 0.01

Chromosome 14 Genome

No threshold

Correlation 0.85 0.75 0.70 0.74

Agreement 83.7 % 79.1 % 79.0 % 79.5 %

Bins retained 100 % 100 % 100 % 100 %

Threshold, methylation

Correlation 0.87 0.78 0.74 0.77

Agreement 88.8 % 83.4 % 87.9 % 87.9 %

Bins retained 86 % 85 % 78 % 79 %

Threshold, methylation and Hi-C

Correlation 0.89 0.84 0.77 0.81

Agreement 93.0 % 90.5 % 92.6 % 92.8 %

Bins retained 76 % 67 % 66 % 64 %
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sums of the correlationmatrix is positive; this ensures that
positive values of the eigenvector are associated with the
closed compartment (see “Materials and methods”).

Long-range correlations in DNAmethylation data predict
A/B compartment changes between cell types
To examine how well the predictions based on long-range
correlations in 450 k data capture differences between
cell types, we obtained publicly available 450 k data from
62 fibroblast samples [19], and compared them to Hi-C
data from the IMR90 cell lines. Note that the fibroblast
cell lines assayed on the 450 k platform are from primary
skin in contrast to the IMR90 cell line, which is a fetal
lung fibroblast. Figure 3, Table 1 and Additional file 1:
Figure S5 show our ability to recover the A/B compart-
ments in fibroblasts; it is similar to our performance for
EBV-transformed lymphocytes.
To establish firmly that the high correlation between our

predicted compartments using DNA methylation and Hi-
C data is not due to chance, we compared the predicted
compartments in EBV-transformed lymphocytes and
fibroblasts to Hi-C data from different cell types, includ-
ing the K562 cell line, which serves as a somewhat inde-
pendent negative control. In Additional file 1: Figure S6,
we show the correlation and agreement between the two
sets of predicted compartments and Hi-C data from the
three cell types. There is always a decent agreement
between predicted compartments of any two cell types,
but the agreement is consistently higher when the predic-
tion is from data from the same cell type, such as the Hi-C
data.

How to quantify best the differences in A/B compart-
ments is still an open question. Lieberman-Aiden et al.
[1] used 0 as a threshold to differentiate the two com-
partments. Considering the difference of two eigenvectors
derived in different cell types, it is not clear that func-
tional differences exist exactly when the two eigenvectors
have opposite signs; instead, functional differences might
be associated with changes in the magnitude of the eigen-
vectors reflecting a genomic region being relatively more
open or closed. We note that the genomic region high-
lighted as cell-type specific, and validated by fluorescence
in situ hybridization, in Lieberman-Aiden et al. [1], is far
away from zero in one condition and has small values
fluctuating around zero in the other condition.
Following this discussion, we focus on estimating the

direction of change in eigenvectors between different cell
types. Figure 3 shows estimated differences between Hi-C
and 450 k eigenvectors for two cell types. Large differences
between the two vectors are replicated well between the
two data types, but there is disagreement when the eigen-
vectors are close to zero. This is to be expected; there is
technical variation in such a difference even between Hi-
C experiments (Fig. 1). Using the data displayed in Fig. 1,
we found that the technical variation in the Hi-C data is
such that 98 % of genomic bins have an absolute value
less than 0.02. Using this cutoff for technical variation,
we found that the correlation between the two difference
vectors displayed in Fig. 3 is 0.85 when restricted to the
24 % of genomic bins where both vectors have an absolute
value greater than 0.02. The signs of the differential vec-
tors are also in high agreement; they agree in 90 % of the
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Fig. 3 Cell-type-specific A/B compartments using Hi-C data are predicted using DNAmethylation data. The figure displays data on all of chromosome
14 at 100-kb resolution. a The first eigenvector of the HiC-EBV-2014 dataset. b The smoothed first eigenvector of the binned correlation matrix of
the 450 k-EBV dataset. c The first eigenvector of the HiC-IMR90-2014 Hi-C dataset. d The smoothed first eigenvector of the binned correlation matrix
of the 450 k-fibroblast dataset. e The difference between (a) and (c). f the difference between (b) and (d). The high correlation between (e) and (f)
supports that the correlation eigenvectors of the 450 k data can be used to find differences between compartments in the two cell types
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genomic bins exceeding the cutoff for technical variation.
In contrast, the correlation is 0.61 when the entire chro-
mosome is included, reflecting that the technical noise is
less correlated than the signal.
Large domains of intermediate methylation have been

previously described [20], as well as long blocks of
hypomethylation associated with colon cancer and EBV
transformation [21–23]. We obtained previously char-
acterized [20] partially methylated domains (PMDs) in
IMR90 and found a significant overlap with closed
compartments from the HiC-IMR90-2014 dataset (odds
ratio: 13.6) as well as closed compartments from the
450 k-fibroblast dataset (odds ratio: 16.4). Likewise, we
obtained previously characterized blocks of hypomethyla-
tion associated with EBV transformation [23] and found
a significant overlap with closed compartments from the
HiC-EBV-2014 dataset (odds ratio: 11.9) and 450 k-EBV
dataset (odds ratio: 9.4). This confirms the overlap, pre-
viously described by Berman et al. [21], between Hi-C
compartments and these types of methylation domain.

The structure of long-range correlations in DNA
methylation data
To understand why we are able to predict open and
closed compartments using the 450 k array, we studied
the structure of long-range correlations in DNA methy-
lation data. First, we noted that entries in our binned
correlation matrix (within a chromosome) do not decay
with distance between bins (Additional file 1: Figure S7a).
This is in contrast to a Hi-C contact matrix, which has
repeatedly been shown to decay with distance as expected
(Additional file 1: Figure S7b). However, for the first
eigenvector to define open and closed compartments, the
Hi-C contact matrix needs to be normalized using the
observed–expected method [1]. This normalization has
the consequence that values in the matrix no longer decay
with distance (Additional file 1: Figure S7c).
In Fig. 4, we show density plots of binned correlations

on chromosome 14, stratified in two ways. The first strat-
ification separates correlations between bins that are both
in the open compartment or both in the closed com-
partment, and also cross-compartment correlations. This
stratification shows that we have a large number of inter-
mediate correlation values (0.2–0.5), but only between
bins that are both in the closed compartment. The sec-
ond stratification separates open sea probes and CpG
resort probes (probes within 4 kb of a CpG island; see
“Materials and methods”). This stratification shows that
we only have intermediate correlation values for open sea
probes; CpG resort probes are generally uncorrelated. In
conclusion, we have the following structure of the binned
correlation matrix: most of the matrix contains correla-
tion values around zero (slightly positive), except between
two bins both in the closed compartment, which have an
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Fig. 4 Densities of the correlations of the 450 k methylation probes.
Chromosome 14 was binned at resolution 100 kb and we display the
binned, stratified correlations for the 450 k-EBV dataset. Each plot
shows one density curve for each type of interaction: between two
bins in open compartments, between two bins in closed
compartments and between a bin in the open compartment and the
closed compartment. a Binned correlations for open sea probes only.
b Binned correlations for CpG resort probes only. Most correlations
are around zero, except correlations between two open sea probes in
the closed compartment. The open and closed compartments were
defined using the HiC-EBV-2014 dataset

intermediate correlation value of 0.2–0.5. This shows why
an eigen analysis of the binned correlation matrix recov-
ers the open and closed compartments; see Fig. 5 for an
illustration.
The lack of decay of correlation with distance extends

even to trans-chromosomal correlations, again with a
clear difference between correlations within the open
compartment and the closed compartment (Additional
file 1: Figure S8).
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Long-range correlations in
450k methylation array data

Open-open interactions

Closed-closed interactions

Low correlations
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Fig. 5 The relationship between a Hi-C contact matrix and a binned DNA methylation correlation matrix. Depicted are the observed–expected
normalized genome contact matrix for the HiC-IMR90-2014 dataset together with the binned correlation matrix for the 450 k-fibroblast dataset.
Both matrices depict chromosome 14 at resolution 100 kb. There is a relationship between A/B compartments in the Hi-C data and regions with low
and high correlations

To understand what drives the correlation between loci
within the closed compartment, we carefully examined
the DNA methylation data in these genomic regions.
Figure 6 shows a very surprising feature of the data,
which explains the long-range correlations. In this figure,
we have arbitrarily selected ten samples and we plot
their methylation levels across a small part of chromo-
some 14, with each sample having its own color. Data
from both EBV-transformed lymphocytes and fibroblasts
are depicted. While the same coloring scheme has been
used for both cell types, there is no correspondence
between the samples assayed in the different experiments.
The figure shows that the ten samples have roughly the
same ranking inside each region in the closed compart-
ment. This illustrates a surprising genome-wide ranking
between samples in the closed compartment.
To gain more insights into whether this ranking is

caused by technical artifacts or whether it reflects real
differences between the biological replicates, we obtained
data where the exact same HapMap samples were pro-
filed in two different experiments using the Illumina
27 k methylation array. This array design is concentrated
around CpG islands, but we determined that 5599 probes
are part of the 450 k array and annotated as open sea
probes. For these probes, we determined which were
part of the closed compartment and we computed the
sample-specific average methylation in this compartment
as a proxy for the observed ranking described above. In
Additional file 1: Figure S9a, we show that the genome-
wide correlation of these measurements between
hybridization duplicates from the same experiment is
high (0.927). In Additional file 1: Figure S9b, we show
that these measurements replicate well between different
experiments (correlation of 0.744).

For the 450 k-fibroblast experiment, we had access to
the raw IDAT files and therefore to the control probes
located on the array. For this dataset, we examined if the
striking global ranking between different samples using
the open sea probes in the closed compartment could be
explained by technical factors such as bisulfite conversion.
To test this, we regressed the mean (and median) methy-
lation levels against each of the following five variables:
chip and well variables (surrogates for batch), Bisulfite I
and Bisulfite II control probes and negative control probes
(background noise). None of these variables was signifi-
cantly associated with the mean of the median methyla-
tion levels (all P values greater than 0.09 and R2 less than
16 %); see Fig. 7. We conclude that the global ranking
cannot be explained by technical issues.
Finally, using the 27 k data, we show that the eigenvector

replicates between a 450 k experiment and a 27 k experi-
ment using the same cell type (EBV) but different samples
(correlation of 0.89; see Additional file 1: Figure S10). As
a control, we compared with a 450 k-derived eigenvec-
tor for a different cell type (fibroblast) and observed weak
correlation (0.40). We note that the eigenvector derived
from the 27 k experiment is based on far fewer probes; we
do not recommend using 27 k data to estimate compart-
ments. This result shows that the estimated genome com-
partments do not depend on the design of the microarray
and suggests that our observations are common across
methylation assays.

The impact of GC content on long-range correlations in
DNAmethylation data
To examine the impact of GC content on the distribu-
tion of correlations, we computed this distribution as a
function of both the GC content of the probe and a 1-kb
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compartment

window around the probe (Fig. 8a, b), and did not observe
any dependence of the distribution of probe-specific cor-
relations on GC content. The same was true when we
examined the distribution of correlations as a function
of the methylation level of the probe (Fig. 8c). This is in

sharp contrast to the well-known high degree of associa-
tion between methylation and GC content in 1 kb around
the probe (Fig. 8d). In Fig. 8, we have only displayed open
sea probes, and we note that these probes cover a wide
range of GC content andmethylation values. These results
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strongly suggest that the low correlations observed for
CpG resort probes are not a technical artifact caused by
GC content or probe-level methylation.
Because theHi-C based eigenvectors are associated with

GC content, it is expected to see such an association
for 450 k-derived eigenvectors. To estimate how much
of the correlation between Hi-C and methylation is due
to GC content, we applied a GC content stratified per-
mutation procedure similar to what Imakaev et al. [15]
used. Briefly, we sorted the Hi-C and methylation eigen-
vectors by GC content and permuted neighbors within a
five-bin window (to keep GC content roughly unchanged)
and recalculated the correlation between the two eigen-
vectors. We generated 100 such permutations. While the
genome-wide correlation between the Hi-C and methy-
lation eigenvectors is high before permutation (0.74), the
correlation drops to 0.21 after permuting (0.20 and 0.22
for the 2.5 and 97.5 percentiles, respectively); see Table 2
as well as Table 3 for domain agreements. We conclude
that GC content by itself fails to explain the high cor-
relation between the Hi-C and methylation eigenvectors.
Based on these results, and the reasoning above, we cau-
tion that removing the GC content effect might remove
a biological signal. Nevertheless, we examined whether

adjusting for GC content in both Hi-C and 450 k eigen-
vectors would change the association between the two
vectors. Before LOESS correction, the genome-wide cor-
relation between the two eigenvectors for the EBV data
is 0.71 with a domain agreement of 79 %. After GC con-
tent adjustment, the residual eigenvectors are still highly
correlated (0.69) with a domain agreement of 77 %; see
Additional file 1: Figure S11. This shows that adjusting for
GC content does not diminish our ability to estimate A/B
compartments using 450 k methylation data.

Table 2 Genome-wide eigenvector correlations before and after
permutation

Original Permuted
correlation correlation (CI)

HiC-EBV-2014 vs. HiC-EBV-2013 0.97 0.39 (0.38–0.40)

HiC-IMR90-2014 vs. HiC-IMR90-2013 0.98 0.23 (0.21–0.24)

HiC-EBV-2014 vs. 450 k-EBV 0.73 0.21 (0.20–0.22)

HiC-IMR90-2014 vs. 450 k-fibroblast 0.75 0.18 (0.17–0.19)

HiC-EBV-2014 vs. DNase-EBV 0.71 0.41 (0.40–0.42)

HiC-IMR90-2014 vs. DNase-IMR90 0.78 0.22 (0.21–0.23)

CI: confidence interval
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Table 3 Genome-wide domain agreements before and after
permutation

Original Permuted
agreement % agreement % (CI)

HiC-EBV-2014 vs. HiC-EBV-2013 93.3 66.6 (66.1–67.2)

HiC-IMR90-2014 vs. HiC-IMR90-2013 94.5 59.0 (58.5–59.6)

HiC-EBV-2014 vs. 450 k-EBV 79.1 58.9 (58.4–59.5)

HiC-IMR90-2014 vs. 450 k-fibroblast 79.5 56.6 (56.2–57.2)

HiC-EBV-2014 vs. DNase-EBV 78.9 66.8 (66.3–67.3 )

HiC-IMR90-2014 vs. DNase-IMR90 81.3 58.6 (58.0–59.1)

CI: confidence interval

Sometimes compartment prediction fails using DNA
methylation data
We caution that it is not always possible to estimate A/B
compartments using data from the 450 k DNA methyla-
tion array. As an example, we present an analysis of 305
whole blood samples described previously [24]. The first
eigenvector from this dataset is shown in Fig. 9. It is imme-
diately clear that this eigenvector looks different from
the other datasets we present; it seems to be oscillating
more rapidly. While compartments are cell-type specific,
in our experience compartments from any two cell types
are somewhat correlated, reflecting that large parts of
the genome do not change compartment. For example,
the correlation between HiC-EBV-2014 and HiC-IMR90-
2014 is 0.66 with a domain agreement of 73.4 %. In
contrast, this 450 k dataset from whole blood has a cor-
relation and domain agreement of 0.27 and 59.7 % with
HiC-EBV-2014 and 0.27 and 59.6 % with HiC-IMR90-
2014. The data were quantile normalized and adjusted for
cell-type composition as described in [24], but we also
obtained and preprocessed the raw data to exclude that
data processing was the cause of the poor performance.
We note that the percentage variance explained by the
first eigenvector was only 57 %, in contrast to 85 % for
the 450 k-EBV dataset and 74 % for the 450 k-fibroblast
dataset. Based on our insights above, we hypothesized
that the poor performance might be related to the lack

of between-sample variability in marginal methylation,
as shown in Fig. 10. However, one dataset on primary
prostate shows a similar degree of between-sample vari-
ability in marginal methylation and our method works for
this dataset (see below).

Notes on processing of the DNAmethylation data
We have analyzed a wide variety of DNA methylation
data both from the Illumina 450 k and Illumina 27 k
microarrays. For each dataset, which kind of data is pub-
licly available varies (raw or processed). If possible, we
have preferred to process the data ourselves starting from
the Illumina IDAT files. However, for several datasets, we
had to use the original authors’ preprocessing pipeline; see
“Materials and methods” for details.
We examined the impact of preprocessing methods on

the estimated eigenvectors by using functional normal-
ization [25], quantile normalization adapted to the 450 k
array [26] and raw (no) normalization; we did not find
any substantial changes in the results. The agreement
between the eigenvectors using the different preprocess-
ing methods is greater than 94 % and we note that the
agreement with Hi-C data is best using functional normal-
ization. This might be caused by the ability of functional
normalization to preserve large differences in methylation
between samples [25], which is what we observe in the
closed compartment.
We examined the binning resolution of our approach

using data from the 450 k methylation array. As resolu-
tion increases, the number of bins with zero or few probes
per bin increases. In Additional file 1: Figure S12, we show
the trade-off between bins with zero probes and agree-
ment with Hi-C data. This figure shows that a reasonable
lower limit of resolution is 100 kb. We note that the com-
partments estimated from Hi-C data do not change with
increased resolution (Additional file 1: Figure S2).

An application to prostate cancer
We applied these methods to Illumina 450 k data on
PRAD from TCGA. Quality control shows both normal

−
1

1
−

1
1

−
1

1

a

b

c

450k-Blood

HiC-EBV-2014

HiC-IMR90-2014

Fig. 9 The methylation correlation signal of the 450 k-blood dataset does not correlate well with other datasets. The figure displays data on all of
chromosome 14 at 100-kb resolution. a The smoothed first eigenvector of the binned correlation matrix of the 450 k-blood dataset. b The first
eigenvector of the HiC-EBV-2014 dataset. c The first eigenvector of the HiC-IMR90-2014 dataset. We see that (c) does not correlate well with
(b) and (a)
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Fig. 10 Between-sample variability in marginal methylation. For each
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levels of the open sea probes on the beta-value scale. We are able to
estimate compartments for all datasets except the 450 k-blood
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and cancer samples to be of good quality. Since the normal
prostate samples represent uncultured primary samples,
we confirmed that this dataset has the same information
in its long-range correlation structure as established above
(Fig. 11; compare with Fig. 6).
We obtained a list of curated somatic mutations from

TCGA and used them to compute simple estimates of the
somatic mutation rate in each 100-kb bin of the genome
(i.e. the elevated mutation rate in the cancer samples com-
pared to normals). Since the list of somatic mutations
was obtained using whole-exome sequencing, we iden-
tified the capture assay used in these experiments and
used the capture regions from this specific assay to com-
pute somatic mutation rates for each 100-kb genomic
bin by computing the number of somatic mutations per
base captured in that bin. Because the capture assay is
biased towards coding regions, the somatic mutation rates
we computed can roughly be interpreted as the somatic
mutation rate in coding regions per genomic bin. Many
genomic bins have a somatic mutation rate of zero, and
the number of bases captured varies between bins. In
Fig. 12, we display this somatic mutation rate vs. the
value of the first eigenvector of the cancer data. In this
figure, we display two smoothed LOESS curves; one curve
includes bins with a mutation rate of zero, the other
excludes them. Both curves show an elevated somatic
mutation rate in the closed compartment of the can-
cer samples. This confirms previous observations about
the relationship between mutation rates and open and
closed chromatin [27], including cancer [28, 29]. To our
knowledge, this is the first time a cancer-specific map of
open and closed compartments based on primary samples

has been derived; existing analyses depend on chromatin
assays performed for Encyclopedia of DNA Elements
(ENCODE) and Epigenomics Roadmap samples [28, 29].
While open and closed chromatin are cell-type spe-

cific, it is not surprising that a large percentage of the
genome (74 %) is in the same compartment in both nor-
mal and cancer samples. To illustrate the added value of
a cancer-specific map of open and closed chromatin, we
focused on the somatic mutation rate of bins that change
compartment between normal and cancer. These bins are
displayed in color in Fig. 12. In Table 4, we computed the
average somatic mutation rate across these bins. First, as
shown above, the somatic mutation rate across the the
part of the genome that is open in both cancer and nor-
mal was 54.1 compared to 97.2 for the part of the genome
that is closed in both cancer and normals. Focusing on
the parts of the genome that change compartments, we
observed that the somatic mutation rate in the parts of
the genome that change from closed to open in cancer
was 58.0, close to the somatic mutation rate of 54.1 in
the open compartment. Conversely, the somatic mutation
rate for the parts of the genome changing from open to
closed in cancer was 83.9, closer to the somatic muta-
tion rate of 97.2 in the closed compartment. This result
suggests that the somatic mutation rate of a genomic
region that changes compartment depends only on the
compartment status of the cancer samples. One possible
explanation for this, is that changes in chromatin acces-
sibility happen relatively early in cancer development and
that such changes affect the somatic mutation rate; this is
highly speculative. Our result illustrates the added value
of obtaining cancer-specific maps of open and closed
chromatin.

Compartments across human cancers
Using the method we have developed in this manuscript,
it is straightforward to estimate A/B compartments across
a wide variety of human cancers using data from TCGA.
Figure 13 displays the smoothed first eigenvectors for
chromosome 14 at 100-kb resolution for 11 different
cancers. Regions of similarity and differences are read-
ily observed. We emphasize that TCGA does not include
assays measuring chromatin accessibility such as DNase
or various histone modifications. The extent to which
these differences are associated with functional differ-
ences between these cancers is left for future work. Esti-
mated compartments for all these cancer datasets are
available online (see “Materials and methods”).

Compartment prediction using DNase hypersensitivity
data
Lieberman-Aiden et al. [1] established a connection
between A/B compartments and DNase data, mostly
illustrated by selected loci. Based on these results, we
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examined the degree to which we can predict A/B com-
partments using DNase hypersensitivity data. These data,
while widely available from resources such as ENCODE,
do not encompass as wide a variety of primary samples as
the Illumina 450 k methylation array.
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Fig. 12 Relationship between A/B compartments and somatic
mutation rate in prostate cancer. Somatic mutation rate for prostate
cancer calculated using whole exome sequencing data from TCGA
displayed against the first eigenvector of the 450 k-PRAD-cancer
dataset. The y-axis uses the hyperbolic arcsine scale, which is similar
to the logarithm for values greater than 1. A large number of genomic
bins have a mutation rate of zero. The dashed orange line is a LOESS
curve fitted to all the data and the orange line is a LOESS curve fitted
only to bins with a strictly positive mutation rate. We observe an
increase in somatic mutation rate in the closed compartment, as
expected. Colored points represent bins that confidently change
compartments between normal samples and cancer samples; blue is
closed to open and red is open to closed. A bin confidently changes
compartment if its associated eigenvector value has a magnitude
greater than 0.01 (but with different signs) in both datasets

We obtained DNase sequencing (seq) data on 70 sam-
ples [30] from EBV-transformed lymphocytes from the
HapMap project, as well as four experiments on the
IMR90 cell line performed as part of the Roadmap Epige-
nomics project [31]. We computed coverage vectors for
each sample and adjusted them for library size.
For each sample, we computed the signal in each 100-kb

genomic bin. To obtain the average DNase signal, we aver-
aged the signal across samples. The resulting mean signal
is skewed towards positive values in the open compart-
ment, and we therefore centered the signal by the median.
The median was chosen as this has the best compartment
agreement with Hi-C data. Figure 14 shows the result of
this procedure, slightly modified for display purposes (the
sign was changed to let high values be associated with the
closed compartment; additionally very low values were
thresholded). A good visual agreement is observed for
both cell types; the correlation betweenHi-C and the aver-
age DNase signal on chromosome 14 is 0.68 for EBV and
0.75 for IMR90 with a compartment agreement of 82 % for
EBV and 82 % for IMR90.
Inspired by the success of considering long-range cor-

relations for the 450 k data, we examined whether this
approach is useful for DNase data. We therefore com-
puted the Pearson correlation matrix of the binned DNase
signal; in contrast to the 450 k data, we did not bin the

Table 4 Number of somatic mutations per 100 kb in PRAD
stratified by compartment

Normal

Cancer Open Closed

Open 54.1 58.0

Closed 83.9 97.2
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correlationmatrix as the signal matrix was already binned.
The first eigenvector of this correlation matrix is highly
skewed; we centered it by its median. Figure 14 shows the
result of this procedure. For chromosome 14, we obtained
a correlation between this centered eigenvector and the
Hi-C eigenvector of 0.75 for EBV and 0.76 for IMR90
and a compartment agreement of 86 % for EBV and 80 %
for IMR90; Additional file 1: Figure S13 depicts these
measures for additional chromosomes. These results are
similar to what we obtained using the average DNase
signal.
We observed an association between GC content and

average DNase signal (Additional file 1: Figure S14); this
is expected. There is a small between-sample variation in
GC content effect. It is easy to remove this GC content
effect by estimating the effect of using LOESS and sub-
sequently regressing it out. Doing so led to much worse
results when estimating compartments using the average
DNase signal, but the results obtained using our corre-
lation method were only slightly negatively impacted. To

be precise, for the average DNase signal on chromosome
14, we got a correlation 0.35 for EBV and 0.69 for IMR90
with a compartment agreement of 69 % for EBV and 78 %
for IMR90. For our correlation-based method, we got a
correlation of 0.68 for EBV and 0.78 for IMR90 and a
compartment agreement of 78 % for EBV and 81 % for
IMR90.
To examine why the correlation-based approach works

for DNase data, we performed the same investigation as
for the 450 k datasets. In Fig. 15, we show the distribution
of correlations stratified by compartment type. As for the
DNA methylation data, the DNase data have high posi-
tive correlations between bins in the closed compartment,
although the correlations in the DNase data are much
higher. For DNAmethylation data, correlations were close
to zero between loci when at least one locus was in the
open compartment. In contrast, the DNase data show an
almost uniform distribution of correlation values when
one of the two loci are in the open compartment. In the
same figure, we display the distribution of correlations



Fortin and Hansen Genome Biology  (2015) 16:180 Page 14 of 23

−
1

1

10 Mb

−
0.

4
0.

4
−

0.
5

0.
5

−
0.

8
0.

8
−

0.
6

0.
6

−
0.

5
0.

5

Chromosome 14

a

b

f

c

d

e

HiC-EBV-2014

DNase-EBV

HiC-IMR90-2014

DNase-IMR90

DNase-EBV (mean)

DNase-IMR90 (mean)

Fig. 14DNase data can predict A/B compartments revealed by Hi-C. The figure displays data on all of chromosome 14 at 100-kb resolution. a The first
eigenvector of the HiC-EBV-2014 dataset. b The smoothed first eigenvector of the correlation matrix of the binned DNase-EBV dataset after median
centering. c Average DNase signal across samples after binning and median subtraction. The sign of the signal was reversed for display purposes.
d The first eigenvector of the HiC-IMR90-2014 dataset. e The smoothed first eigenvector of the correlation matrix of the binned HiC-DNase-IMR90
dataset after median centering. f Average DNase signal across samples after binning and median subtraction. The sign of the signal was reversed for
display purposes. Both the average signal and correlation eigenvector are highly predictive of the Hi-C compartments for both cell types

when we used a sample-specific GC content effect correc-
tion; this correction changes the correlation substantially
and suggests that some of the correlation structure is
driven by GC content. Nevertheless, correcting for this
effect slightly decreased our power to estimate the Hi-C
compartments.
Above, we have examined correcting for a sample-

specific GC content effect. It is also possible directly to
regress out the effect of GC content on the estimated
eigenvector. Doing so, on both DNase and Hi-C data, does
not decrease the correlation between the two eigenvec-
tors (Additional file 1: Figure S13). As discussed earlier in
this manuscript, we do not recommend doing this, as we
believe it might remove a biological signal.

Compartment prediction using single-cell epigenetic data
Experimental techniques for measuring epigenetics in a
single cell are in rapid development. We have applied
our methods to data from the few genome-wide,
single-cell epigenetic experiments available. This includes
data on both chromatin accessibility [13] and DNA
methylation [12].
Chromatin accessibility is measured by a single-cell

variant of an assay called assay for transposase-accessible

chromatin (ATAC) sequencing [32], which generates data
similar to DNase hypersensitivity. From Cusanovich et al.
[13], data are available on mixtures of two cell lines,
GM12878 and HL60, but not on pure samples of one cell
type. First, we developed a simple method for assigning
single cells from this mixture to one of the two known cell
lines, based on average accessibility of known cell-type-
specific hypersensitive sites; this is a much more simple
method than what is suggested in Cusanovich et al. [13].
Using our method, we observed two distinct clusters of
cells, and most cells can easily be assigned unambiguously
to a cell type using an arbitrary but seemingly sensible
cutoff (“Materials and methods,” Fig. 16a). This yielded
data on 2677 cells from the GM12878 cell line from
one experiment. We next applied our correlation-based
approach to these data; now the correlation is between
single cells within the same cell line. Furthermore, the data
consist of accessibility quantified over 195,882 hypersen-
sitive sites the original authors derived from ENCODE
data, with the accessibility of each site being a value of
0, 1 or 2. We summarized these data in 100-kb bins (see
“Materials and methods”), not unlike our treatment of
bulk DNase-seq data. On chromosome 14, we observed
a correlation of 0.84 and a compartment agreement of
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81 % between the first eigenvector of these data and the
first eigenvector from HiC-EBV-2014 data (Fig. 16b, c).
We observed that the three different types of correlations

have different distributions, very different from other data
types (Fig. 16d). Closed–closed correlations are skewed
towards negative values, while open–open correlations
are shifted towards positive values.
Single-cell DNA methylation can be measured using

a form of whole-genome bisulfite sequencing (WGBS)
as described in Smallwood et al. [12]. Due to techni-
cal limitations of the assay, the number of assayed cells
is small. We have data on 20 individual mouse embry-
onic stem cells (mESCs) cultured in serum conditions,
with corresponding Hi-C data from a different source [3].
We generated a binned methylation matrix by averaging
methylation values for open sea CpGs and discarded bins
with little or no data (see “Materials and methods”). We
next applied our correlation-based approach to these data,
computing a correlation matrix across these 20 cells. On
mouse chromosome 12, we observed a correlation of 0.61
and a domain agreement of 81 %, using existing Hi-C data
on the mESC line J1 [3] (Fig. 17a–c). An analysis of the
pattern of correlation between loci in open and closed
compartments showed some differences between the two
distributions (Fig. 17d), although both open–open and
closed–closed are highly correlated in contrast to other
data types. In contrast to what we observed for 450 k data,
loci in the open domain are still substantially positively
correlated. We note that [12] show substantial between-
cell heterogeneity in genome-wide methylation across
these 20 cells, depicted in Fig. 17e. However, this hetero-
geneity of genome-wide methylation was not observed for
mouse ovulated metaphase II (MII) oocytes (Fig. 17e); the
correlation distribution is substantially different for this
dataset (Fig. 17d) and the first eigenvector of the correla-
tion matrix only explains 19 % of the variance, in contrast
to 99 % of the variance explained for mESCs (Fig. 17c).
We do not have Hi-C data available for this cell type, but
based on these observations we are doubtful that the first
eigenvector accurately reflects the A/B compartments in
this cell type.

Conclusions
In this work, we show how to estimate A/B compart-
ments using long-range correlations of epigenetic data.
We have comprehensively evaluated the use of data from
the Illumina 450 k DNA methylation microarray for this
purpose; such data are widely available on many primary
cell types. Using data from this platform, we can reliably
estimate A/B compartments in different cell types, as well
as changes between cell types.
This result is possible because of the structure of long-

range correlations in this type of data. Specifically, we
found that correlations are high between two loci both in
the closed compartment and low otherwise, and do not
decay with distance between loci. This result only holds
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Fig. 16 scATAC-seq data. Data from a single experiment on a mixture of the GM12878 and HL60 cell lines described in [13]. a ENCODE DNAse-seq
data were used to define hypersensitive sites (DHSs) specific to these two cell lines. For each of these two sets of sites, we computed the average
number of ATAC-seq reads normalized by the total number of reads mapped to known DHS sites. The figure shows two distinct clusters; we
arbitrarily selected the line y = x/3 to delineate cells from the GM12878 cell line (red points); this defines the scATAC-EBV data containing 2677 cells.
b Estimated compartments on chromosome 14 at a resolution of 100 kb using the HiC-EBV-2014 data. c Estimated compartments for the
scATAC-EBV data. d Density of correlations for scATAC-EBV. We observe that the three different types of correlations have different distributions.
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true for array probes measuring CpGs located more than
4 kb from CpG islands, so-called open sea probes. This
high correlation is the consequence of a surprising rank-
ing of DNA methylation in different samples across all
regions belonging to the closed compartment. We have

replicated this result in an independent experiment using
the Illumina 27 k DNA methylation microarray.
We have furthermore established that A/B compart-

ments can be estimated using data from DNase hypersen-
sitivity sequencing. This can be done in two ways: first by

−
1

1

10 Mb

−
1

1
−

1
1

a

b

c

HiC-mESC-2012

scWGBS-mESC

scWGBS-MII

Chromosome 14

0

1

2

3

4

−1.0 −0.5 0.0 0.5 1.0

Long-range correlations of scWGBS

D
en

si
ty

ESC Closed−Closed
ESC Open−Open
Oocytes

M
ea

n 
m

et
hy

la
tio

n

0.
5

0.
8

ESC Oocytes

d e

Fig. 17 scWGBS data. Depicted are data from experiments on mESCs. a Estimated compartments using the HiC-mESC-2012 data on chromosome
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simply computing the average DNase signal in a genomic
region, and second by considering long-range correlations
in the data, like for 450 k array data. Again, we exploited
the structure of long-range correlations in this type of epi-
genetic data and, as for DNA methylation data, we found
that correlations between loci both in the closed compart-
ment are high, whereas correlations between other loci
are approximately uniformly distributed. Again, this cor-
relation is caused by a ranking of the DNase signal in
different samples across all regions belonging to the closed
compartment. Surprisingly, our method works both for
biological replicates (EBV-transformed lymphocytes) but
also on technical between-lab replicates of the same cell
line (IMR90).
Finally, we have established that our method works

on single-cell epigenetic data, including scATAC-seq and
scWGBS. These experimental techniques are in their
infancy; it is likely that additional data will allow us
to tune aspects of our method to this type of data.
Now, the correlation is between single cells as opposed
to biological replicates of bulk cells. This potentially
allows our method to be used on rare types of cells.
During the review of this paper, Buenrostro et al. [33]
appeared in press, with the same conclusion as ours:
scATAC-seq can reveal features of the Hi-C contact
matrix.
Recently, clusters of DNA methylation under genetic

control (GeMes) have been described [24]. These clusters
of highly correlated CpGs are different from the com-
partments described here. This work described 2100 such
clusters in whole blood ranging in size from 6 to 50 bp.
Only five of these are greater than 10 kb and 1953 are
smaller than 1 kb.
Our approach is based on computing the first eigen-

vector of a (possibly binned) correlation matrix. It is well
known that this eigenvector is equal to the first left-
singular vector from the singular value decomposition of
the data matrix. The right-singular vector of this matrix is
in turn equal to the first eigenvector of the sample correla-
tionmatrix, also called the first principal component. This
vector has been shown to carry fundamental information
about batch effects [34]. Because of this relationship, we
are concerned that our method might fail when applied
to experiments that are heavily affected by batch effects;
we recommend careful quality control of this issue before
further analysis.
We have examined the impact of GC content on our

method. It has previously been established that GC con-
tent is associated with A/B compartments [15]. This
association can be removed computationally but we,
and Imakaev et al. [15], are concerned that it might
remove a biological signal. Nevertheless, our correlation-
based method shows good agreement between compart-
ments estimated using Hi-C data and estimated using

other epigenetic data, whether or not the GC con-
tent effect is removed. We have also established that
GC content itself is not the main driver of long-range
correlations.
The reason our method works is a surprising, consistent

ranking of different samples across all regions belonging
to the closed compartment (and only the closed compart-
ment). By comparison with additional 27 k methylation
array experiments, we have shown that this ranking is not
a technical artifact caused by (for example) hybridization
conditions.
We caution that while we have had success with our

method on many datasets, we have seen failures as we
described in our analysis of the dataset on whole blood
measured on 450 k. This raises the issue of when and
why the method fails. In recent work, we studied colon
cancer and EBV transformation of lymphocytes using
WGBS [22, 23]. In these two systems, we observed
global hypomethylation as well as an increased variation
in global methylation levels in colon cancer and EBV-
transformed lymphocytes compared to normal-matched
samples from the same person. However, we saw mini-
mal variation in global methylation between three nor-
mal samples in both systems. This type of observation
is the same as what we see for the scWGBS data on
mESCs and MII cells (Fig. 17e); there is substantial het-
erogeneity in global methylation for mESCs and not for
MII cells where the method fails. The same observa-
tion is reflected in Fig. 9 where we, as expected, see
a substantial variation in cancer, EBV-transformed lym-
phocytes and cultured fibroblasts, and substantially less
variation in samples from whole blood. However, our
method does work on normal prostates, which also show
minimal variation in global methylation, suggesting that
this is not the explanation for the failure. More work
is needed to establish firmly whether this ranking holds
true for most primary tissues or might be a conse-
quence of oncogenesis, manipulation in culture or a kind
of unappreciated batch effect, affecting a well-defined
compartment of the genome. We note that the cause
of the ranking does not matter; as long as the rank-
ing is present, it can be exploited to reconstruct A/B
compartments.
The functional implications of A/B compartments have

not been comprehensively described; we know they
are associated with open and closed chromatin [1],
replication timing domains [6, 35] and changes during
mammalian development, and are somewhat associated
with gene expression changes [8]. Our work makes it
possible to study more comprehensively A/B compart-
ments, especially in primary samples. We have illus-
trated this with a brief analysis of the relationship
between A/B compartments and somatic mutation rate in
PRAD.
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Materials andmethods
Infinium HumanMethylation450 BeadChip
We use the standard formula β = M/(M + U + 100) for
estimating percentage methylation given (un)methylation
intensities U and M. Traditionally, the term M value is
used for the logit transform of the beta value, and we do
the same.
With respect to CpG density, the 450 k array probes

fall into four categories that are related to CpG islands.
CpG island probes (30.9 % of the array) are probes located
in CpG islands, shore probes (23.1 %) are probes within
2 kb of CpG islands, and shelf probes (9.7 %) are probes
between 2 kb and 4 kb from CpG islands. Open sea probes
(36.3 %) are the rest of the probes. We use the term CpG
resort probes to refer to the union of island, shore and
shelf probes; in other words non-open sea probes.

Methylation data
Methylation data are given in Table 5.
The 450 k-fibroblast dataset The study contains 62

samples from primary skin fibroblasts from [19]. The raw
data (IDAT files) are available onGEOunder the accession
number [GEO:GSE52025].
The 450 k-EBV dataset The study contains 288 sam-

ples from EBV-transformed lymphoblastoids cell lines
(LCL) [17] from three HapMap populations: 96 African-
American, 96 Han Chinese-American and 96 Caucasian.
The data are available on GEO under the accession num-
ber [GEO:GSE36369].
The 450 k-blood dataset The study contains 305 sam-

ples fromwhole blood [24]. The data are available on GEO
under the accession number [GEO:GSE54882].
The 27 k-EBV Vancouver dataset The study con-

tains 180 samples from EBV-transformed LCLs [36] from
two HapMap populations: 90 individuals from North-
ern European ancestry (CEU), and 90 individuals from
Yoruban (West African) ancestry (YRI). The processed
data are available on GEO under the accession number
[GEO:GSE27146].

The 27 k-EBV London dataset The study contains 77
EBV-transformed LCLs assayed in duplicates [37]. Indi-
viduals are from the Yoruba HapMap population, and 60
of them are also part of the 27 k-EBV Vancouver dataset.
The raw data (IDAT files) are available on GEO under the
accession number [GEO:GSE26133].
The 450 k-PRAD-normal and 450 k-PRAD-cancer

datasets At the time of download, the dataset contained
340 PRAD cancer samples from TCGA [14] along with 49
matched normal samples. We used the Level 1 data (IDAT
files) available through the TCGA Data portal [38].
The PMDs-IMR90 dataset The PMD boundaries from

IMR90 [39] are available at [40].
The EBV hypomethylation blocks dataset Hypo-

methylated blocks between EBV-transformed and quies-
cent B cells were obtained from a previous study [23].
Only blocks with a family-wise error rate equal to 0 were
retained (see the reference). The data are available on
GEO under the accession number [GEO:GSE49629].

Processing of the methylation data
For the 450 k-fibroblast and 450 k-PRAD datasets, we
downloaded the IDAT files containing the raw intensi-
ties. We read the data into R using the illuminaio package
[41]. For data normalization, we use theminfi package [26]
to apply the Noob background subtraction and dye-bias
correction [42] followed by functional normalization [25].
We have previously shown [25] that functional normal-
ization is an adequate between-array normalization when
global methylation differences are expected between indi-
viduals. For the 450 k-EBV dataset, only the methylated
and unmethylated intensities were available, and therefore
we did not apply any normalization. For the 450 k-blood
dataset, data were quantile normalized and then adjusted
for estimated cell proportions and sex as described in
[24]. For the 27 k-EBV London dataset, IDAT files were
available, and we applied the Noob background correction
and dye-bias correction as implemented in the methylumi
package [42]. For the 27 k-EBV Vancouver dataset, IDAT

Table 5 Methylation data sources

Dataset Cell type Number, n Platform Accession number Reference

450 k-fibroblast Fibroblast (skin) 62 450k [GEO:GSE52025] [19]

450 k-EBV LCL (EBV) 288 450k [GEO:GSE36369] [17]

450 k-blood Whole blood 305 450k [GEO:GSE54882] [24]

27 k-EBV Vancouver LCL (EBV) 180 27k [GEO:GSE27146] [36]

27 k-EBV London LCL (EBV) 77 27k [GEO:GSE26133] [37]

450 k-PRAD-normal Prostate (normal) 49 450 k TCGA [14]

450 k-PRAD-cancer Prostate (cancer) 340 450 k TCGA [14]

PMDs-IMR90 Fibroblast (lung) 1 MethylC-Seq Salk Institute [40]

EBV hypomethylation blocks LCL (EBV) 1 WGBS [GEO:GSE49629] [23]
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files were not available and therefore we used the provided
quantile normalized data as discussed in [36].
For quality control of the samples, we used the packages

minfi and shinyMethyl [26, 43] to investigate the different
control probes and potential batch effects. All arrays in
all datasets passed the quality control. After normalization
of the 450 k array, we removed 17,302 loci that contain a
single-nucleotide polymorphism (SNP) with an annotated
minor allele frequency greater than or equal to 1 % in the
CpG site itself or in the single-base extension site.We used
the UCSC Common SNPs table based on dbSNP 137. The
table is included in the minfi package.
For the analysis of the 27 k array data, we only consid-

ered probes that are also part of the 450 k array platform
(25,978 probes retained in total) and applied the same
probe filtering as discussed above.

Construction of 450 k correlation matrices
For each chromosome, we start with a p × n methyla-
tion matrix M of p normalized and filtered loci and n
samples. We use M values as methylation measures. We
compute the p × p matrix of pairwise probe correlations
C = cor(M′), and further bin the correlation matrix C
at a predefined resolution k by taking the median corre-
lation for between CpGs contained in each of two bins.
Because of the probe design of the 450 k array, some
of the bins along the chromosome do not contain any
probes; these bins are removed. As discussed in “Results
and discussion,” the correlations of the open sea probes
are the most predictive probes for A/B compartments,
and therefore the correlation matrix is computed using
only those probes (36.3 % of the probes on the 450 k
array). The inter-chromosomal correlations are computed
similarly.

Hi-C data
Samples are described in Table 6.

Table 6 Hi-C data sources

Dataset Cell Cell Accession Reference
line type number

HiC-EBV-2009 GM06990 LCL (EBV) [GEO:GSE18199] [1]

HiC-EBV-2013 GM12878 LCL (EBV) [GEO:GSE48592] [46]

HiC-EBV-2014 GM12878 LCL (EBV) [GEO:GSE63525] [7]

HiC-IMR90-2013 IMR90 Fibroblast (lung) [GEO:GSE43070] [4]

HiC-IMR90-2014 IMR90 Fibroblast (lung) [GEO:GSE63525] [7]

HiC-fibro-skin – Fibroblast (skin) [GEO:GSE41763] [45]

HiC-fibro-HFF1 HFF-1 Fibroblast (skin) E-MTAB-1948 [5]

HiC-K562-2009 K562 Leukemia [GEO:GSE18199] [1]

HiC-K562-2014 K562 Leukemia [GEO:GSE63525] [7]

HiC-mESC-2012 J1 mESC [GEO:GSE35156] [3]

Processing of the Hi-C data
For the datasets HiC-EBV-2014, HiC-K562-2014 and
HiC-IMR90-2014 from [7], we used the raw observed con-
tact matrices that were constructed from all read pairs
that map to the human genome hg19 with a MAPQ ≥30.
These contact matrices are available in the supplemen-
tary files of the GEO deposition [GEO:GSE63525]. For
the HiC-IMR90-2013 dataset from [4], we used the online
deposited non-redundant read pairs that were mapped
with Bowtie [44] to human genome hg18 using only the
first 36 bases. For the HiC-EBV-2009 and HiC-K562-2009
datasets from Lieberman-Aiden et al. [1], we used the
mapped reads deposited on GEO under the accession
number [GEO:GSE18199]. Reads were mapped to human
genome hg18 using Maq, as described. For the fibro-skin
dataset from [45], we merged the reads from two individ-
uals with normal cells (father and age-matched control).
We used the processed reads of the GEO deposition
[GEO:GSE41763] that were mapped using Bowtie2 to the
hg18 genome in an iterative procedure called ICE previ-
ously described in [15]. For the HiC-mESC-2012 dataset,
we used the mapped reads deposited on GEO under the
accession number [GEO:GSE35156]; reads were mapped
to the mm9 genome.
For the HiC-EBV-2013 dataset from [46] and the HiC-

fibro-HFF1 dataset from [5], we downloaded the SRA
experiments containing the FASTQ files of the raw reads.
We mapped each end of the paired reads separately using
Bowtie to the hg18 genome with the --best mode
enabled. We kept only paired reads with both ends map-
ping to the genome.
For all datasets but the Hi-C datasets from [7], we used

the liftOver tool from UCSC to lift the reads to the human
genome hg19 version for consistency with the 450 k array.
Reads from [7] were already mapped to the hg19 genome.

Construction of Hi-C matrices
As a first step, we build for each chromosome an observed
contact matrix C at resolution k whose (i, j)th entry con-
tains the number of paired-end reads with one end map-
ping to the ith bin and the other end mapping to the jth
bin. The size of the bins depends on the chosen resolution
k. We remove genomic bins with low coverage, defined
as bins with a total count of reads less than 10 % of the
total number of reads in the matrix divided by the num-
ber of genomic bins. This filtering also ensures that low
mappability regions are removed.
To correct for coverage and unknown sources of biases,

we implemented the iterative correction procedure called
ICE [15] in R. This procedure forces bins to have the same
experimental visibility.We apply the normalization proce-
dure on a chromosome basis and noted that for each Hi-C
dataset, the iterative normalization converged in less than
50 iterations. To estimate A/B compartments, we further
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normalize the genome contact matrix by the observed–
expected procedure [1], where each band of the matrix is
divided by the mean of the band. This procedure accounts
for spatial decay of the contact matrix.

DNase-seq data
DNase-seq data sources are listed in Table 7.
The DNase-EBV dataset The study contains 70 bio-

logical replicates of EBV-transformed LCLs [30] from the
HapMap Yoruba population. The data are deposited on
GEO under the accession number [GEO:GSE31388] and
raw files are available at [47].
TheDNase-IMR90 dataset The dataset is composed of

four technical replicates of the IMR90 fetal lung fibrob-
last cell line available on GEO under the accession number
[GEO:GSE18927].

Processing of the DNase-Seq data and construction of the
correlation matrices
For the DNase-EBV dataset from [30], we downloaded
the raw reads in the HDf5 format for both the forward
and reverse strands. We converted the reads to bedGraph,
lifted the reads to the hg19 genome and converted the
files to bigWig files using the UCSC tools. For the DNase-
IMR90 dataset, we used the raw data already provided
in the bigWig format. Reads were mapped to the hg19
genome. For both datasets, data were read into R using the
rtracklayer package [48]. To adjust for library size, we nor-
malized each sample by dividing the DNase score by the
total number of reads. For each sample, we constructed
a normalized DNase signal at resolution 100 kb by tak-
ing the integral of the coverage vector in each bin. This
was done using BigWig files and the rtracklayer package
in R [48]. All DNase datasets have the same read length
within experiment (EBV/IMR90). This results in a p × n
signal data matrix where p is the number of bins for the
chromosome and n the number of samples. We defined
the average DNase signal as the across-samplemean of the
signal matrix. The DNase correlation matrix is the p × p
Pearson correlation matrix of the signal matrix.

GC content correction of the DNase data
For GC content correction of the DNase data, we fitted
a LOESS curve of the DNase signal against the bin GC
content for each sample differently and regressed out the
fitted relationship.

Table 7 DNase-seq data sources

Dataset Cell Number, n Accession Reference
line number

DNase-EBV LCL (EBV) 70 [GEO:GSE31388] [30]

DNase-IMR90 Fibroblast (lung) 4 [GEO:GSE18927] [31]

scATAC-seq data
scATAC-seq data were obtained from GEO under
the accession number [GEO:GSE68103] described in
[13]; see Table 8. We used data processed by the
authors, specifically the file GSM1647124_CtlSet1.
dhsmatrix.txt.gz. This experiment represents data
on a mixture of two cell lines: GM12878 and HL60. We
use the data processed by the authors of the paper, which
consist of a matrix of accessibility across 195,882 known
hypersensitive sites (from ENCODE) and 4538 cells. Each
hypersensitive site is furthermore characterized as being
specific to GM12878, specific to HL60 or common across
the two cell types. To classify each cell to a cell type, we
computed the total number of reads in each of the cell-
type-specific hypersensitive sites. This yields two num-
bers per cell. These numbers are further normalized by (1)
the total number of reads in all hypersensitive sites scaled
to 2000 reads (slightly more than the median number of
reads per cell) and (2) the number of cell-type-specific
hypersensitive sites scaled to 50,000 sites. The final scale
is the number of reads mapped for a cell with a read
depth of 2000 and a cell type with 50,000 hypersensitive
sites. These numbers are displayed in Fig. 16a. Cells are
assigned to the GM12878 cell type if they have more than
three times as many normalized reads for this cell type,
compared to HL60; in other words if they are below the
y = x/3 line in the figure. Subsequently we discarded
hypersensitive sites that had no reads in any of the cells
and obtained 631 bins at a resolution of 100 kb on chro-
mosome 14. Eigenvectors were computed and smoothed
as described below.

scWGBS data
scWGBS data were obtained from GEO under the acces-
sion number [GEO:GSE56879] described in [12]; see
Table 8. We used data processed by the authors, specif-
ically the files GSM1370555_Ser_X.CpG.txt.gz
where X takes values 1 to 20. These files describe the
single CpG methylation levels of 20 individual cells for
mESCs cultured in serum conditions. We removed CpGs
within 4 kb of a CpG Island (using the CpG Islands
defined in [49]), as we did for the 450 k methylation array
data. We next binned the genome in 100-kb bins and
computed, for each bin, the average methylation value
across all CpGs in the bin. Bins with a total coverage
of less than 100 were removed from the analysis. This
resulted in a binned methylation matrix, which was used
to compute an empirical correlation matrix. Eigenvectors
were computed and smoothed as described below.

Eigenvector analysis
To obtain eigenvectors of the different matrices from
Hi-C, DNA methylation and DNase data, we use the non-
linear iterative partial least squares (NIPALS) algorithm
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Table 8 Single-cell epigenetic data sources

Dataset Cell type Organism Number, n Accession number Reference

scATAC-EBV LCL (EBV) Human 2679 [GEO:GSE68103] [13]

scWGBS-mESC mESC Mouse 20 [GEO:GSE56879] [12]

scWGBS-MII MII Mouse 12 [GEO:GSE56879] [12]

implemented in the mixOmics package in R [50]. Each
eigenvector is smoothed by a moving average with a
three-bin window, with the following exceptions. For the
450 k data, we used two iterations of the moving average
smoother. For the single-cell epigenetic data, we used a
window size of five bins with two iterations of the moving
average smoother for ATAC-seq and three iterations for
WGBS.
When we compare eigenvectors from two different

types of data, we only consider bins that exist in both data
types; some bins are filtered out in a data-type-dependent
manner, for example, because of the absence of probes or
low coverage. This operation slightly reduces the number
of bins we consider in each comparison.
Because the sign of the eigenvector is arbitrarily defined,

we use the following procedure to define a consistent sign
across different chromosomes, datasets and data types.
For Hi-C data and DNase data, we correlate the resulting
eigenvector with the eigenvector from Lieberman-Aiden
et al. [1], changing sign if necessary to ensure a posi-
tive correlation. For DNA methylation data, we use that
the long-range correlations are significantly higher for the
closed–closed interactions. We therefore ensure that the
eigenvector has a positive correlation with the column
sums of the binned correlation matrix, changing sign if
necessary. This procedure results in positive values of the
eigenvector being associated with closed chromatin and
the B compartment as defined in Lieberman-Aiden et al.
[1] (in this paper they ensure that negative values are
associated with the closed compartment).
To measure the similarity between two eigenvectors, we

use two measures: correlation and compartment agree-
ment. The correlation measure is the Pearson correlation
between the smoothed eigenvectors. The compartment
agreement is defined as the percentage of bins that have
the same eigenvector sign, interpreted as the percentage
of bins that belong to the same genome compartment
(A or B) as predicted by the two eigenvectors. Occasion-
ally, this agreement is restricted to bins with an absolute
eigenvector value greater than 0.01 to discard uncertain
bins.
Because open chromatin regions have a very high

DNase signal in comparison to closed chromatin regions,
the DNase signal distribution is highly skewed to the
right; therefore, we center both the average signal and the
first eigenvector by subtracting their respective medians,
before computing the correlation and agreement.

Somatic mutations in PRAD
We obtained a list of somatic mutations in PRAD
from the TCGA data portal [38]. Several lists exist; we
used the Broad Institute curated list: broad.mit.
edu__IlluminaGA_curated_DNA_sequencing_
level2.maf. To obtain capture regions, we queried
the CGHub website [51] and found that all samples were
profiled using the same capture design described in the
filewhole_exome_agilent_1.1_refseq_plus_3_
boosters.targetIntervals.be obtained from the
CGHub bitbucket account.
Somatic mutation rates in each 100-kb genomic bin

were computed as the number of mutations inside each
bin, divided by the length of the capture regions inside the
bin.

Data
Estimated compartments for TCGA cancer data are avail-
able in Additional file 2. We processed 450 k IDAT files
from TCGA with Noob [42] followed by functional nor-
malization [25] as implemented in the minfi [26] package.
Compartments were estimated using compartments()
of minfi version 1.15.11.

Software
Software for performing the analysis of 450 k methyla-
tion arrays described in this manuscript have been added
to the minfi package [26] version 1.15.11 or greater, avail-
able through the Bioconductor project [52, 53]. The main
function is compartments(). A script implementing
our method for DNase-seq is available as Additional
file 3.

Additional files

Additional file 1: Supplementary Figures. Figures S1–S15. (PDF 2088 kb)

Additional file 2: TCGA A/B compartments. Estimated compartments
for 12 TCGA cancers using 450 k methylation data, as a concatenated TXT
file. There are six columns; the file is tab separated and has a header.
Column 1 (tcga_code) is the TCGA short code for the cancer. Columns 2
(chr), 3 (start) and 4 (end) are the chromosomal coordinates of each region,
in hg19 coordinates (1-based) and at 100-kb resolution. Column 5 (eigen) is
the estimated first eigenvector. Column 6 (domain) is whether or not the
region is estimated to be in open or closed chromatin. (TXT 13619 kb)

Additional file 3: Code for DNase-seq data. Software for our method for
DNase-seq data in the form of an R script. (ZIP 2 kb)

http://genomebiology.com/content/supplementary/s13059-015-0741-y-s1.pdf
http://genomebiology.com/content/supplementary/s13059-015-0741-y-s2.txt
http://genomebiology.com/content/supplementary/s13059-015-0741-y-s3.zip


Fortin and Hansen Genome Biology  (2015) 16:180 Page 22 of 23

Abbreviations
ATAC: assay for transposase-accessible chromatin; BLAC: bladder urothelial
carcinoma; BRCA: breast invasive carcinoma; ChIP: chromatin
immunoprecipitation; COAD: colon adenocarcinoma; DNase:
deoxyribonuclease; EBV: Epstein–Barr virus; ENCODE: Encyclopedia of DNA
Elements; GEO: Gene Expression Omnibus; HNSC: head and neck squamous
cell carcinoma; ICE: iterative correction and eigenvector decomposition; KIRC:
kidney renal clear cell carcinoma; KIRP: kidney renal papillary cell carcinoma;
LCL: lymphoblastoid cell line; LIHC: liver hepatocellular carcinoma; LUAD: lung
adenocarcinoma; LUSC: lung squamous cell carcinoma; MII: metaphase II;
mESC: mouse embryonic stem cell; NIPALS: non-linear iterative partial least
squares; PMD: partially methylated domain; PRAD: prostate adenocarcinoma;
scATAC: single-cell assay for transposase-accessible chromatin; scWGBS:
single-cell whole-genome bisulfite sequencing; seq: sequencing; SNP: single-
nucleotide polymorphism; TCGA: The Cancer Genome Atlas; UCEC: uterine
corpus endometrial carcinoma; WGBS: whole-genome bisulfite sequencing.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JPF and KDH developed the method, designed the study and wrote the
manuscript. JPF analyzed the data and wrote the software. KDH supervised the
study. Both authors read and approved the final manuscript.

Acknowledgments
Thanks to John Muschelli who made our observed–expected normalization
function a thousand times faster. Thanks to Margaret Taub who gave us
invaluable feedback on our writing. The results shown here are in whole or
part based upon data generated by the TCGA research network [54].

Received: 22 April 2015 Accepted: 31 July 2015

References
1. Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T,

Telling A, et al. Comprehensive mapping of long-range interactions
reveals folding principles of the human genome. Science. 2009;326:
289–93. doi:10.1126/science.1181369.

2. Dekker J, Marti-Renom MA, Mirny LA. Exploring the three-dimensional
organization of genomes: interpreting chromatin interaction data. Nat
Rev Genet. 2013;14:390–403. doi:10.1038/nrg3454.

3. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, et al. Topological
domains in mammalian genomes identified by analysis of chromatin
interactions. Nature. 2012;485:376–80. doi:10.1038/nature11082.

4. Jin F, Li Y, Dixon JR, Selvaraj S, Ye Z, Lee AY, et al. A high-resolution map
of the three-dimensional chromatin interactome in human cells. Nature.
2013;503:290–4. doi:10.1038/nature12644.

5. Naumova N, Imakaev M, Fudenberg G, Zhan Y, Lajoie BR, Mirny LA,
et al. Organization of the mitotic chromosome. Science. 2013;342:948–53.
doi:10.1126/science.1236083.

6. Pope BD, Ryba T, Dileep V, Yue F, Wu W, Denas O, et al. Topologically
associating domains are stable units of replication-timing regulation.
Nature. 2014;515:402–5. doi:10.1038/nature13986.

7. Rao SSP, Huntley MH, Durand NC, Stamenova EK, Bochkov ID,
Robinson JT, et al. A 3D map of the human genome at kilobase resolution
reveals principles of chromatin looping. Cell. 2014;159:1665–80.
doi:10.1016/j.cell.2014.11.021.

8. Dixon JR, Jung I, Selvaraj S, Shen Y, Antosiewicz-Bourget JE, Lee AY,
et al. Chromatin architecture reorganization during stem cell
differentiation. Nature. 2015;518:331–6. doi:10.1038/nature14222.

9. Bibikova M, Barnes B, Tsan C, Ho V, Klotzle B, Le JM, et al. High density
DNA methylation array with single CpG site resolution,. Genomics.
2011;98:288–95. doi:10.1016/j.ygeno.2011.07.007.

10. Crawford GE, Holt IE, Whittle J, Webb BD, Tai D, Davis S, et al.
Genome-wide mapping of DNase hypersensitive sites using massively
parallel signature sequencing (MPSS). Genome Res. 2006;16:123–31.
doi:10.1101/gr.4074106.

11. Boyle AP, Davis S, Shulha HP, Meltzer P, Margulies EH, Weng Z, et al.
High-resolution mapping and characterization of open chromatin across
the genome. Cell. 2008;132:311–22. doi:10.1016/j.cell.2007.12.014.

12. Smallwood SA, Lee HJ, Angermueller C, Krueger F, Saadeh H, Peat J,
et al. Single-cell genome-wide bisulfite sequencing for assessing
epigenetic heterogeneity. Nat Methods. 2014;11:817–20. doi:10.1038/
nmeth.3035.

13. Cusanovich DA, Daza R, Adey A, Pliner HA, Christiansen L, Gunderson
KL, et al. Multiplex single-cell profiling of chromatin accessibility by
combinatorial cellular indexing. Science. 2015;348:910–14. doi:10.1126/
science.aab1601.

14. TCGA. The Cancer Genome Atlas. http://cancergenome.nih.gov.
15. Imakaev M, Fudenberg G, McCord RP, Naumova N, Goloborodko A,

Lajoie BR, et al. Iterative correction of Hi-C data reveals hallmarks of
chromosome organization. Nat Methods. 2012;9:999–1003.
doi:10.1038/nmeth.2148.

16. Mouchiroud D, D’Onofrio G, Aïssani B, Macaya G, Gautier C, Bernardi G.
The distribution of genes in the human genome. Gene. 1991;
100:181–7.

17. Heyn H, Moran S, Hernando-Herraez I, Sayols S, Gomez A, Sandoval J,
et al. DNA methylation contributes to natural human variation. Genome
Res. 2013;23:1363–72. doi:10.1101/gr.154187.112.

18. Deaton AM, Bird A. CpG islands and the regulation of transcription.
Genes Dev. 2011;25:1010–22. doi:10.1101/gad.2037511.

19. Wagner JR, Busche S, Ge B, Kwan T, Pastinen T, Blanchette M. The
relationship between DNA methylation, genetic and expression
inter-individual variation in untransformed human fibroblasts. Genome
Biol. 2014;15:37. doi:10.1093/bioinformatics/bth088.

20. Lister R, Pelizzola M, Dowen RH, Hawkins RD, Hon GC, Tonti-Filippini J,
et al. Human DNA methylomes at base resolution show widespread
epigenomic differences. Nature. 2009;462:315–22.
doi:10.1038/nature08514.

21. Berman BP, Weisenberger DJ, Aman JF, Hinoue T, Ramjan Z, Liu Y, et al.
Regions of focal DNA hypermethylation and long-range hypomethylation
in colorectal cancer coincide with nuclear lamina-associated domains.
Nat Genet. 2012;44:40–6. doi:10.1038/ng.969.

22. Hansen KD, Timp W, Bravo HC, Sabunciyan S, Langmead B, McDonald
OG, et al. Increased methylation variation in epigenetic domains across
cancer types. Nat Genet. 2011;43:768–75. doi:10.1038/ng.865.

23. Hansen KD, Sabunciyan S, Langmead B, Nagy N, Curley R, Klein G, et al.
Large-scale hypomethylated blocks associated with Epstein–Barr
virus-induced B-cell immortalization. Genome Res. 2014;24:177–84.
doi:10.1101/gr.157743.113.

24. Liu Y, Li X, Aryee MJ, Ekström TJ, Padyukov L, Klareskog L, et al. GeMes,
clusters of DNA methylation under genetic control, can inform genetic
and epigenetic analysis of disease. Am J Hum Genet. 2014;94:485–95.
doi:10.1016/j.ajhg.2014.02.011.

25. Fortin JP, Labbe A, Lemire M, Zanke B, Hudson T, Fertig E, et al.
Functional normalization of 450k methylation array data improves
replication in large cancer studies. Genome Biol. 2014;15:503.
doi:10.1186/s13059-014-0503-2.

26. Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP,
Hansen KD, et al. Minfi: A flexible and comprehensive Bioconductor
package for the analysis of Infinium DNA Methylation microarrays.
Bioinformatics. 2014;30:1363–9. doi:10.1093/bioinformatics/btu049.

27. Makova KD, Hardison RC. The effects of chromatin organization on
variation in mutation rates in the genome. Nat Rev Genet. 2015;16:
213–23. doi:10.1038/nrg3890.

28. Schuster-Böckler B, Lehner B. Chromatin organization is a major influence
on regional mutation rates in human cancer cells. Nature. 2012;488:
504–7. doi:10.1038/nature11273.
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