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Abstract

Kraken is an ultrafast and highly accurate program for assigning taxonomic labels to metagenomic DNA sequences.
Previous programs designed for this task have been relatively slow and computationally expensive, forcing
researchers to use faster abundance estimation programs, which only classify small subsets of metagenomic data.
Using exact alignment of k-mers, Kraken achieves classification accuracy comparable to the fastest BLAST program.
In its fastest mode, Kraken classifies 100 base pair reads at a rate of over 4.1 million reads per minute, 909 times
faster than Megablast and 11 times faster than the abundance estimation program MetaPhlAn. Kraken is available at
http://ccb.jhu.edu/software/kraken/.
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Background
Metagenomics, the study of genomic sequences obtained
directly from an environment, has become an increasingly
popular field of study in the past decade. In projects that
have studied environments as varied as seawater [1], acidic
mine drainage [2] and the human body [3], metagenomics
has allowed researchers to create a picture of an environ-
ment’s microbial life without the need to isolate and cul-
ture individual microbes. Combined with an ability to
sequence DNA quickly, metagenomics projects can gener-
ate a huge amount of sequence data that describes these
previously invisible worlds.
For many metagenomic samples, the species, genera

and even phyla present in the sample are largely un-
known at the time of sequencing, and the goal of se-
quencing is to determine this microbial composition as
precisely as possible. Of course, if an organism is com-
pletely unlike anything previously seen, then its DNA se-
quence cannot be characterized other than to label it as
novel. Many species, though, have some detectable simi-
larity to a known species, and this similarity can be de-
tected by a sensitive alignment algorithm. The most
well-known such algorithm, and one of the best methods
* Correspondence: dwood@cs.umd.edu
1Department of Computer Science and Center for Bioinformatics and
Computational Biology, University of Maryland, College Park, MD, USA
2Center for Computational Biology, McKusick-Nathans Institute of Genetic
Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
Full list of author information is available at the end of the article

© 2014 Wood and Salzberg; licensee BioMed
Creative Commons Attribution License (http:/
distribution, and reproduction in any medium
for assigning a taxonomic label to an unknown se-
quence, is the BLAST program [4], which can classify a
sequence by finding the best alignment to a large data-
base of genomic sequences. Although BLAST was not
designed for metagenomic sequences, it is easily adapted
to this problem and it remains one of the best methods
available [5].
Other methods of sequence classification have been

proposed, utilizing sequence alignment and machine
learning techniques in an attempt to improve upon
BLAST’s accuracy. In the MEGAN [6] program, a se-
quence is searched (using BLAST) against multiple data-
bases, and the lowest common ancestor (LCA) of the
best matches against each database is assigned to the se-
quence. PhymmBL [5,7] combines the results of BLAST
with scores produced from interpolated Markov models
to a achieve higher accuracy than BLAST alone. The
Naïve Bayes Classifier (NBC) [8] applies a Bayesian rule
to distributions of k-mers within a genome. However, all
these programs perform at speeds slower than BLAST,
which itself takes very substantial CPU time to align the
millions of sequences generated by a typical Illumina se-
quencing run. This processing burden is so demanding
that it suggested another, faster approach to metage-
nomic sequence analysis: abundance estimation.
Abundance estimation programs work by creating a

database that is much smaller than the collection of all
genomes, which allows them to perform classification
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much faster than methods that attempt to identify every
read in a data set. These databases are engineered to
contain ‘marker’ genes (single-copy genes present in
nearly all microbes) [9], or genes that have been found
to be specific to certain clades [10]. Because the data-
bases only contain a very small sample of each genome,
these programs can only classify a small percentage of
sequences from a typical metagenomics sample. They
are meant to be used to characterize the distribution of
organisms present in a given sample, rather than label-
ling every single read. For example, the initial analysis of
the Human Microbiome Project [3] used one of these
programs, MetaPhlAn [10], to analyze several trillion
bases (terabases) of metagenomic sequences collected
from hundreds of humans. Although abundance estima-
tion programs provide a summary-level characterization
of a metagenome, they cannot help with analyses that
require more details about the sample. For example, they
cannot be used to estimate the gene content in a sample
because this requires every read to be compared to
known genes. If a sample contains a large number of
reads from one species, then it is sometimes possible to
assemble those reads to reconstruct part or all of the
genome [11], and then to classify the resulting contigs.
Here we describe Kraken, a new sequence classifica-

tion tool whose accuracy is comparable to the best
sequence classification techniques, and whose speed far
exceeds both classifiers and abundance estimation pro-
grams. This speed advantage derives in large part from
the use of exact-match database queries of k-mers, ra-
ther than inexact alignment of sequences. Its accuracy
is made possible by the very large and still-growing
number of sequenced microbial genomes, currently
numbering over 8,500, which makes it likely that very
similar sequences from a given species have been seen
before. Through the use of a novel algorithm to process
the disparate results returned by its database, Kraken is
able to achieve genus-level sensitivity and precision that
are very similar to that obtained by the fastest BLAST
program, Megablast.

Results and discussion
k-mer to lowest common ancestor database
At the core of Kraken is a database that contains records
consisting of a k-mer and the LCA of all organisms
whose genomes contain that k-mer. This database, built
using a user-specified library of genomes, allows a quick
lookup of the most specific node in the taxonomic tree
that is associated with a given k-mer. Sequences are clas-
sified by querying the database for each k-mer in a se-
quence, and then using the resulting set of LCA taxa to
determine an appropriate label for the sequence (Figure 1
and Materials and methods). Sequences that have no k-
mers in the database are left unclassified by Kraken. By
default, Kraken builds the database with k = 31, but this
value is user-modifiable.

Simulated metagenome data
Although genuine metagenomic reads might provide the
most realistic test of performance, such data would not
allow us to assess classification accuracy, because the
true species in metagenomic data sets today are mostly
unknown. We instead used two simulated metagenomes
created by combining real sequences obtained from pro-
jects that sequenced isolated microbial genomes. When
creating these simulated metagenomes, we used data se-
quenced by the Illumina HiSeq and MiSeq sequencing
platforms, and thus we call these the HiSeq and MiSeq
metagenomes, respectively (see Materials and methods).
These metagenomes were constructed to measure classi-
fication speed and genus-level accuracy for data gener-
ated by current and widely used sequencing platforms.
In addition to the two simulated metagenomes con-

structed with sequences from isolated genomes, we cre-
ated a third metagenomic sample covering a much
broader range of the sequenced phylogeny. This sam-
ple, featuring simulated bacterial and archaeal reads
(called simBA-5), was created with an error rate five times
higher than would be expected, to evaluate Kraken’s
performance on data that contain many errors or have
strong differences from Kraken’s genomic library (see
Materials and methods).

Classification accuracy
Classifiers generally adopt one of two strategies: for ex-
ample, PhymmBL and NBC classify all sequences as ac-
curately as possible, while Kraken and Megablast leave
some sequences unclassified if insufficient evidence exists.
Because PhymmBL and NBC label everything, they will
tend to produce more false positives than methods like
Kraken. In turn, one can expect a selective classifier to
have higher precision at some cost to sensitivity. Uniquely
among metagenomics classifiers, PhymmBL supplies con-
fidence scores for its classifications, which can be used to
discard low-confidence predictions and improve accuracy.
Using a lower bound of 0.65 for genus-level confidence,
we created a selective classifier based on PhymmBL’s pre-
dictions that we denote as PhymmBL65.
To compare Kraken’s accuracy to these of other classifi-

cation methods, we classified 10,000 sequences from each
of our simulated metagenomes and measured genus-level
sensitivity and precision (Figure 2 and Table 1). Here, sen-
sitivity refers to the proportion of sequences assigned to
the correct genus. Precision, also known as positive pre-
dictive value, refers to the proportion of correct classifica-
tions, out of the total number of classifications attempted.
Kraken’s sensitivity and precision are very close to that of
Megablast. For all three metagenomes, Kraken’s sensitivity



Figure 1 The Kraken sequence classification algorithm. To classify a sequence, each k-mer in the sequence is mapped to the lowest
common ancestor (LCA) of the genomes that contain that k-mer in a database. The taxa associated with the sequence’s k-mers, as well as the
taxa’s ancestors, form a pruned subtree of the general taxonomy tree, which is used for classification. In the classification tree, each node has a
weight equal to the number of k-mers in the sequence associated with the node’s taxon. Each root-to-leaf (RTL) path in the classification tree is
scored by adding all weights in the path, and the maximal RTL path in the classification tree is the classification path (nodes highlighted in
yellow). The leaf of this classification path (the orange, leftmost leaf in the classification tree) is the classification used for the query sequence.
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was within 2.5 percentage points of Megablast’s. The use
of exact 31-base matches, however, appears to yield a
higher precision for Kraken, as its precision was the high-
est of all classifiers for each of the three metagenomes. As
may be expected, the nonselective classifiers were able to
achieve slightly higher sensitivity than the selective classi-
fiers, but at the cost of a significantly lower precision, ap-
proximately 80% versus close to 100% for Kraken.
We also note the recent publication of a method,

LMAT [12], which uses a k-mer indexing scheme similar
to Kraken’s, but otherwise differs in its classification
strategy. LMAT cannot easily be downloaded and run on
our simulated data (see Additional file 1: Note 1) so in-
stead we ran Kraken on a data set used for LMAT’s pub-
lished results. For that data (the PhymmBL set), Kraken
exceeded LMAT’s accuracy in both identifying read ori-
gin and identifying the presence of species in the sample.
Both methods had essentially perfect (near 100%) preci-
sion, but Kraken correctly labelled the species of 89%
of the reads while LMAT only did so for 74% of the
reads. However, as we note, that data set does not pro-
vide a good basis for comparison because the reads are
simulated without error from genomes included in both
Kraken’s and LMAT’s databases.

Classification speed
Because of the very large size of metagenomic data
sets today, classification speed is critically important, as
demonstrated by the emergence of rapid abundance esti-
mation programs such as MetaPhlAn. To evaluate classifi-
cation speed, we ran each classifier, as well as MetaPhlAn,
against each of the three metagenomes that we used to
test accuracy (Figure 2).
Kraken classified reads much faster than any other classi-

fier, with performance ranging from 150 to 240 times faster
than the closest competitor. Kraken processed data at a rate
of over 1.5 million reads per minute (rpm) for the HiSeq
metagenome, over 1.3 million rpm for the simBA-5 meta-
genome and over 890,000 rpm for the MiSeq metagenome.
The next fastest classifier, Megablast, had speeds of
7,143 rpm for the HiSeq metagenome, 4,511 rpm for the
simBA-5 metagenome and 2,830 rpm for the MiSeq meta-
genome. For all three metagenomes, PhymmBL classified
at a rate of <100 rpm and NBC at <10 rpm. Kraken is
also more than three times as fast as MetaPhlAn (which
only classifies a subset of reads), which had speeds of
445,000 rpm, 371,000 rpm and 276,000 rpm for the HiSeq,
simBA-5 and MiSeq metagenomes, respectively. These re-
sults are shown in Figure 2. As expected, all tools processed
the longer MiSeq reads (mean length μ = 156 bp) more
slowly than the simBA-5 (μ = 100 bp) or HiSeq (μ = 92 bp)
reads. We also performed a speed comparison against
LMAT using one of the real samples discussed in LMAT’s
published results; on this sample Kraken was 38.82 times
faster than LMAT and 7.55 times faster than a version of
LMAT using a smaller database (Additional file 1: Note 1).



Figure 2 Classification accuracy and speed comparison of classification programs for three simulated metagenomes. For each
metagenome, genus precision and sensitivity are shown for five classifiers, and speed is shown for five programs (PhymmBL65 is simply a
confidence-filtered version of PhymmBL’s results, and MetaPhlAn only classifies a subset of reads that map to one of its marker genes, as it is an
abundance estimation program). Results shown are for: (a) the HiSeq metagenome, consisting of HiSeq reads (mean length μ = 92 bp) in equal
proportion from ten bacterial sequencing projects; (b) the MiSeq metagenome, consisting of MiSeq reads (μ = 156 bp) in equal proportion from
ten bacterial projects; and (c) the simBA-5 metagenome, consisting of simulated 100-bp reads with a high error rate from 1,967 bacterial and
archaeal taxa. Note that the horizontal axes in all speed graphs have a logarithmic scale.
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Other variants of Kraken
To obtain maximal speed, Kraken needs to avoid page
faults (instances where data must be brought from a
hard drive into physical memory), so it is important that
Kraken runs on a computer with enough RAM to hold
the entire database. Although Kraken’s default database
requires 70 GB of RAM, we also developed a method to
remove k-mers from the database, which dramatically
reduces the memory requirements. We call this version
of Kraken, which uses a smaller database, MiniKraken.
For our results here, we used a 4 GB database. Com-
pared to Kraken, the ability of MiniKraken to recognize
species from short reads is lower, with sensitivity for our
real sequence metagenomes dropping approximately
11% (Figure 3 and Table 1). On the high-error simBA-5
metagenome, MiniKraken’s sensitivity was more than
25 percentage points lower than Kraken’s, indicating
that for short reads, high error rates can cause
substantial loss in sensitivity. However, for all three
metagenomes, MiniKraken was more precise than
Kraken.
MiniKraken’s high precision demonstrates that in many

cases we do not need to examine all k-mers in a sequence
to get the correct classification. Taking this idea to its ex-
treme, we developed a ‘quick operation’ mode for Kraken
(and MiniKraken), where instead of querying all k-mers in
a sequence against our database, we instead stop at the
first k-mer that exists in the database, and use the LCA as-
sociated with that k-mer to classify the sequence. This op-
eration mode (denoted by appending -Q to the classifier



Table 1 Genus-level classification accuracy for three simulated metagenomes

HiSeq MiSeq simBA-5

Classifier Precision Sensitivity Precision Sensitivity Precision Sensitivity

Megablast 99.03 79.00 92.44 75.76 96.93 93.67

NBC 82.33 82.33 77.78 77.78 97.64 97.64

PhymmBL 79.14 79.14 76.21 76.21 96.11 96.11

PhymmBL65 99.13 73.95 92.47 73.03 99.08 95.45

Kraken 99.20 77.15 94.71 73.46 99.90 91.25

Kraken-Q 99.12 76.31 94.69 70.41 99.92 89.54

MiniKraken 99.44 66.12 97.41 67.95 99.95 65.87

MiniKraken-Q 99.36 65.67 97.32 65.84 99.98 65.31

Kraken-GB 99.51 93.75 98.48 86.23 99.48 91.13
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name) allows Kraken to skip tens or hundreds of k-mer
queries per sequence, significantly increasing its classifica-
tion speed with only a small fall in accuracy (Figure 3 and
Table 1). Because a database containing fewer k-mers re-
quires more queries from a sequence to find a hit,
MiniKraken-Q is slower than Kraken-Q, even when
MiniKraken is faster than Kraken.
We also created a variant Kraken database that con-

tains GenBank’s draft and completed genomes for
bacteria and archaea, which we call Kraken-GB. The
regular version of Kraken only includes RefSeq complete
genomes, of which there are 2,256, while Kraken-GB
contains 8,517 genomes. Our hypothesis was that
Kraken-GB would have a higher sensitivity than standard
Kraken for our metagenomes, by virtue of its larger
database. Kraken-GB has a much higher sensitivity for
the HiSeq and MiSeq metagenomes compared to Kraken
(Figure 3 and Table 1), primarily due to the presence of
two genomes in these simulated metagenomic samples
that have close relatives only in Kraken-GB’s database
(Materials and methods).
Although Kraken-GB does have higher sensitivity than

Kraken, it sometimes makes surprising errors, which we
discovered were caused by contaminant and adapter se-
quences in the contigs of some draft genomes. These
contaminant sequences come from other bacteria, vi-
ruses or even human genomes, and they result in incor-
rectly labelled k-mers in the database. We attempted to
remove these from Kraken-GB (Materials and methods),
but some contaminants may still slip through any filters.
Thus for now, the default version of Kraken uses only
complete RefSeq genomes.

Clade exclusion experiments
An important goal of metagenomics is the discovery of
new organisms, and the proper classification of novel or-
ganisms is a challenge for any classifier. Although a clas-
sifier cannot possibly give a novel species the proper
species label, it may be able to identify the correct genus.
To simulate the presence of novel organisms, we re-
analyzed the simBA-5 metagenome after first removing
organisms from the Kraken database that belonged to
the same clade. That is, for each read, we masked out
database hits for the species of the read’s origin, and
evaluated Kraken’s accuracy at the higher ranks (e.g.,
genus and family). We continued this masking and
evaluation process for clades of origin up to the phylum
rank. This procedure approximates how Kraken would
classify the metagenomic reads if that clade were not
present in the database.
Table 2 contains the results of this analysis. Kraken ex-

hibited high rank-level precision in all cases where a
clade was excluded, with rank-level precision remaining
at or above 93% for all pairs of measured and excluded
ranks. However, sensitivity was dramatically lower: at
best, Kraken was able to classify approximately 33% of
reads when their species has never been seen before.
This is not surprising in light of Kraken's reliance on
exact matches of relatively long k-mers: sequences deriv-
ing from different genera rarely share long exact matches.
Nonetheless, the high precision in this experiment indi-
cates that when Kraken is presented with novel organisms,
it is likely to either classify them properly at higher levels
or not classify them at all.

Human Microbiome Project data
We used Kraken to classify reads from three saliva sam-
ples collected as part of the Human Microbiome Project.
Because these samples were obtained from humans, we
created a Kraken database containing bacterial, viral and
human genomes to classify these reads. Combining the
three samples together, we report the taxonomic distri-
bution of the classified reads (Figure 4). An analysis of
the classified reads from the combined samples reveals
that a majority of those reads were classified into one of
three genera: Streptococcus (30%), Haemophilus (17%)
and Prevotella (13%). Streptococcus mitis [13], Haemoph-
ilus parainfluenzae [14] and Prevotella melaninogenica



Figure 3 Classification accuracy and speed comparison of variants of Kraken for three simulated metagenomes. For each metagenome,
genus precision and sensitivity are shown for five classifiers, and speed is shown for Kraken, along with a reduced memory version of Kraken
(MiniKraken), quick execution versions of both (Kraken-Q and MiniKraken-Q), and Kraken run with a database containing draft and completed
microbial genomes from GenBank (Kraken-GB). Results shown are for the same metagenomes used in Figure 2. Note that the scales of the axes
differ from Figure 2, as the precision and speed of Kraken (and its variants) exceed that of the other classifiers used. (a) HiSeq metagenome. (b)
MiSeq metagenome. (c) simBA-5 metagenome.
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[15], the most abundant species (by read count) of each
of these three genera, are all known to be associated
with human saliva. We also performed the classification
on each sample separately (Additional file 1: Figures S1,
S2,S3).
Of note is that 68.2% of the reads were not classified

by Kraken. To determine why these reads were not clas-
sified by Kraken, we aligned a randomly selected subset
of 2,500 of these unclassified reads to the RefSeq bacter-
ial genomes using BLASTN. Only 11% (275) of the sub-
set of unclassified reads had a BLASTN alignment with
E-value ≤ 10−5 and identity ≥90%. This suggests that the
vast majority of the reads not classified by Kraken were
significantly different from any known species, and thus
simply impossible to identify.

Conclusions
Kraken’s accuracy is comparable to that of Megablast for
classifying short sequence reads, as might be expected
given that both require long exact sequence matches
(Kraken requires 31 bp exact matches, while Megablast
requires 28 bp [16]). As we showed for the simBA-5
metagenome, where high sequence error rates were sim-
ulated, Megablast’s inexact alignment strategy allowed it
to tolerate more errors and achieve higher sensitivity
than Kraken, which uses only exact alignment. We note



Table 2 Classification statistics with clade exclusion for Kraken on the simBA-5 metagenome

Measured
rank

Excluded rank

Species Genus Family Order Class Phylum

Kingdom 100/24.4/24.4 100/7.9/7.9 100/2.8/2.8 100/2.3/2.3 100/1.5/1.5 100/1.1/1.1

Phylum 99.9/23.9/24.5 99.6/7.2/7.9 98.7/2.5/2.8 98.0/1.6/2.4 96.8/1.2/1.7 –

Class 99.7/24.7/25.3 99.1/7.1/7.9 96.7/2.0/3.0 93.2/1.0/2.3 – –

Order 99.7/24.1/25.3 98.9/6.8/8.5 96.4/2.0/3.4 – – –

Family 99.7/25.4/26.7 98.5/8.5/10.8 – – – –

Genus 99.2/26.3/33.2 – – – – –

For each measured rank, Kraken’s rank-level precision, sensitivity and classification percentage are shown. Classification percentage is defined here as the
percentage of reads with taxonomic entries at both the measured and excluded ranks that were classified by Kraken with the clade of origin excluded.
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that even in the face of this high error rate, Kraken’s sen-
sitivity still exceeded 90% and its precision was 99.9%.
With Kraken’s high precision, users concerned with
maximizing sensitivity could run Kraken first, and then
run another classification program on the reads not clas-
sified by Kraken, obtaining high sensitivity results much
faster than with a single program.
An important constraint for Kraken is its memory

usage: at present, the default database requires 70 GB, a
value that will grow in linear proportion to the number
of distinct k-mers in the genomic library (the database’s
records occupy 12 bytes per k-mer). For comparison, the
only other k-mer-based classifier, LMAT, uses a far
Figure 4 Taxonomic distribution of saliva microbiome reads classified
individuals were classified by Kraken. The distribution of those reads that w
larger database of 619 GB. While Kraken only stores the
LCA for each k-mer, LMAT also records all genomes as-
sociated with a k-mer, resulting in a record size bounded
only by the number of genomes in the library. The use
of a reduced database by MiniKraken offers a nearly
equivalent alternative, if Kraken’s database is too large
for the available computational resources.
One important potential alternative use of Kraken is

to identify contaminant sequences rapidly. As we noted,
some of the draft microbial genomes in GenBank con-
tain contaminating sequences from many different
sources. A fast classifier like Kraken can quickly identify
many such contaminants before they are included in a
by Kraken. Sequences from saliva samples collected from three
ere classified by Kraken is shown.
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draft assembly. Similarly, for microbial samples collected
from humans, a Kraken database can be created, which
can be used to identify contaminating human reads in a
metagenomic sample quickly.
Finally, Kraken’s results demonstrate the high speed and

accuracy that are achievable through the use of short exact
alignments. The Kraken database structure, which is tuned
to query overlapping k-mers rapidly, enables Kraken to
produce results faster than would be possible without the
database facilitating this type of query. We believe that this
structure can find a use in other applications beyond taxo-
nomic classification; for example, de Bruijn graphs, com-
monly used in genome assembly programs, can effectively
be traversed by querying a database with overlapping k-
mers [17], and that process can be made faster through
the caching behavior of the Kraken database. Likewise,
most operations that need to query overlapping k-mers
should be able to run significantly faster by using a data
structure like the Kraken database.

Materials and methods
Sequence classification algorithm
To classify a DNA sequence S, we collect all k-mers
within that sequence into a set, denoted as K(S). We
then map each k-mer in K(S), using the algorithm de-
scribed below, to the LCA taxon of all genomes that
contain that k-mer. These LCA taxa and their ancestors
in the taxonomy tree form what we term the classifica-
tion tree, a pruned subtree that is used to classify S. Each
node in the classification tree is weighted with the num-
ber of k-mers in K(S) that mapped to the taxon associ-
ated with that node. Then, each root-to-leaf (RTL) path
in the classification tree is scored by calculating the sum
of all node weights along the path. The maximum scor-
ing RTL path in the classification tree is the classifica-
tion path, and S is assigned the label corresponding to
its leaf (if there are multiple maximally scoring paths,
the LCA of all those paths’ leaves is selected). This algo-
rithm, illustrated in Figure 1, allows Kraken to consider
each k-mer within a sequence as a separate piece of evi-
dence, and then attempt to resolve any conflicting evi-
dence if necessary. Note that for an appropriate choice
of k, most k-mers will map uniquely to a single species,
greatly simplifying the classification process. Sequences
for which none of the k-mers in K(S) are found in any
genome are left unclassified by this algorithm.
The use of RTL path scoring in the classification tree

is necessary in light of the inevitable differences between
the sequences to be classified and the sequences present
in any library of genomes. Such differences can, even for
large values of k, result in a k-mer that is present in the
library but associated with a species far removed from
the true source species. By scoring the various RTL
paths in the classification tree, we can compensate for
these differences and correctly classify sequences even
when a small minority of k-mers in a sequence indicate
that the sequence should be assigned an incorrect taxo-
nomic label.

Database creation
Efficient implementation of Kraken’s classification algo-
rithm requires that the mapping of k-mers to taxa is per-
formed by querying a pre-computed database. Kraken
creates this database through a multi-step process, be-
ginning with the selection of a library of genomic se-
quences. Kraken includes a default library, based on
completed microbial genomes in the National Center for
Biotechnology Information’s (NCBI) RefSeq database,
but the library can be customized as needed by individ-
ual users [18].
Once the library is chosen, we use the Jellyfish multi-

threaded k-mer counter [19] to create a database con-
taining every distinct 31-mer in the library. Once the
database is complete, the 4-byte spaces Jellyfish used to
store the k-mer counts in the database file are instead
used by Kraken to store the taxonomic ID numbers of
the k-mers’ LCA values. After the database has been cre-
ated by Jellyfish, the genomic sequences in the library
are processed one at a time. For each sequence, the
taxon associated with it is used to set the stored LCA
values of all k-mers in the sequence. As sequences are
processed, if a k-mer from a sequence has had its LCA
value previously set, then the LCA of the stored value
and the current sequence’s taxon is calculated and that
LCA is stored for the k-mer. Taxon information is ob-
tained from the NCBI taxonomy database.

Database structure and search algorithm
Because Kraken very frequently uses a k-mer as a data-
base query immediately after querying an adjacent k-
mer, and because adjacent k-mers share a substantial
amount of sequence, we utilize the minimizer concept
[20] to group similar k-mers together. To explain our
application of this concept, we here define the canonical
representation of a DNA sequence S as the lexicograph-
ically smaller of S and the reverse complement of S. To
determine a k-mer’s minimizer of length M, we consider
the canonical representation of all M-mers in the k-mer,
and select the lexicographically smallest of those M-mers
as the k-mer’s minimizer. In practice, adjacent k-mers
will often have the same minimizer.
In Kraken’s database, all k-mers with the same minimizer

are stored consecutively, and are sorted in lexicographical
order of their canonical representations. A query for a
k-mer R can then be processed by looking up in an index
the positions in the database where the k-mers with R’s
minimizer would be stored, and then performing a binary
search within that region (Figure 5). Because adjacent



Figure 5 Kraken database structure. Each k-mer to be queried against the database has a specific substring that is its minimizer. To search for
a k-mer in the database, the positions in the database that contain k-mers with the same minimizer are examined. These positions are quickly
found by examining the minimizer offset array for the start positions of records with the k-mer’s minimizer (orange) and the next possible
minimizer (blue). Within a range of records associated with a given minimizer, records are sorted by lexicographical ordering of their k-mers,
allowing a query to be completed by using a binary search over this range.
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k-mers often have the same minimizer, the search range is
often the same between two consecutive queries, and the
search in the first query can often bring data into the CPU
cache that will be used in the second query. By allowing
memory accesses in subsequent queries to access data in
the CPU cache instead of RAM, this strategy makes subse-
quent queries much faster than they would otherwise be.
The index containing the offsets of each group of k-mers
in the database requires 8 × 4M bytes. By default Kraken
uses 15-bp minimizers, but the user can modify this value;
for example, in creating MiniKraken, we used 13-bp mini-
mizers to ensure the total database size stayed under 4 GB.
In implementing Kraken, we made further optimiza-

tions to the structure and search algorithm described
above. First, as noted by Roberts et al. [20], a simple lex-
icographical ordering of M-mers can result in a skewed
distribution of minimizers that over-represents low-
complexity M-mers. In Kraken, such a bias would create
many large search ranges, which would require more
time to search. To create a more even distribution of
minimizers (and thus speed up searches), we use the
exclusive-or (XOR) operation to toggle half of the bits of
each M-mer’s canonical representation prior to compar-
ing the M-mers to each other using lexicographical or-
dering. This XOR operation effectively scrambles the
standard ordering, and prevents the large bias toward
low-complexity minimizers.
We also take advantage of the fact that the search range
is often the same between queries to make Kraken’s
queries faster. Rather than compute the minimizer each
time we perform a query, we first search the previous
range. If our queried k-mer is found in this range, the
query can return immediately. If the k-mer is not
found, then the minimizer is computed; if the k-mer’s
minimizer is the same as the last queried k-mer’s, then
the query fails, as the minimizer’s search space has been
shown not to have the k-mer. Only if the minimizer has
changed does Kraken have to adjust the search range
and search again for the k-mer.

Constructing simulated metagenomes
The HiSeq and MiSeq metagenomes were built using 20
sets of bacterial whole-genome shotgun reads. These reads
were found either as part of the GAGE-B project [21] or
in the NCBI Sequence Read Archive. Each metagenome
contains sequences from ten genomes (Additional file 1:
Table S1). For both the 10,000 and 10 million read sam-
ples of each of these metagenomes, 10% of their sequences
were selected from each of the ten component genome
data sets (i.e., each genome had equal sequence abun-
dance). All sequences were trimmed to remove low quality
bases and adapter sequences.
The composition of these two metagenomes poses cer-

tain challenges to our classifiers. For example, Pelosinus
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fermentans, found in our HiSeq metagenome, cannot be
correctly identified at the genus level by Kraken (or any
of the other previously described classifiers), because
there are no Pelosinus genomes in the RefSeq complete
genomes database; however, there are seven such ge-
nomes in Kraken-GB’s database, including six strains of
P. fermentans. Similarly, in our MiSeq metagenome, Pro-
teus vulgaris is often classified incorrectly at the genus
level because the only Proteus genome in Kraken’s data-
base is a single Proteus mirabilis genome. Five more Pro-
teus genomes are present in Kraken-GB’s database,
allowing Kraken-GB to classify reads better from that
genus. In addition, the MiSeq metagenome contains five
genomes from the Enterobacteriaceae family (Citrobac-
ter, Enterobacter, Klebsiella, Proteus and Salmonella).
The high sequence similarity between the genera in this
family can make distinguishing between genera difficult
for any classifier.
The simBA-5 metagenome was created by simulating

reads from the set of complete bacterial and archaeal ge-
nomes in RefSeq. Replicons from those genomes were
used if they were associated with a taxon that had an
entry associated with the genus rank, resulting in a set
of replicons from 607 genera. We then used the Mason
read simulator [22] with its Illumina model to produce
10 million 100-bp reads from these genomes. First we
created simulated genomes for each species, using a
SNP rate of 0.1% and an indel rate of 0.1% (both default
parameters), from which we generated the reads. For the
simulated reads, we multiplied the default mismatch and
indel rates by five, resulting in an average mismatch rate
of 2% (ranging from 1% at the beginning of reads to 6%
at the ends) and an indel rate of 1% (0.5% insertion
probability and 0.5% deletion probability). For the
simBA-5 metagenome, the 10,000 read set was generated
from a random sample of the 10 million read set.

Evaluation of accuracy and speed
We elected to measure accuracy primarily at the genus
level, which was the lowest level for which we could eas-
ily determine the taxonomy information for PhymmBL
and NBC’s predictions in an automated fashion. (This is
due to the manner in which PhymmBL and NBC report
their results). Because some genomes do not have taxo-
nomic entries at all seven ranks (species, genus, family,
order, class, phylum and kingdom), we defined genus-
level sensitivity as A/B, where A is the number of reads
with an assigned genus that were correctly classified at
that rank, and B is the total number of reads with any
assigned genus. We defined sensitivity similarly for other
taxonomic ranks.
Because Kraken may classify a read at levels above the

species, measuring its precision requires us to define the
effect on precision of assigning the correct genus (for
example) while not assigning a species at all. For this
reason, we defined rank-level precision as C/(D + E),
where C is the number of reads labeled at or below the
correct taxon at the measured rank, D is the number of
reads labeled at or below the measured rank, and E is
the number of reads incorrectly labeled above the mea-
sured rank. For example, given a read R that should be
labeled as Escherichia coli, a labeling of R as E. coli, E.
fergusonii or Escherichia would improve genus-level pre-
cision. A label of Enterobacteriaceae (correct family) or
Proteobacteria (correct phylum) would have no effect on
genus-level precision. A label for R of Bacillus (incorrect
genus) or Firmicutes (incorrect phylum) would decrease
the genus-level precision.
When evaluating PhymmBL’s accuracy, following its

developers’ advice [7], we selected a genus confidence
threshold for our comparisons. We selected 3,333 reads
from the simulated medium complexity (simMC) [23]
data set, covering 31 different genera. To simulate short
reads from the Sanger sequence data in the simMC set,
we selected the last 100 bp from each of the reads. We
then ran PhymmBL against those 100-bp reads, and
evaluated the genus-level sensitivity and precision of
PhymmBL’s predictions with genus confidence thresh-
olds from 0 to 1, in increments of 0.05. We found that a
threshold of 0.65 yielded the highest F-score (the har-
monic mean of sensitivity and precision), with 0.60 and
0.70 also having F-scores within 0.5 percentage points of
the maximum (Additional file 1: Table S2). We therefore
used the 0.65 genus confidence threshold in our com-
parisons. Although the selection of a threshold depends
on a user’s individual needs, and so is to some extent ar-
bitrary, a threshold selected in this manner provides a
more proper comparison to a selective classifier such as
Kraken than no threshold at all.
The time and accuracy results when using Megablast

as a classifier were obtained from the log data produced
by PhymmBL, as PhymmBL uses Megablast for its align-
ment step. When assigning a taxonomic label to a read
with Megablast, we used the taxon associated with the
first reported alignment. Megablast was run with default
options.
Speed was evaluated using the single-threaded oper-

ation of each program (except for NBC). PhymmBL was
altered so that its call to the blastn program used one
thread instead of two. NBC was run with 36 concurrent
processes operating on disjoint sets of genomes in its
genomic library, and the total time for the classifier was
determined by summing the decompression and scoring
times for each genome. Wall clock times were recorded
for all classifiers. In comparing Kraken to the other clas-
sifiers, we used BLAST+ 2.2.27, PhymmBL 4.0, NBC 1.1
and MetaPhlAn 1.7.6. Classifiers were all run on the
same computer, with 48 AMD Opteron 6172 2.1 GHz
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CPUs and 252 GB of RAM, running Red Hat Enterprise
Linux 5. The data sets used for speed evaluation had
10,000 reads each for all programs other than Kraken (and
its variants) and MetaPhlAn, which used 10,000,000 read
data sets. Higher read numbers were used with these fas-
ter programs to minimize the effect of the initial and final
operations that take place during the programs’ execution.
Although Kraken is the only one of the programs we

examined that explicitly performs operations to ensure
its data is in physical memory before classification, we
wanted to be sure that all programs were evaluated in a
similar manner. When evaluating speed, for each pro-
gram, we read all database files (e.g. IMM files and
BLAST databases for PhymmBL, k-mer frequency lists
for NBC and the Bowtie index for MetaPhlAn) into
memory three times before running the program, in
order to place the database content in the operating sys-
tem cache (which is stored in physical memory).

Reduced database sizes
To generate the 4-GB database for our MiniKraken re-
sults, we removed the first 18 of every block of 19 re-
cords in the standard Kraken database. A shrinking
factor of 19 was selected as it was the smallest integer
factor that would reduce the size to less than 4 GB, a
size that can easily fit into the memory of many com-
mon personal computers. For users that have more
RAM available, Kraken allows a smaller shrinking factor
to be used, which will give increased sensitivity.

Use of draft genomes
When constructing the Kraken-GB database, we noticed
there were several contigs with known adapter sequences
at the ends. In subsequent tests, we also found that some
sequences in samples with large amounts of human se-
quence were consistently misclassified by this database,
leading us to conclude that contamination was likely
present in the draft genomes. In an attempt to counteract
this contamination, we removed from the database those
k-mers from known adapter sequences, as well as the first
and last 20 k-mers from each of the draft contigs. While
this did improve classification, it did not eliminate the
misclassification problem. For this reason, we believe that
if draft genomes are used in a Kraken database, very strin-
gent measures should be used to remove contaminant se-
quences from the genomic library.

Clade exclusion experiments
When re-analyzing the simBA-5 data set for our clade
exclusion experiments, some reads were not used for
certain pairs of measured and excluded ranks. If a read’s
origin lacked a taxonomic entry at either of the mea-
sured or excluded ranks, it was not used for that particu-
lar experiment.
In addition, a read was not used in an experiment un-
less at least two other taxa represented in our database
(aside from the excluded clade) at the excluded rank
shared the clade of origin’s taxon at the measured rank.
For example, a read from genus G would not be used in
an experiment measuring accuracy at the class rank and
excluding the genus rank unless G’s home class had at
least two other genera with genomes in Kraken’s gen-
omic library. Without this filtering step, were a genus
excluded when it was the only genus in its class, Kraken
could not possibly name the correct class, as all entries
in the database from that class would be excluded as
well. This is the same approach taken in similar experi-
ments that were used to evaluate PhymmBL [5].
Human microbiome data classification
We classified the Human Microbiome Project data using
a Kraken database made from complete RefSeq bacterial,
archaeal and viral genomes, along with the GRCh37 hu-
man genome. We retrieved the sequences of three acces-
sions (SRS019120, SRS014468 and SRS015055) from the
NCBI Sequence Read Archive, and each accession had
two runs submitted. All reads were trimmed to remove
low quality bases and adapter sequences. Krona [24] was
used to generate all taxonomic distribution plots.
Because the sequences were all paired reads, we joined

the reads together by concatenating the mates with a se-
quence of ‘NNNNN’ between them. Kraken ignores k-
mers with ambiguous nucleotides, so the k-mers that
span these ‘N’ characters do not affect classification. This
operation allowed Kraken to classify a pair of reads as a
single unit rather than having to classify the mates
separately.
Software and data availability
Kraken is written in C++ and Perl, and is available for
download at [25] along with the metagenome data used
to evaluate the accuracy of the classifiers presented here,
and a downloadable 4-GB MiniKraken database similar
to the one used here. The source code is also available
from GitHub [26].
Additional file

Additional file 1: Supplementary information.
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