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Abstract

Background: The high level of identity among duplicated homoeologous genomes in tetraploid pasta wheat presents
substantial challenges for de novo transcriptome assembly. To solve this problem, we develop a specialized
bioinformatics workflow that optimizes transcriptome assembly and separation of merged homoeologs. To evaluate
our strategy, we sequence and assemble the transcriptome of one of the diploid ancestors of pasta wheat, and
compare both assemblies with a benchmark set of 13,472 full-length, non-redundant bread wheat cDNAs.

Results: A total of 489 million 100 bp paired-end reads from tetraploid wheat assemble in 140,118 contigs,
including 96% of the benchmark cDNAs. We used a comparative genomics approach to annotate 66,633 open
reading frames. The multiple k-mer assembly strategy increases the proportion of cDNAs assembled full-length in a
single contig by 22% relative to the best single k-mer size. Homoeologs are separated using a post-assembly
pipeline that includes polymorphism identification, phasing of SNPs, read sorting, and re-assembly of phased reads.
Using a reference set of genes, we determine that 98.7% of SNPs analyzed are correctly separated by phasing.

Conclusions: Our study shows that de novo transcriptome assembly of tetraploid wheat benefit from multiple k-
mer assembly strategies more than diploid wheat. Our results also demonstrate that phasing approaches originally
designed for heterozygous diploid organisms can be used to separate the close homoeologous genomes of
tetraploid wheat. The predicted tetraploid wheat proteome and gene models provide a valuable tool for the
wheat research community and for those interested in comparative genomic studies.

Keywords: Transcriptome assembly, multiple k-mer assembly, wheat, polyploid, Triticum urartu, Triticum turgidum,
pseudogenes, phasing, gene prediction

Background
Whole genome duplication events, or polyploidization,
have occurred repeatedly throughout the evolutionary
history of flowering plants[1,2]. Many currently cultivated
species are recent polyploids, formed through either
inter-specific hybridization (allopolyploids, such as
wheat, oats, canola, peanut, and cotton)or intra-specific
hybridization (autopolyploids, such as apple, strawberry,
watermelon, and alfalfa)[2]. In addition,homoeologs in
older polyploid species, such as maize (11-15 million
years since polyploidization)[3]have had a longer time to
diverge through deletions, loss of function, neo-functio-
nalization, and sub-functionalization processes (usually

referred to as diploidization). These processes confer
polyploid species an increased evolutionary plasticity,
whichpromotes speciation and adaptation to new envir-
onmentsand contributes to the huge success of poly-
ploidy in plant evolution[2,4].When diploidization
processes continue over long periods of time, they lead to
the formation of paleo-polyploid species (for example,
rice), which are difficult to differentiate from true diploid
species. However, genomic studies haveprovided convin-
cing evidence of ancient whole genome duplication
events in the early monocot and dicot lineages suggesting
that polyploidy was part of the evolution of most current
angiosperms [5,6].
Wheat (Triticum spp.) was domesticated at the dawn of

agriculture approximately 10,000 years ago and has since
been adapted to grow in a broad range of climates

* Correspondence: jdubcovsky@ucdavis.edu
1Dept. Plant Sciences, University of California, Davis, CA 9561, USA
Full list of author information is available at the end of the article

Krasileva et al. Genome Biology 2013, 14:R66
http://genomebiology.com/content/14/6/R66

© 2013 Krasileva et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:jdubcovsky@ucdavis.edu
http://creativecommons.org/licenses/by/2.0


throughout the world [4]. Most cultivated wheat varieties
belong to two species; tetraploid Triticum turgidum
L. (durum or pasta wheat, genomes AABB) and hexaploid
T. aestivum L. (common wheat, genomes AABBDD). The
tetraploid wheat genome originated from an inter-speci-
fic hybridization event occurring less than 0.5 million
years ago, which combined the AA genome of T. urartu
Tumanian ex Gandilyan and the BB genome of an
unknown grass species related to Aegilops speltoides
Tausch[7-9].Common wheat, T. aestivum , evolved from
a second round of inter-specific hybridization and gen-
ome duplication that occurred shortly after domestica-
tion and combinedthe tetraploid AABB genomes of
cultivated T. turgidum and the DD genome of the wild
grass Aegilops tauschii (Coss.) Schmalh[4].
The diploid progenitors of polyploid wheat species

diverged from a common ancestor only 2.5-4.5 million
years ago[10], which is reflected in a high average identity
(approximately 97%) among coding regions of different
wheat homoeologs. However, this average varies greatly
among gene classes that are subject to different evolu-
tionary pressures [11]. For example, conversion events
(unequal crossing-over between tandemly-duplicated
paralogs) and diversifying selection processes are known
to accelerate the divergence rate between members of the
disease resistance gene family [12-14].
Wheat intergenic regions diverge even faster than

rapidly evolving gene families due to high levels of methy-
lation and increased rates of insertions and deletions,
which are associated with the abundance of repetitive ele-
ments in these regions [15]. These rapid changes in the
intergenic regions can affect neighboring genes and result
in rapid rates of gene insertion, deletion, and transposition
[16].The potentially negative effects associated with gene
deletions are buffered by polyploidy [17-20].Transposition
of genes and gene fragments by adjacent retroelements
results in higher proliferation of pseudogenes in the large
polyploid Triticeae genomes compared to other grass spe-
cies with smaller genomes [19,21].In addition, increased
divergence of alternative splicing variants between the
diploid progenitors further diversifieshomoeologs’gene
structure (and potentially their function) in the polyploid
wheat species[21]. The dynamic nature of these large gen-
omes needs to be considered in the development of strate-
gies to characterize the wheat gene complement.
In species with large genomes, de novo transcriptome

assemblies are an effective strategy to access the gene
spacewhile avoiding the highly repetitive intergenic
regions. In wheat, for example, the transcribed gene-
coding regionsrepresent only 1% to 2% percent of the
totalgenome[22]. Rapid growth in throughput, quality,
and accessibility of next-generation sequencing technol-
ogies, together with improvements in de novo transcrip-
tome assembly algorithms have fostered a multitude of

transcriptome sequencing projects. With increased
access to next generation sequencing, many plant de
novo transcriptome assemblies have been published and
several different assembly algorithms have been pro-
posed[23-25]. However, the challenges specific to de
novo transcriptome assembly of a young polyploid spe-
ciessuch as tetraploid wheat are just starting to be
addressed[26,27]. Particularly important is the correct
separation of close homoeologs, since there are known
examples of different homoeologs contributing differ-
ently to important agronomic traits (for example, wheat
VRN1 homoeologs[28]). Correct separation of homoeo-
logs is also important for breeding applications, marker
development, and downstream genomics analyses.
Three recent studiesof hexaploid wheat transcriptomes

[27,29,30] highlight the difficulties of assembling closely
related homoeologs in a polyploid species. Schreiber
et al. (2012) observed that most homoeologs were col-
lapsed into chimeric contigs when hexaploid wheat tran-
scriptomes were assembled using either Velvet/Oases
(60% to 80% chimeric sequences) or Trinity (50% chi-
meric sequences). A computationally-intensive two-stage
assembly using the MIRA assembler helped to reduce the
number of chimeric homoeolog sequences to 18%, thus
partially solving the polyploid problem at the assembly
step [27].An alternative strategy was used by The Inter-
national Wheat Genome Sequencing Consortium
(IWGSC): genome-specific contigs of hexaploid wheat-
were generated by sorting individual chromosome arms
usingflow cytometry and sequencing and assembling
each of them separately[21,31,32].
In this paper, we present abioinformatics pipeline that

addresses the challenges of de novo transcriptome assem-
bly of the closely related genomes of tetraploid wheat.
Using this pipeline, weassembled, annotated and analy-
zedthe transcriptome of T. turgidum cv. Kronos and of its
closest diploid relative T. urartu.This diploid wheat tran-
scriptome together with a reference dataset of 13,472 full-
lengthwheat cDNAs were used to evaluate the effect of
different parameters on the quality of the tetraploid wheat
assembly.We developed post-assembly processing strate-
gies and software that allowed us to generate homoeolog-
specific sub-assemblies. Finally, we used comparative
genomics approaches to annotate open reading frames
and predicted proteins, predict pseudogenes and artificially
fused transcripts, and generate gene models to increase
the value of this resource.

Results and discussion
Sequencing and evaluation of experimental and digital
normalization
In total, we sequenced 248.5 million and 488.9 million
paired-endIllumina reads (100 bp each) for T. urartu
and T. turgidum cv. Kronos, respectively (Additional
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File 2, Table S1).The raw reads were submitted to
the Short Read Archive (SRA) and linked to their
respective NCBI BioProjects PRJNA191053(T. urartu)
and PRJNA191054(T. turgidum). After trimming Illu-
mina adapter sequences with Scythe and poor quality
bases with Sickle (see Materials andmethods) the aver-
age read length was94 bp for T. urartu and 96 bp for
T. turgidum. The number of reads obtained from indivi-
dual RNA-seq libraries varied from 20.3 to 137.1 million
reads and is summarized in Additional file 2, Table S1.
Double-stranded DNA nuclease (DSN) normalization
Results from DSN are described in Figure S1 (Additional
file 3). First, we evaluated the fold change in abundance
of four marker genes by quantitative RT-PCR (Additional
file 3, Figure S1A). Rubisco, one of the most highly
expressed genes, showed an 11- to 13-fold decrease in
transcript levels after normalization, whereas transcripts
of a low abundance NBS-LRR geneshowed a slight
increase after normalization (Additional file 3, Figure
S1A). We then evaluated the relative abundance of Illu-
mina reads mapped to a reference set of full-length
wheat cDNA transcripts and additional high abundance
geneswith and without normalization (Additional file 3,
Figure S1B,C). Our results showed that DSN normaliza-
tion resulted in an enrichment of the low abundance
transcripts and a reduction of the most abundant tran-
scripts relative to the control without DSN normaliza-
tion. There were a substantial number oftranscripts
detected only after normalization (new points to the left
of the red reference line in Figure S1C), which indicates
that our DSN normalization contributed to a more com-
prehensive transcriptome assembly.
Digital normalization
In addition to the experimental DSN normalization and
prior to assembly, we performed a digital normalization of
the reads using the khmerprogram [33] (see Materials and
methods). This normalization is designed to reduce redun-
dancy in the RNA-seq data and accelerate assembly.
We tested the effect of digital normalization on assembly
quality using a previously published RNA-seq library of
T. turgidum cv. Langdon [34]. The 28 million reads pre-
sent in this library were reduced to 9 million reads after
digital normalization. Both sets of reads were assembled
using our multiple k-mer size assembly pipeline (see next
section) and the resulting contigs were aligned to the
13,472 full-length wheat cDNA benchmark set [35]using
BLASTN (E-value 1e-20, >90% identity). Additional file 4,
Figure S2 shows thatboth datasets have identical distribu-
tions of the number of reference genes assembled at differ-
ent levels of coverage (correlation between distributions
R = 0.99989). This result confirmed that digital normaliza-
tion had no significant negative effects on the quality of
assembliesgenerated by our multiple k-mer length

assembly pipeline. Digital normalization reduced the num-
ber of paired-end reads five-fold (Table 1), thus greatly
reducingthe time and resources required for the multiple
k-merassemblies.

Distribution of percent identity and SNP distances
between A and B homoeologs
Several of the programs used in our assembly pipeline
require input parameters that are dependent on the level
of divergence between the homoeologousgenomes and/
oron the average distance between single nucleotide poly-
morphisms (SNPs). To estimate these two parameters we
analyzed the coding sequences of 52genes (26 A/B gen-
ome homoeolog pairs, average size 1,199 bp, Supplemen-
tal dataset 1[36]), which were previously sequenced and
annotated in our laboratories. DNA sequence identity
(excluding gaps) between A and B coding regions showed
a normal distribution (Shapiro-Wilk test P = 0.40)with a
mean of 97.26% and a standard deviation of 1.20%
(Figure 1A). Based on this result,we estimated that a
minimum threshold of 94%identity (≤12 SNPs per 100 bp
paired-end fragments) would include approximately 99%
of all identity values between true homoeologs and allow
roughly 99% of the paired-end reads to map to both
homoeologs. With a minimum threshold of 95% identity
(≤10 SNPs per 100 bp paired-end fragments) the previous
proportions were reduced to 95% of the homoeologs and
mapped reads.
Poisson processes for SNPs imply exponential distri-

butions of inter-SNP distances and hence long tails [37].
The frequency of inter-SNP distances found in this
study between wheat homoeolog coding regions also
decreased exponentially with inter-SNP distance (Figure
1B). For this set of 52 genes, the mean distance between
adjacent SNPs was 37.8 bp (standard deviation of 47.1
bp), which is close to the average distance of 32.9 bp
estimated from the 97.26% percent identity and the
1,199 bp average lengthof the 26 manually-curated
homoeolog pairs used in our dataset (Figure 1B).
This level of polymorphism, the variable distances

between adjacent SNPs, and the need to separate close
homoeologspose challenges to most transcriptome assem-
blers, which were designed and tested for lower levels of
intraspecific heterozygosity and were not required to sepa-
rate close haplotypes. To address this problem we applied
several post-assembly processing tools that integrateavail-
able and novel software to generate homoeolog-specific
sub-assemblies.The overall assembly strategy is described
in Figure 2A, the annotation procedures in Figure 2B, and
the specific steps to separate the collapsed homoeologs into
homoeolog-specific sequences are illustrated in Figure 2C.
A detailed description of each of the different steps is
included below.
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Effect of different k-mersizeson the assembly of diploid
and tetraploid wheat transcriptomes
For initial reconstruction of the wheat transcriptome we
useda de Bruijn graph de novo assembly algorithm imple-
mented in CLC Genomics v5.5. Since the word size (or
k-mer size) is one of the key parameters in constructing de
Bruijn graphs, we evaluated the effect of 10 different k-mer
sizes(ranging from 21 to 63, the maximum permitted in
CLC) on the assembly of tetraploid and diploid wheat

transcriptomes.At each k-mer size, we assessed basic
assembly metrics, includingthe total number of contigs,
average contig size and the proportion of reads assembled.
In addition to these basic measures, we estimated comple-
teness of our assemblyby assessing the proportion of13,472
benchmark cDNA sequences[35]assembled at full length in
a single contig (Figure 3A-E, Additional file 2, Table S2).
While the resulting number of contigs and average

contig size differed very little across the range of k-mer

Table 1 The T. urartu and T. turgidum final assembly statistics

T.urartu T.turgidum

100-bp paired-end reads (n) 248.5 million 488.9 million

Reads after digital normalizationa (n) 47.3 million 110.7 million

Contigs (n) 86,247 140,118

Mean contig size (bp) 1,417 bp 1,299 bp

Min contig size (bp) 212 bp 298 bp

Max contig size (bp) 17,959 bp 26,226 bp

GC content (%) 49% 49%

Total transcriptome size (Mb) 122 Mb 181 Mb

Reads mapping to the assembly (% of total reads) 82.2% 81.5%

Reads mapped in proper pairs (% of total reads) 73.0% 71.5%

Unique alignments (% of total mapped) 52.8% 76.7%

Benchmark genesb assembled > 50% length in a single contig 12,693 (94%) 12,961 (96%)

Benchmark genesb assembled > 90% length in a single contig 10,727 (80%) 10,197 (76%)
aElimination of Homo sapiens,Escherichia coli, wheat mitochondrial, rRNA, and chloroplast sequences resulted in the elimination of 0.5% of the digitally normalized
reads in T. urartu and 0.6% in T. turgidum.
b13,472 full-length cDNAs from the RIKEN Plant Science Center Japan [35].
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Figure 1 Divergence of A and B transcripts. (A) Distribution of percent identity between A/B homoeologous genes in a set of 26
experimentally validated genes (52 homoeologs). Mean = 97.3%; SD = 1.20%. (B) Distribution of distances between 707 single nucleotide
polymorphisms (SNPs) between homoeologs in tetraploid wheat coding regions. Mean = 37.8 bp; SD = 47.1 bp; Median = 27 bp.
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values (Figure 3A, B, Additional file 2 Table S2), all
other metrics indicated an improvement in assembly
quality with increased k-mersize up to k-mer 61 (Figures
3C, D, and 3E, Additional file 2 Table S2). For both
T. urartu and T. turgidum, assembly completeness
increased with k-mer length; at k-mer 63, 74% and 70%
of all reads utilized in the assembly compared to only
56% and 52% at k-mer 21, respectively (Figure 3C, Addi-
tional file 2 Table S2).The percent of reads mapping in
proper pairs, an indicator of assembly continuity also
improved with increasing k-mer size, but the gain was
more modest, ranging from 61% at k-mer 21 to 63% to
64% at k-mer 63 (Figure 3D, Additional file 2 Table S2).
Figure 3E shows that a larger proportion of the

13,472benchmark cDNA sequences [35]are assembled at

full length (>90% coverage) at larger k-mersizes. This
metric showed clear differences between the diploid and
the tetraploid assemblies for all k-mersizes,with the
T. turgidum assemblies showing a lower proportion of
fully assembled genes than the T. urartu assemblies. In
T. turgidum, only 46% of benchmark genes were
assembled at fulllength in a single contig at k-mer 63, while
in T. urartu, this number was close to 60% (Figure 3E, F,
Additional file 2 Table S2). This result suggeststhat de novo
transcriptomeassemblies can be more fractionated in poly-
ploid species with recently duplicated genomes than in
their donor diploid species.
Triticum turgidum contigs that are separated correctly

into A and B homoeologs should show a bimodal distri-
bution of percent identities when compared with
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T. urartu. In Figure 4, we plotted the distribution of
percent identities between the best BLAST hits between
T. urartu and T. turgidum contigs, colored according to
the specific k-mer assembly that contributed that contig.
All k-mer sizes show a sharp peak at 99% identity that
corresponds to the tetraploid A genome contigs aligned
with the diploid A genome progenitor, but only the lar-
ger k-mersizes show a second peak around 96% identity
(Figure 4). We interpret this result as evidence of a bet-
ter separation of A and B genome contigs derived from
the larger k-mersizes. Chimeric A/B assemblies are
more abundant at lower k-mersizesand their intermedi-
ate percent identity values ‘fill’ the valley between the
A/A and A/B peaks resulting in curves with a single
peak (Figure 4). For all k-mersizes, identity values <94%
include the most divergent 1% of the homoeologs, but
most likely also include many paralogous alignments.

Advantages and disadvantages of merged multiple
k-mer assemblies
Since different k-mer sizes lead to full-length assemblies
ofdifferent sets of genes (Figure 1F), we combined the
contigs from the 10 different k-mer assemblies, and
eliminated redundancy using the CD-HIT program (see
Materials and methods), which was recently shown to

produce more inclusive sets of transcripts compared
with Oases and V-MATCH [38].
The advantages of this approach were evident in the

improvement of several assembly metrics in the CD-HIT
merged k-mer assemblies relative to the single k-mer
assemblies. The CD-HIT merged k-mer datasets showed a
higher fraction of reads mapping back to the assembly
(Figure 3C), a higher fraction of reads mapped in proper
pairs (Figure 3D), and an increase in the proportion of con-
tigs including complete benchmark transcripts (Figure 3E)
in both T. turgidum and T. urartu. However, gains from
the merged dataset relative to the best individual k-mer
size were greater in T. turgidum than in T. urartu. This dif-
ference was particularly clear for the last metric, where the
percent of cDNAs assembled full-length in a single contig
rose from 60% to 68% for T. urartu and from46% to 68%
for T. turgidum (Figure 3E). It is interesting to point out
that, based on our different metrics,the quality of our
diploid and tetraploid transcriptomes are similar only in
the merged k-mer assemblies. This result suggests that by
merging assemblies from a wide range of k-mersizes it is
possible to achieve similar quality for both diploid and tet-
raploid de novo transcriptome assemblies. The importance
of using a wide range of k-merlengthsin the assembly of
transcriptomes from polyploid species is further illustrated
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in Figure 3F, which shows that the proportion of genes
assembled at full length at k-mer 21 but not at k-mer 63
was larger in T. turgidum (14%) than in T. urartu (4%,
Figure 3F).
One disadvantage of using a multiple k-mer approach

is the high redundancy generated by duplicated genes
and different A/B chimeric forms of the same gene
assembled at different k-mersizes. Fortunately, a large
proportion of this redundancy can be eliminated using
CD-HIT with the appropriate percent identity threshold.
By adjusting this parameter to 95%in T. turgidum and
99% in T. urartu we reduced the initial number of con-
tigs 4.6-fold in T. urartu and 5.5-fold in T. turgidum
(Additional file 2, Table S2). A 95%identity threshold was
selected for tetraploid wheat to merge most (approxi-
mately 95%) duplicated chimeric contigs (Figure 1A). This
thresholdalso eliminated one member of fully-overlapping
homoeolog-pairs even if they were not A/B chimeras.
Many of the eliminated homoeologs were recoveredat a
later stage during the phasing and reassembly of phased
reads (Figure 2C). As mapping quality decreases signifi-
cantly when reads map to multiple locations, the elimina-
tion of one of the members of close homoeolog pairs has
the additional benefit of improving read mapping quality
which is important for SNP calling and phasing in the
next steps of our pipeline.
A limitation of the CD-HIT program is that it does not

merge partially overlapping contigs, so additional steps
were needed to combine overlapping contigs from differ-
ent k-mer assemblies. To reconstructtranscripts split
between partially overlapping contigs we implemented
blast2cap3[39],a protein-guided assembly approach,to
reconstruct partially overlapping contigs assembled at
different k-mersizes (see Materials and methods, Addi-
tional file 5). Briefly, blast2cap3first clusters contigs
based on similarity to a common protein and then passes
each cluster to the overlap-based assembly program
CAP3[40]. By operating on small subsets of contigs that
have been pre-filtered using biologically-relevant infor-
mation, blast2cap3 generates less artificially fused
sequences as compared to assembling the entire dataset
with CAP3. For this study we used seven plant protein
databases (six grass species and Arabidopsis, see Addi-
tional file 2, Table S3) and a high stringency criteria
(>99% identity for >100 bp, to reduce the generation of
chimeric A/B clones). To further lower the risk of mer-
ging incorrect contigs based on common repetitive ele-
ments we masked all sequences using the Triticeae
Repeat Sequence Database (TREP) (BLASTN and
BLASTX, E-value cutoff 1e-10) before running blast2cap3.
The implementation of blast2cap3 reduced the total
number of contigs by 8% to 9%, reducing assembly
redundancy and/or fractionation.

After these merges,the final transcriptomes included
86,247 contigs for T. urartu (average 1,417 bp, Supplemen-
tal dataset 2[36]) and 140,118 contigs for T. turgidum
(average 1,299 bp, Supplemental dataset 3[36]) (Table 1).
The T. turgidum transcriptome included 96% of the 13,472
benchmark full-length cDNA sequences [35]with a cover-
age >50% in single contigs and 80% with a coverage >90%
(compared to 68% before blast2cap3). The T. urartu tran-
scriptome showed similar parameters (94% with coverage
>50% and 76% with coverage >90%, Table 1).These results
suggest that our transcriptomes include a large proportion
of all wheat genes. Final T. urartu and T. turgidum assem-
blies were filtered according to the guidelines of Transcrip-
tome Shotgun Assembly (TSA) and deposited under TSA
accessions GAKL00000000 and GAKM00000000,
respectively.
After the assemblies were completed, the bioinfor-

matics pipeline branched in two directions: one focused
on the annotation of the contigs (Figure 2B) and the
other aimed at separating sequences from the A and B
genomes by phasing (Figure 2C). These post-assembly
processes are described in detail below.

Open reading frame prediction and functional
annotation of wheat transcriptomes
The ORF prediction process was based on a comparative
genomics approach implemented in the findorf program
(Additional file 6) [41]. This approach relies on BLASTX
alignments between transcripts and proteomes from other
plant species (Additional file 2, Table S3) and Hidden
Markov Model (HMM)-based Pfam domain predictions
(see Materials and methods for specific parameters). In
total, we predicted 76,570 ORFs for T. turgidum (and
43,014 for T. urartu, Table 2).Functional annotation of the
predicted proteins using HMM-based searches against
Pfam[42] (see Materials and methods) showed that the
three most prominent domains in our wheat transcripto-
meswereprotein kinase (Pkinase), leucine-rich repeat
(LRR), and nucleotide-binding site (NBS) domains - signa-
ture domains of receptor-like kinases and plant disease
resistance genes.
Roughly 30% of the contigs (26,070for T. urartu and
42,999for T.turgidum) did not show significant similarity
to any plant protein by BLASTX (E-value 1e-3), nor to any
Pfam domain (E-value 1e-3) (Table 2). These contigs are
likely to include:(1) wheat-specific genes and rapidly evol-
ving gene families;(2) expressed pseudogenes that have
accumulated too many mutations;(3) non-coding tran-
scribed sequences; (4) pieces of 5’ and 3’ UTRs; and (5)
general assembly artifacts. Although at this point it is hard
to differentiate between these possibilities, it is interesting
to note that many well-studied transcriptomes, such as
mouse and human, contain a substantial number of long
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non-protein coding RNAs (lncRNAs) [43,44]. LncRNAs
have been shown to regulate a variety of cellular processes
and several show increased expression in response to
stress and pathogen attack in wheat [45]. The human
ENCODE project has demonstrated the value of docu-
menting and storing these non-coding sequences[46].
Pseudogenes
Using the findorfprogram(Additional file 6)[41]we iden-
tified 5,208 ORFs in T. urartu(12.1%) and 9,937 in
T. turgidum(13.0%) that were disrupted by frameshifts
or stop codons (Table 2). Even though the percentages
of predicted pseudogenes in these two datasets are rela-
tively close, they are significantly different (P<0.0001,
Fisher’s Exact Test) due to the large sample size. A
slightly higher proportion of pseudogenes in T. turgi-
dum than in T. urartu is to be expected since gene
duplications are known to lead to relaxed selection [47].
To validate the pseudogene predictions we compared
theircodon usage with that of predicted functional
genes.Pseudogenecodon usage is expected to drift
towards that of intergenic DNA regions due to a lack of
purifying selection [48]. Figure 5shows a multidimen-
sional scaling plot of the distances between contigs
based on the frequencies of codon usage in ORFs. The
partial separation across the two-dimensional space indi-
cates a tendency towards differential codon usage
between functional and non-functional ORFs with pre-
dicted frameshift mutations or premature stop codons,
which provides an independent validation for the pseu-
dogene prediction pipeline. A partial overlap between

these two classes is expected for pseudogenes of recent
origin.
It is interesting to note that our estimates of the propor-

tion of pseudogenes present in T. urartu and T. turgidum-
transcriptomes are lower than the 28%aestimate obtained
from a T. aestivum transcriptome assembled from Roche
454 reads[21].This discrepancy is not likely to be caused by
differences in pseudogene identification methods, since our
findorf prediction pipeline estimated a very similar propor-
tion of pseudogenes (27% of the ORFs) in the recently pub-
lished transcriptome of T. aestivum variety Kukri
assembled using a combination of Roche-454 and Illumina
GAIIx paired-end reads[27].The higher proportion of pseu-
dogenes observed in T. aestivum than in T. turgidum tran-
scriptomes is unexpected given the short evolutionary time
since the origin of T. aestivum from T. turgidum. It is pos-
sible that differences in sequencing technologies and/or
assembly methods may have also contributed to these dif-
ferences. For example, homopolymer sequencing errors in
Roche 454 sequences generate frameshift mutations, which
can result in an overestimation of the proportion of
pseudogenes.
Artificially fused transcripts
During the initial ORF prediction we determined which
contigs were aligned to more than one plant protein in
the opposite orientation (one BLAST hit to the positive
strand, and another to the negative strand). We initially
identified a total of 3,628 contigs with inconsistent
strands in T. urartu (6.1%of the total contigs with
BLASTX hits) and 4,376 in T. turgidum (4.5%, Table 2).

Table 2 Open reading frame predictiona

T. turgidum T. urartu

Contigs (n) 140,118 86,247

Non-wheat sequencesb (eliminated) (n) 558 518

Wheat protein coding sequences

BLASTX, E-value cutoff 1e-3 96,244 59,439

Contigs with a Pfam domain (1e-3) 59,917 39,965

Contig sequences without BLASTX (1e-3) or Pfam (1e-3) 42,999 26,070

Predicted open reading frames

Predicted ORFs (non-redundant, >30 amino acids) 76,570 43,014

Fulllength 32,548 22,868

Missing 5’ end 26,723 12,225

Missing 3’ end 12,792 5,376

Missing 5’ and 3’ end 4,507 2,545

Putative pseudogenes (frameshift and/or premature stop codon) 9,937 5,208

Putative fused transcripts

Contigs with BLASTX on inconsistent strand 4,376 3,628

Contigs with >1 predicted ORFs (>30 amino acids, no repetitive elements, not a pseudogene) 2,164 1,349

Putative fused transcripts (excluding overlaps) (n) 6,409 4,866
aOpen reading frames were predicted with a comparative genomics approach using the findorfprogram and BLASTX alignments (E-value cutoff 1e-5) between
contigs and proteomes of barley, Brachypodium, rice, maize, sorghum, and Arabidopsis.
bNon-wheat sequences were identified based on taxonomic distribution of top 10 BLASTX hits against nr.
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Some of these contigs are likely to be the result of tran-
scripts artificially fused during assembly.
As a complementary method to identify and character-

ize artificially fused contigs(in both orientations) we per-
formed two consecutive runs of findorf. After the initial
ORF prediction we masked the predicted coding region
and ran a second round of findorf to identify contigs that
include more than one predicted protein. We manually
annotated 22 putative fusions (see Additional file 2,
Table S4) to characterize their origin and evaluate the
predictive value of our strategy. Only six contigs (27.3%)
included ORFs that mapped to different T. aestivum
genomic contigs[32].For three of them, we were able to
identify a common microsatellite in the UTR, a shared
inverted region in the UTR, and a common conserved
domain as the probable sources of the incorrect fusions
(Additional file 2, Table S4). Among the contigs includ-
ing two ORFs that were mapped to the same genomic
contig, five (22.7%) were fused due to overlapping 3’ UTR
regions in opposite DNA strands (adjacent genes with
opposite orientations). Of the remaining 11 contigs

(50%),the inconsistent ORF prediction was associated
with the presence of repetitive regions (three cases),
pseudogenes and very short predicted secondary ORFs
(five cases), and adjacent ORFs that were incorrectly pre-
dicted as separate proteins andrepresentedtrue biological
gene fusions (three cases) (Additional file 2 Table S4).
To eliminate incorrectly predicted artificially fused

contigs we added additional filters to the prediction of
secondary ORFs including: (1) elimination of short pre-
dicted ORFs (<30 amino acids);(2) elimination of ORFs
predicted as pseudogenes; and (3) elimination of ORFs
predicted in regions with significant similarity to repeti-
tive elements (TREP database)[49]. After applying these
filters, the number of contigs annotated as putative arti-
ficially fused transcripts was reduced byhalf (Table 2).
Combining both methods (and excluding overlapping
contigs), we estimated a total of 4,866 (8.2%) and 6,409
(6.7%) putative artificially fused transcripts for T. urartu
and T. turgidum, respectively (Table 2). Predicted fused
transcripts are marked either as ‘inconsistent_strand’ in
the comments field or ‘predicted_iter2_orf’ in the source
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Figure 5 Comparison of codon usage in predicted genes and pseudogenes. A multidimension scaling scatterplot was generated from a
random set of 3,000 full-length and 3,000 pseudogene-containing contigs. Pseudogenes were predicted by findorf by the presence of internal
frameshifts or stop codon compared with known plant proteins.
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fieldof the GTF annotation files (Supplemental datasets
4 and 5[36]), depending on which of the two methods
was used to identify the putative fusion.
In summary, after addition of the secondary ORF pre-

dictionsidentified in the artificially fused contigs and the
exclusion of predicted pseudogenes,the final transcrip-
tome datasets comprised 37,806 ORFs in T. urartu
(Supplemental dataset 4[36]) and 66,633 ORFs in T. tur-
gidum (Supplemental dataset 5[36]). The predicted pro-
teins from these ORF are deposited in Supplemental
dataset 6 (T. urartu)and Supplemental dataset 7 (T. tur-
gidum)[36].

Gene structure
A BLASTN comparison between our transcriptomes and
the available genomic sequences for the Chinese Spring
chromosome arms [32] allowed us to simultaneously
determine gene structure and chromosome location (Sup-
plemental datasets 13 and 14[36]). A threshold of 99%
identity was used to identify the most likely correct homo-
eolog for each of our predicted ORFs. The analysis of the
BLASTN results showed that 46% of the T. urartu and
55%of the T. turgidum ORFs have ≥99% identity (and
≥65%coverage) to one or more contigs of Chinese Spring
(Table 3). These results indicate that roughly half of our
ORFs are represented by the corresponding homoeologous
genome in the current genomic assemblies of the wheat
chromosome arms, with 40% in T. urartu and 50% in
T. turgidum being full length (>95% coverage). Significant
alignments with the other homoeolog (94%≤ Id < 99%,
>65% coverage) were identified for another 42% and 33%
of the T. urartu and T. turgidum ORFs, respectively.
These alignments were used to predict gene structure

using the program EXONERATE [50]for all the ORFs. We
identified complete gene structures (>95% coverage) for
77.6% of the ORFs and at least partial structures (>65%
coverage) for 88.0% of the ORFs (Table 3 weighted
averages of the two datasets). The coordinates of the

predicted exons are provided in Supplemental Datasets 13
(T. urartu) and 14 (T. turgidum)[36]. These tables also
provide percent identities between the predicted ORFs
and the Chinese Spring contigs (Table 3) and can be used
to infer homoeologs among the T. turgidum ORFs.

Phasing of merged homoeologs to reconstruct genome-
specific sub-assemblies
Based on previous reports [27], we expected that even
using very sensitive assemblers, a significant proportion
of the homoeologs would be merged creating A/B chi-
meric contigs (Figure 6A). Therefore, we exploredpost-
assembly approaches to separate merged contigs.We
hypothesized that the separation of two homozygous
genomes in a self-pollinated- and therefore, highly
homozygous -tetraploid species presents similar chal-
lenges to the separation of haplotypes in a sexually
reproducing diploid organism. The problem of resolving
heterozygous haplotypes from next generation sequen-
cing data has recently been tackled in humans [51]
using the HapCUT algorithm[52].
To identify polymorphisms inmerged homoeologs we

first re-aligned all the T. turgidum reads back to the
assembled contigsallowing a maximum of 10 mis-
matches per 2×100bp paired-end read fragment (>95%
identity). Using the FreeBayes variant detection pro-
gram with parameters adjusted for RNA-seq data (see
Materials and methods), we identified 1,179,465 poly-
morphisms, including 958,362 SNPsand 23,424 multi-
nucleotide polymorphisms (MNPs) present in 103,304
contigs (Table 4). There were a total of 74,880 contigs
(53.4%) that contained >1 SNP/MNP, which were
therefore good candidates for polymorphism phasing
(Table 4).As expected, this proportion was much lower
in T. urartu, which showed only 25.4% of the contigs
with >1 SNP (21,926/86,247), which indicates that
some close paralogs have been merged in the multi-k-
mer diploid assembly.

Table 3 Comparison of predicted ORFs (excluding pseudogenes) with T. aestivum genomic DNA contigs

Transcriptome T. urartu T. turgidum

Putative correct homoeolog (Id ≥ 99% identity)
≥95% coverage in one CS contig

14,678 32,554

≥95% coverage in more than one CS contig 489 911

≥65% coverage in one or more CS contigs 2,094 3,136

Putative homoeolog from different genome (94%≤ Id < 99%)
≥95% coverage in one CS contig

12,239 17,437

≥95% coverage in more than one CS contig 1,146 1,549

≥65% coverage in one or more CS contigs 2,416 3,262

Not aligned

Id <94% or coverage <65%) 4,549 7,370

Number of query sequences with no significant BLAST hits (e-10) 195 414

Total number of query sequences 37,806 66,633
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To test if contigs without SNPs/MNPs were already
separated into A/B homoeologs, we plotted the percent
identity of twocontig groups (those with and those with-
out SNPs/MNPs) to our T. urartu transcriptome (Figure
6B). The population of contigs with <2 SNPs/MNPs
(65,238 contigs) showed a bimodal distribution in per-
cent identity corresponding to the predicted distributions
of A/A and A/B homoeologous alignments. This indi-
cates that a large proportion of contigs without SNPs/
MNPs representwell-separated A or B homoeologs. In

contrast, the bimodal distribution is not observed in the
contigs with >1 SNP/MNP (Figure 6C, before phasing),
likely due toA/B chimeras with intermediate identity
values.
Using the HapCUT program[52](see Materials and

methods), wephased 88% of the SNPs/MNPs detected by
FreeBayes in 67,169tetraploid wheat contigs (Table 4),
referred to hereafter as reference contigs.Ideally, each
reference contig should be phased into two continuous
contigs representing the two homoeologs/paralogs.
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However, when long stretches without SNPs are present
or SNPs cannot be consistently phased, the contig is parti-
tioned into blocks that must be phased independently. In
our dataset, roughly 20% of the contigs were partitioned
into more than one block (total 81,413 blocks), resulting
in an average of 1.2 blocks per contig. Blocks were classi-
fied as being either chimeric (alternating A and B phases
within the block) or non-chimeric (all SNPs/MNPs in the
same phase). Using this criterion, we established that
34,029reference contigs (51% of the phased contigs, or
24% of all contigs)were chimeric and 33,140 (49% of the
phased contigs, or 24% of all contigs) were non-chimeric.
This last set includes cases where only one homoeolog of
a close pair was retained in the assembly after CD-HIT.
Because HapCUT generates tables of phased SNPs but

not assembled phased sequenceswe developed a new pro-
gram readphaser (see Materials and methods, Additional
file 7and [53]) that sorts the reads within each block into
two phases based on the HapCUT tables. Sorted reads are
then re-assembled independently bya combination of
MIRA [54]and CAP3 (see Materials and methods). To
avoid miss-assembly of recent paralogs, readphaser does
not include reads where there is evidence of a third valid
haplotype.
The MIRA-CAP3 assembly resulted in 244,165 contigs.

Since two phases were submitted for each of the 81,413
phased blocks, this result indicates that our readphaser-
MIRA-CAP3 pipeline further partitionedhalf of the sub-
mitted blocks (81,399) into >1 contig. To estimate the

proportion of sequences from the original contigs that
were recovered by the HapCUT-readphaser-MIRA pipe-
line we aligned the MIRA-CAP3 contigs to the original
blocks. These analyses showed that 98% of the original
contigs are represented (at least partially) in the current
MIRA-CAP3 assembly, but also that the 244,165 MIRA-
CAP3 contigs cover only 62% of the original sequences.
The sequences not covered include regions of low cover-
age in the original blocks, long stretches of identical
sequences between A and B genomes (Figure 1B), and A/B
SNPs that were not used by HapCUT and readphaser due
to low mapping quality values (<30). Reduced mapping
quality was particularly prevalent in sequences represented
by >1 contig with identical regions, such as alternative spli-
cing forms. Because reads derived from these redundant
regions can map equally well to multiple locations, their
mapping quality is greatly reduced.Roughly 30% of the
reads were excluded from the MIRA assembly due to low
mapping quality (Table 4), suggesting that there is a deli-
cate balance between the stringency of the mapping quality
and the proportion of phased sequences. Possible alterna-
tives to increase coverage of the phased sequences in the
future includeadditional reductions in the reference dataset
(for example, alternative splicing forms) or the use of dif-
ferent mapping qualitythresholds for phasing.
To evaluate the quality of the phasing results we

usedtwo different approaches. First, we compared the
HapCUT phased SNPs for our manuallycurated set of 26
homoeologous gene pairs (Supplemental dataset 1[36])
with their known phases. Before phasing, these 26 gene
pairs were represented by 33 contigs with 377 SNPs
between the A and B genomes. A comparison of the
HapCUT tables and the manually curated genes showed
that 372of 377SNPs (98.7%) were correctly phased.
Therefore, after phasing only 1.3% of the SNPs in 24% of
the contigs were still chimeric.Additionally, we compared
the phased MIRA assemblies to the T. urartu contigs (A
genome, one phase). This approach also showed an over-
all good separation of homoeologs. Before phasing, the
distribution of BLASTN similarity values between
T. urartu and unphased reference contigs showed no evi-
dence of a distinct peak for B genome contigs (Figure
6C). We hypothesize that this is the result of the large
proportion of A/B chimeric contigs (51% of the phased
contigs with >1 SNP), which generate intermediate simi-
larity values that mask the bimodal distribution. In con-
trast, the alignments generated after phasing show a clear
bimodal distribution (Figure 6D). Together, these data
indicate that our post-assembly pipeline significantly
reduced the number of chimeric transcripts.

Conclusions
The comparison between our diploid and tetraploid-
wheat assemblies showed that merging assemblies across

Table 4 Polymorphism detection in the tetraploid wheat
assembly and polymorphism phasing

Polymorphisms before phasing

Polymorphisms (n) 1,179,465

Singlenucleotide polymorphisms (SNP) (n) 958,362

Multi-nucleotide polymorphisms (MNP) (n) 23,424

Insertions 72,144

Deletions 39,882

Complexa 84,457

Other (>2 alleles)b 1,089

Phasing (HapCUT)

Contigs with <2 SNP/MNP (n) 65,238

Contigs with >1 SNP/MNP (n) 74,880

Phased contigs (n) 67,169

Phased blocks (n) 81,413

Phased SNPs/MNPs (n) 864,865

Chimeric reference contigs (n) 34,029

Readphaser

Reads filtered due to mapping quality <30 (n) 106,003,190

Reads filtered due to indels (n) 6,544,331

Reads passed to MIRA (n) 256,016,046
aComplex: composite insertions and substitution events.
bOther: includes cases with >1 alternative allele.
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a wide range of k-mersizeshas a positive effect on de
novo transcriptome assemblies in both diploid and poly-
ploid species, but has a larger positive effect on the
latter. We speculate that this is related to the heteroge-
neity in the distribution of SNPs between homoeologs
in the different gene classes, which favors full-length
assemblies of different genes at different k-mersizes.
However, multiple k-mer assemblies also lead to increa-
sesin sequence redundancy, which require post-assembly
processing. This is especially challenging in polyploid
species where different chimeric contigs can be assem-
bled at different k-mersizes. We showed that a CD-HIT
merge using a 95% identitythreshold, which in wheat
includes approximately 95% of the homoeologous
regions, resulted in a good balance between assemblyqu-
ality and reduced redundancy.
A critical step in a polyploid transcriptome assembly is

the separation of homologs. The approach followed by
Schreiber et al. (2012), that implemented a computation-
ally-intensive two-stage assembly using the stringent
MIRA assembler in the last step, reduced the proportion
of chimeric contigs to 18% and represented a step in the
right direction[27]. Thepost-assembly read phasing pipe-
line presented in this study represents an advance over
current methodsto solve the problem of assembling closely
related sequences without generating chimeras.Since this
post-assembly pipeline is not dependent on resources spe-
cific to wheat, itcouldalso be applied to help resolve similar
challenges in assembling transcriptomes ofother homozy-
gous tetraploid species. The only parameter that needs to
be adjusted to the level of divergence between the targeted
genomes is the maximum number of mismatches allowed
in the mapping of the reads back to the contigs for homo-
eolog SNP discovery.
This specialized bioinformatics pipeline was developed

with the main objective to generate a high-quality anno-
tated tetraploid wheat transcriptome. However, some of
the new modulesfrom our pipeline, such as readphaser,
willlikelyfacilitate development of more general strate-
giesfor assembling transcriptomes of other tetraploid
species.
Comparison of tetraploid wheat contigs with and with-

out phasing indicates that the initial assembly separated
well relatively distant homologs (average 95% identity, see
Figure 6B) but failed to distinguish between more closely
related sequences (average 97.5% identity, Figure 6D). A
corollary of this interpretation is that only recently origi-
nated polyploid species may require phasing for a correct
separation of homoeologs.
Our transcriptome annotation effortsyielded a valuable

dataset of coding sequences and proteins in wheat that
greatly enrichesthe currently sparse wheat proteomic data-
set. These integrated datasets are expected to provide valu-
able references for RNA-seq and proteomics experiments

in wheat.We are using this information to develop a gene
capture platform for wheat, which is being used in our
laboratories to sequence the exome of tetraploid and hexa-
ploid wheat TILLING populations to identify mutations
[55].The predicted tetraploid wheat proteome and gene
models generated in this study provide a valuable tool for
the wheat research community and for those interested in
comparative genomic studies including wheat.

Materials and methods
Plant growth conditions and sample collection
The diploid wheat T. urartuaccession G1812 was
selected for this study due to itsclose relationship to the
A genome of hexaploid wheat, availability of aBAC
library[56] and ongoing genome sequencing project [57].
The tetraploid wheatT.turgidum Kronos, a modern
durum wheat cultivar with high yield potential and
excellent pasta quality, was selected based on the avail-
ability of mutant TILLING population [55] and the exis-
tence of a genome project at Cold Spring Harbor
Laboratory[58].
Wheat grain was surface-sterilized in 10% bleach and

incubated at 4°C for 2 days before germination. Young
root and shoot tissues were collected 2 to 3 weeks after
germination. For Kronos only, spike tissue was collected
from mature plants at the booting stage and grain tissue
was collected 20 days post anthesis.Sampleswere immedi-
ately frozen in liquid nitrogenand stored at -80°C.

Benchmark gene sets
To test the quality of our assembly pipeline, we used two
wheat benchmark sets. The first set consisted of 13,472
full-length non-redundant T. aestivum cDNA clones
from the TriticeaeFull-Length CDS DataBase sequenced
by traditional Sanger technology [35]. The second dataset
consisted of 52wheat genes (26 homoeolog pairs) pre-
viously assigned to either the A or B genomes and anno-
tated for gene structure in our laboratory (Supplemental
dataset1[36]).

Library construction and sequencing
Total RNA was extracted using Spectrum™ Plant Total
RNA Kit (Sigma), from which mRNA was purified using
the Dynabeads mRNA Purification kit (Illumina) and tran-
scribed to cDNA using SuperScript II Reverse transcrip-
tase (Invitrogen) and DNA Polymerase I (Promega).
cDNA was purified using the PCR purification kit (Qia-
gen) and quality was assessed on the Bioanalyzer machine.
The cDNAs were fragmented in a Covaris machine (10%
duty cycle, Intensity: 4, Cycles per burst: 200, 80 s), treated
with end-repair enzymes: T4 DNA polymerase (Invitro-
gen), Klenow DNA Polymerase (Invitrogen), and T4 Poly-
nucleotide kinase (Invitrogen), and adenylated with
Klenow exo (3’ to 5’ exo minus) (Invitrogen). Illumina PE
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adapters (Illumina Multiplexing kit, PE-400-1001) were
ligated using the Quick Ligation kit (New England Biolabs)
and purified with the minElute kit (Qiagen). DNA frag-
ments were separated on a 2% agarose TAE gel; fragment
with average sizes of 300, 400, 500, and 600 bp were
extracted using Gel Excision tips (Gel Company) and puri-
fied using the Gel Extraction kit (Qiagen). Libraries were
multiplexed according to the instructions in the Illumina
Multiplexing kit (Illumina) with 12 cycles of PCR amplifi-
cation. Final libraries were purified using Ampure beads
in a 1:1 sample volume to bead volume ratio (Ampure).
The quality of the libraries was assessed on the Bioanaly-
zer machine using High Sensitivity DNA kit reagents
(Agilent).
Library normalization was performed using double

stranded DNA nuclease (Evrogen) as published before[59].
Four 300-bp libraries from roots, shoots, spike and grain
were pooled for normalization. A total of 250 ng of DNA
was allowed to hybridize for 5 h at 68°C in either NaCl or
TMAC buffer, equilibrated for 10 min at 68°C in DSN buf-
fer, and digested with 1 μL of DSN enzyme for 25 min at
68°C. A ‘no DSN enzyme’ control was processed simulta-
neously to access the normalization efficiency. All samples
were re-amplified with 10 to 12 PCR cycles.
All libraries were sequenced using the 100 bp paired-

end protocol on four lanes of Illumina HiSeq2000
machines at the University of California Davis (UCD)
Genome Center. Base quality calls and demultiplexing
was done with the CASAVA 1.8.0 pipeline (Illumina).

Transcriptome assembly
Overall read quality was assessed using the R package qrqc
[60]. Illumina adapter sequences were trimmed with the
program Scythe v. 0.981[61](-p 0.2–n 3) and poor quality
bases were trimmed with Sickle v. 1.2[62] (-q = 20). Reads
arising from common contaminants, including Homo
sapiens and Escherichia coli DNA, wheat mitochondrial
and chloroplast sequences as well as wheat rRNA (Addi-
tional file 2, Table S3) were identified using BLAT v.34
[63] with the default parameters and then removed.
Artificial sample variation (differences in gene coverage

in RNA-seq) and k-mersequencesincluding sequencing
errors were removed prior to the assembly using a digital
normalization algorithm [33](normalize-by-median.py -C
20 -k 20 -N 4 -x 2e9). A previously constructed wheat
RNA-seq library (SRA ERX022241)[34] was used to assess
and compare the quality of the assembly before and after
normalization as well as to determine optimal parameters
for the assembly.
Within each species, combined reads from the different

libraries were assembled with CLC Genomics Workbench
v. 5.5de novo assembly algorithm. Initially, we tested sev-
eral de novo assembly algorithms including Trinity and
Oases, and we chose to use CLC due to its performance

on the benchmark full-length wheat cDNA datasets and
overall assembly parameters. Paired-end distances were
specified for each library based on preliminary mapping
experiments against benchmark full-length wheat cDNA
sequences. Ten individual assemblies were constructed at
variable k-mers (word size of 21, 25, 31, 35, 41, 45, 51, 55,
61, 63). A word size of 64 is the maximum permitted
when using CLC version 5.5. Other parameters included:
bubble size = 400, read mapping = global, and 95% simi-
larity which were chosen based on optimizations using a
small read set and the 13,472 full-length wheat cDNA
benchmark data.
The individual k-mer assemblies were concatenated

and redundancy was reduced using CD-HIT v.4.5.4 [64].
Contig merging was carried out at 95% identity level for
T. turgidum (cd-hit-est -r 1 -c 0.95 -n 8 -T 0 -gap -2)
and 99% identity level for T.urartu (cd-hit-est -r 1 -c
0.99-n 8 -T 0 -gap -2).
To reconstruct genes partially assembled at different k-

mer lengths, we implemented a protein-guided assembly
approach, blast2cap3 [39](Additional file 5). Contigs were
first clustered based on a common top BLASTX [65] hit
(E-value cutoff 1e-3) against T. aestivum, Hordeum vulgare,
Brachypodium distachyon, Oryza sativa, Sorghum bicolor,
Zea mays,and Arabidopsis thaliana protein datasets
(Additional file 2, Table S3).Each contig cluster sharing a
common protein hit was passed to the overlap-based
assembly program CAP3 [40] (cap3 -p 99 -k 0 -o 100).
To identify contaminating sequences from non-wheat

organisms (for example, plant epiphytes and pathogens),
we used the following taxonomy-based pipeline at the
post-assembly stage. First, all contigs were passed through
BLASTX against the NCBI non-redundant (nr) database,
retaining the top 10 hits using an E-value cutoff of 1e-10.
The kingdom-level taxonomy of all hits was retrieved
from NCBI’s taxonomy data structure using an adapted
publicly-available Bioperl script (bp_classify_by_kingdom.
pl[66]). Sequences with all top 10hits that matched non-
plant organisms were considered likely contaminants and
were removed from the assembly using custom Perl
scripts.

ORF prediction and functional annotation
We developed the program findorf to predict ORFs and
pseudogenes(Additional file 6) [41].Findorf relies upon
BLASTX alignments against protein databasesand
includes subcommands: ‘findorf join’ and ‘findorf pre-
dict’.The results from BLASTX searches (E-value cutoff
1e-3) against plant databases (Additional file 2, Table S3)
and HMMER3.0 scans of all contigs translated in all six
open reading framesagainst Pfam-A (hmmscan e-value
1e-3–domE 1 -noali) were passed to ‘findorf join’
(–domain-hits) and ORFs were predicted using ‘findorf
predict’ (–evalue 1e-5 –verbose –use-pfam).
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Findorf uses a conservative approach to identify trans-
lation startsites (TSS)and if an additional methionine
exists 5’ of the predicted TSS, the information is pro-
vided in the GTF files (Supplemental datasets 4 and 5
[36]). In cases where HSPs disagree on frame across a
majority of alignments, the contig is annotated as having
a majority frameshift and the frame of the 5’-most HSP
is used during this initial ORF prediction. In cases when
findorf detects significant HSPs in opposite strands, it
annotates the contig as ‘inconsistent strand’ and outputs
no ORF.
Functional annotation of predicted proteins was done

using Hidden-Markov Model based searches against
Pfam-A database[42]implemented in HMMER3.0 [67]
(hmmscan e-value 1e-3–domE 1 –noali). Candidate
repetitive elements and transposons were identified
based on results from BLASTN and BLASTX searches
against the nucleotide and protein Triticeae Repeat
Sequence Databases (TREP)[49] using an E-value cutoff
of 1e-10.

Identification of pseudogenes and codon bias analyses
A contig was identified as a putative pseudogeneby fin-
dorf when a significant protein alignment (BLASTX,
E-value 1e-5) between contig sequence and related pro-
tein sequences (Additional file 2, Table S3)was disrupted
by a premature stop codon or includeda frameshift
mutation.In the first case, a significant HSP overlapping
the related protein sequenceby >20 amino acids beyond
the predicted premature stop codon was required to
annotate the contig sequence as a putative pseudogene.
In the second case, a contig was annotated as having a
frameshift mutation if the HSPs matched different sec-
tions of the same reference proteins in two different
frames on the same strand.
To further characterize the predicted pseudogenes, we

compared codon usage between samples of 3,000 pseu-
dogenes and 3,000 genes that did not include premature
stops or frameshifts. Frequencies of codonswere con-
verted to proportions, and Manhattan distances were
calculated among the 6,000 data points. To visualize
these results, we used a metric multidimensional scaling
approach, implemented inthe R language.

Identification of artificially fused transcripts (<1 ORF)
During the initial ORF prediction, a strand consistency fil-
ter was imposed to identify contigs with any BLASTX hits
on opposite DNA strands, which gave an estimate of puta-
tive merged transcripts. In addition, we used an iterative
ORF prediction to identify presence of secondary ORFs.
The first iteration of BLASTX alignments (E-value 1e-3

cutoff) were masked and the masked sequences were run
a second time through findorf with the same parameters.

After manual inspection of the initial results, we imposed
additional filtering criteria to identify artificially fused tran-
scripts, including the exclusion of pseudogenes and repeti-
tive elements as well as very short ORFs (<30 amino
acids).

Predicting gene exons and assigning genes to
chromosome arms
A BLASTN search with an E-value cutoff of 1e-10 was
performed between our T. turgidum transcriptome and
the genomic sequences of the individual chromosome
arms of Chinese Spring generated by the IWGSC[32]. A
Perl script was written to process the BLAST output. A
hit - tagged with the name of the chromosome arm -
was stored if it shared on average ≥94% across all HSPs
and was stored together with other contigs that hit the
exact same chromosome arm. If the hits to each arm
covered ≥65% of the ORF length and matched one or
more Chinese Spring contigs, a gene exon-intron predic-
tion model was created with EXONERATE v.2.2.0
[50,68](–model est2genome -ryo).

Phasing SNPs from different homoeologs
To generate genome-specific assemblies in tetraploid
wheat, we first aligned T. turgidum reads with the
T. turgidum reference transcriptome (140,118 contigs)
using Novoalign software (v. 2.08.01; -F ILM1.8 -o SAM
-o Sync -i PE -r Random -t 300) and insert size range
specific to each library (see Table 1).We compared bow-
tie, bwa, and Novoalign and selected the latter because
it maximized our quality control parameters (most reads
aligned and most reads aligned in proper pairs). Poly-
morphisms among the mapped readswere detectedusing
the FreeBayes software[69](v.0.9.6; parameters:-p 2 -k
–min-alternate-count 2 -p 2 –min-coverage 4 -T 0.05)
as it has been shown to perform well on RNA-seq data
[70]. Called SNPs and MNPs were phased using the
HapCUTv.0.5software[52]with default parameters. All
phased SNPs are reported in HapCUT tabular format in
Supplemental dataset 11[36].

Assembling phased reads into homoeolog-specific
sequences
To generate homoeolog-specific sub-assemblies we tested
three different strategies. First, we tried to use the initial
reference contig and replace the phased SNPs. However,
the presence of non-phased SNPs due to low mapping
quality and indels resulted in residual chimeric sequences.
Second we attempted to reconstruct consensus sequences
from the phased reads based on mapping positions relative
to the reference contig, but the presence of indels between
the A and B genomes (particularly in UTR regions) compli-
cated the correct reconstruction of consensus sequences.
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Finally, we were successful in reconstructing homoeolog-
specific sub-assemblies by sorting the reads within each
phased SNP block based on the HapCUT output, and de
novo re-assembling the reads for each block and phase
using parallelized runs ofMIRA assembler [54].
To sort the reads by phase we developed the program

readphaser (Additional file 7)[53]. Readphaser extracts
reads that include haplotype-specific SNPs identified by
HapCUT and separates them into two phased sets that are
independently passed to MIRA. Readphaser filters reads
with low mapping quality (mq <30),optical or PCR dupli-
cates, or containing indels. Reads containing out of phase
variants, due to sequencing error, tri-allelic variants, or
more than two real phases (for example, recent duplica-
tions) were placed into an additional set of reads that were
unused during assembly. Since some out of phase variants
may be biologically interesting, readphaser outputs an
additional file with the inconsistent variants in reads.
Re-assembly of sorted reads was performed using a

custom Perl script created to run parallel instances of
MIRA v. 3.2.1[54](parameters -job=denovo,est,Solexa,
padded option) on multiple cores. CAP3 [40](using
default parameters) was then run with the MIRA contigs
generated for each phasing block to further extend the
assemblies. To evaluate the coverage of the phased con-
tigs assembled by MIRA, we aligned sequences back to
their original contig from our reference transcriptome
assembly with global-local alignments of both the for-
ward and reverse complement using the function pairwi-
seAlignment in the Bioconductor package Biostrings[71].
Alignments with scores <10 (gap open penalty = -8, gap
extension penalty = -2) were not considered. Assembly
coverage was calculated using the coverage function in
the Bioconductor package IRanges[72].

Data access
The data from this study is linked to the BioProject
PRJNA191053 established for T. urartu and Bioproject
PRJNA191054 for T. turgidum. Raw data is available at
the Short Read Archive (accession numbers: SRR769749,
SRR769750, SRR863375, SRR863376, SRR863377,
SRR863384, SRR863385, SRR863386, SRR863387,
SRR863389, SRR863390, SRR863391, SRR863394). Fil-
tered contigs are avaialbe through the TSA archive
under accession numbers GAKL00000000 for T. urartu
and GAKM00000000 for T. turgidum. All supplemental
datasets can also be accessed atthe Project Website [36].
A public BLAST site is available at the public USDA
GrainGenes database[73].

Endnotes
a Originally published as 38% but corrected recently to
28%

Additional material

Additional file 1: Members of the International Wheat Sequencing
Consortium

Additional file 2: Supplemental Tables (Tables S1-S4)

Additional file 3: Supplemental Figure S1

Additional file 4: Supplemental Figure S2

Additional file 5: blast2cap3 program

Additional file 6: findorf program

Additional file 7: readphaser program

Abbreviations
BLAST: Basic Local Alignment Search Tool; DSN: DoublestrandDNAnuclease;
EMS: Ethyl Methanesulfonate; HMM: Hidden Markov Model; HSP:
HighScoringSegmentPair; IWGSC:
InternationalWheatGenomeSequencingConsortium; lncRNAs: longnon-
proteincodingRNAs; LRR: LeucineRichRepeats; MNP: Multiple Nucleotide
Polymorphism; NBS: NucleotideBindingSite; ORF: Open Reading Frame; SNP:
Single Nucleotide Polymorphism;SRA: ShortReadArchive; TSA:
TranscriptomeShotgunAssembly; TILLING:
TargetingInducedLocalLesionsinGenomes;TSS: TranslationStartSite; UTR:
UntranslatedRegion.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
KVK: RNA-seq library preparation, bioinformatics pipeline design,
transcriptome assembly and annotation,analyses of the disease resistance
gene family, SNP detection, and SNP phasing;VB:bioinformatics software
development(blast2cap3, findorf, and readphaser), data analysis, and
visualization; PB, SA, CU: gene model prediction; EA and SW: MIRA
assemblies;SP, FT, MS, JD:curation team (benchmark genes and quality
control). IWGSC contributed the unpublished assemblies of the genomic
sequences of the Chinese Spring chromosome arms.KVK and JD designed
the study and wrote the first draft of the manuscript. All authors participated
in data analyses, contributed to writing andcritical evaluation of the
manuscript.

Acknowledgements
This work has been funded by support provided to JD by the Howard
Hughes Medical Institute and the Gordon and Betty Moore Foundation
(grant number GBMF3031) and in part by the National Research Initiative
Competitive Grants no. 2011-68002-30029 and 2011-67013-30077 from the
USDA National Institute of Food and Agriculture. CU acknowledges support
from Biotechnology and Biological Sciences Research Council (BBSRC) to CU
and SA (grant BB/J003557/1). KVK has been supported by USDA NIFA post-
doctoral fellowship grant number 2012-67012-19811. Authors are grateful to
Vikas Bansal (Scripps Translational Science Institute) for his advice on the
HapCUT program, to Rachel Brem (University of California, Berkeley) and
Chris Ellison (University of California, Berkeley) for advice on SNP detection in
RNA-seq data, to the Novocraft support team advising on read mapping,
and to the University of California Davis (UCD) Genome Center for excellent
sequencing data. The assemblies of non-repetitive genomic regions of the
Chinese Spring chromosome arms used in the gene model predictions were
obtained in the framework of the International Wheat Genome Sequencing
Consortium and the Survey Sequencing Initiative. A list of institutions of the
International Wheat Genome Sequencing Consortium can be found in
Additional File 1.

Authors’ details
1Dept. Plant Sciences, University of California, Davis, CA 9561, USA. 2The
Genome Analysis Centre, Norwich Research Park, Norwich NR4 7UH, UK.
3Microbiology, University of Buenos Aires, INBA-CONICET, Buenos Aires,
Argentina. 4Department of Plant Pathology, Kansas State University,

Krasileva et al. Genome Biology 2013, 14:R66
http://genomebiology.com/content/14/6/R66

Page 17 of 19

http://www.biomedcentral.com/content/supplementary/gb-2013-14-6-r66-S1.???
http://www.biomedcentral.com/content/supplementary/gb-2013-14-6-r66-S2.???
http://www.biomedcentral.com/content/supplementary/gb-2013-14-6-r66-S3.???
http://www.biomedcentral.com/content/supplementary/gb-2013-14-6-r66-S4.???
http://www.biomedcentral.com/content/supplementary/gb-2013-14-6-r66-S5.???
http://www.biomedcentral.com/content/supplementary/gb-2013-14-6-r66-S6.???
http://www.biomedcentral.com/content/supplementary/gb-2013-14-6-r66-S7.???


Manhattan, KS 66506, USA. 5International Wheat Genome Sequencing
Consortium. 6John Innes Centre, Norwich Research Park, Norwich NR4 7UH,
UK. 7Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.

Received: 25 May 2013 Revised: 7 June 2013 Accepted: 25 June 2013
Published: 25 June 2013

References
1. Doyle JJ, Flagel LE, Paterson AH, Rapp RA, Soltis DE, Soltis PS, Wendel JF:

Evolutionary genetics of genome merger and doubling in plants. Annu
Rev Genet 2008, 42:443-461.

2. Soltis PS, Soltis DE: The role of hybridization in plant speciation. Annu Rev
Plant Biol 2009, 60:561-588.

3. Blanc G, Wolfe KH: Widespread paleopolyploidy in model plant species
inferred from age distributions of duplicate genes. Plant Cell 2004,
16:1667-1678.

4. Dubcovsky J, Dvorak J: Genome plasticity a key factor in the success of
polyploid wheat under domestication. Science 2007, 316:1862-1866.

5. Bowers JE, Chapman BA, Rong J, Paterson AH: Unravelling angiosperm
genome evolution by phylogenetic analysis of chromosomal duplication
events. Nature 2003, 422:433-438.

6. Paterson AH, Bowers JE, Chapman BA: Ancient polyploidization predating
divergence of the cereals, and its consequences for comparative
genomics. Proc Natl Acad Sci USA 2004, 101:9903-9908.

7. Dvorak J, Zhang HB: Variation in repeated nucleotide sequences sheds
light on the phylogeny of the wheat B and G genomes. Proc Natl Acad
Sci USA 1990, 87:9640-9644.

8. Dvorak J, Terlizzi P, Zhang HB, Resta P: The evolution of polyploid wheats:
identification of the A genome donor species. Genome 1993, 36:21-31.

9. Daud HM, Gustafson JP: Molecular evidence for Triticum speltoides as a B-
genome progenitor of wheat (Triticum aestivum). Genome 1996,
39:543-548.

10. Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P:
Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate
kinase of the Triticum/Aegilops complex and the evolutionary history of
polyploid wheat. Proc Natl Acad Sci USA 2002, 99:8133-8138.

11. Choulet F, Wicker T, Rustenholz C, Paux E, Salse J, Leroy P, Schlub S, Le
Paslier MC, Magdelenat G, Gonthier C, Couloux A, Budak H, Breen J,
Pumphrey M, Liu S, Kong X, Jia J, Gut M, Brunel D, Anderson JA, Gill BS,
Appels R, Keller B, Feuillet C: Megabase level sequencing reveals
contrasted organization and evolution patterns of the wheat gene and
transposable element spaces. Plant Cell 2010, 22:1686-1701.

12. Wicker T, Yahiaoui N, Keller B: Contrasting rates of evolution in Pm3 loci
from three wheat species and rice. Genetics 2007, 177:1207-1216.

13. Isidore E, Scherrer B, Chalhoub B, Feuillet C, Keller B: Ancient haplotypes
resulting from extensive molecular rearrangements in the wheat A
genome have been maintained in species of three different ploidy
levels. Genome Res 2005, 15:526-536.

14. Leister D: Tandem and segmental gene duplication and recombination
in the evolution of plant disease resistance gene. Trends Genet 2004,
20:116-122.

15. Cantu D, Vanzetti LS, Sumner A, Dubcovsky M, Matvienko M, Distelfeld A,
Michelmore RW, Dubcovsky J: Small RNAs, DNA methylation and
transposable elements in wheat. BMC Genomics 2010, 11:408.

16. Dvorak J, Yang ZL, You FM, Luo MC: Deletion polymorphism in wheat
chromosome regions with contrasting recombination rates. Genetics
2004, 168:1665-1675.

17. Akhunov ED, Akhunova AR, Linkiewicz AM, Dubcovsky J, Hummel D,
Lazo G, Chao S, Anderson OD, David J, Qi L, Echalier B, Gill BS, Gustafson JP,
La Rota M, Sorrells ME, Zhang D, Nguyen HT, Kalavacharla V, Hossain K,
Kianian SF, Peng J, Lapitan NL, Wennerlind EJ, Nduati V, Anderson JA,
Sidhu D, Gill KS, McGuire PE, Qualset CO, et al: Synteny perturbations
between wheat homoeologous chromosomes caused by locus
duplications and deletions correlate with recombination rates. Proc Natl
Acad Sci USA 2003, 100:10836-10841.

18. Feldman M, Levy AA: Genome evolution due to allopolyploidization in
wheat. Genetics 2012, 192:763-774.

19. Brenchley R, Spannagl M, Pfeifer M, Barker GL, D’Amore R, Allen AM,
McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S, Waite D, Trick M,
Bancroft I, Gu Y, Huo N, Luo MC, Sehgal S, Gill B, Kianian S, Anderson O,
Kersey P, Dvorak J, McCombie WR, Hall A, Mayer KF, Edwards KJ, Bevan MW,

Hall N: Analysis of the bread wheat genome using whole-genome
shotgun sequencing. Nature 2012, 491:705-710.

20. Wicker T, Mayer KF, Gundlach H, Martis M, Steuernagel B, Scholz U,
Simkova H, Kubalakova M, Choulet F, Taudien S, Platzer M, Feuillet C,
Fahima T, Budak H, Dolezel J, Keller B, Stein N: Frequent gene movement
and pseudogene evolution is common to the large and complex
genomes of wheat, barley, and their relatives. Plant Cell 2011,
23:1706-1718.

21. Akhunov ED, Sehgal S, Liang H, Wang S, Akhunova AR, Kaur G, Li W,
Forrest KL, See D, Simkova H, Ma Y, Hayden MJ, Luo M, Faris JD, Dolezel J,
Gill BS: Comparative analysis of syntenic genes in grass genomes reveals
accelerated rates of gene structure and coding sequence evolution in
polyploid wheat. Plant Physiol 2013, 161:252-265.

22. Paux E, Roger D, Badaeva E, Gay G, Bernard M, Sourdille P, Feuillet C:
Characterizing the composition and evolution of homoeologous
genomes in hexaploid wheat through BAC-end sequencing on
chromosome 3B. Plant J 2006, 48:463-474.

23. Schulz MH, Zerbino DR, Vingron M, Birney E: Oases: robust de novo RNA-
seq assembly across the dynamic range of expression levels.
Bioinformatics 2012, 28:1086-1092.

24. Grabherr MG, Haas BJ, Yassour M, Levin JZ, Thompson DA, Amit I,
Adiconis X, Fan L, Raychowdhury R, Zeng Q, Chen Z, Mauceli E, Hacohen N,
Gnirke A, Rhind N, di Palma F, Birren BW, Nusbaum C, Lindblad-Toh K,
Friedman N, Regev A: Full-length transcriptome assembly from RNA-Seq
data without a reference genome. Nat Biotechnol 2011, 29:644-652.

25. Robertson G, Schein J, Chiu R, Corbett R, Field M, Jackman SD, Mungall K,
Lee S, Okada HM, Qian JQ, Griffith M, Raymond A, Thiessen N, Cezard T,
Butterfield YS, Newsome R, Chan SK, She R, Varhol R, Kamoh B, Prabhu AL,
Tam A, Zhao Y, Moore RA, Hirst M, Marra MA, Jones SJ, Hoodless PA, Birol I:
De novo assembly and analysis of RNA-seq data. Nat Methods 2010,
7:909-912.

26. Gruenheit N, Deusch O, Esser C, Becker M, Voelckel C, Lockhart P: Cutoffs
and k-mers: implications from a transcriptome study in allopolyploid
plants. BMC Genomics 2012, 13:92.

27. Schreiber AW, Hayden MJ, Forrest KL, Kong SL, Langridge P, Baumann U:
Transcriptome-scale homoeolog-specific transcript assemblies of bread
wheat. BMC Genomics 2012, 13:492.

28. Li C, Dubcovsky J: Wheat FT protein regulates VRN1 transcription through
interactions with FDL2. Plant J 2008, 55:543-554.

29. Duan J, Xia C, Zhao G, Jia J, Kong X: Optimizing de novo common wheat
transcriptome assembly using short-read RNA-Seq data. BMC Genomics
2012, 13:392.

30. Cantu D, Pearce SP, Distelfeld A, Christiansen MW, Uauy C, Akhunov E,
Fahima T, Dubcovsky J: Effect of the down-regulation of the high Grain
Protein Content (GPC) genes on the wheat transcriptome during
monocarpic senescence. BMC Genomics 2011, 12:492.

31. Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy P, Korol A,
Michalak M, Kianian S, Spielmeyer W, Lagudah E, Somers D, Kilian A,
Alaux M, Vautrin S, Berges H, Eversole K, Appels R, Safar J, Simkova H,
Dolezel J, Bernard M, Feuillet C: A physical map of the 1-gigabase bread
wheat chromosome 3B. Science 2008, 322:101-104.

32. International Wheat Genome Sequencing Consortium. [http://www.
wheatgenome.org].

33. Brown C, Howe A, Zhang Q, Pyrkosz A, Brom T: A Reference-Free
Algorithm for Computational Normalization of Shotgun Sequencing
Data. 2012 [http://arxiv.org/abs/1203.4802], arXiv.

34. Trick M, Adamski NM, Mugford SG, Jiang CC, Febrer M, Uauy C: Combining
SNP discovery from next-generation sequencing data with bulked
segregant analysis (BSA) to fine-map genes in polyploid wheat. BMC
Plant Biol 2012, 12:14.

35. Mochida K, Yoshida T, Sakurai T, Ogihara Y, Shinozaki K: TriFLDB: a
database of clustered full-length coding sequences from Triticeae with
applications to comparative grass genomics. Plant Physiol 2009,
150:1135-1146.

36. Project website accompanying this paper: T. turgidum and T. urartu files
for contigs, open reading frames, predicted proteins and gene models.
[http://maswheat.ucdavis.edu/Transcriptome/index.htm].

37. Lo C, Bashir A, Bansal V, Bafna V: Strobe sequence design for haplotype
assembly. BMC Bioinformatics 2011, Suppl 1:S24.

38. Haznedaroglu BZ, Reeves D, Rismani-Yazdi H, Peccia J: Optimization of de
novo transcriptome assembly from high-throughput short read

Krasileva et al. Genome Biology 2013, 14:R66
http://genomebiology.com/content/14/6/R66

Page 18 of 19

http://www.wheatgenome.org
http://www.wheatgenome.org
http://arxiv.org/abs/1203.4802
http://maswheat.ucdavis.edu/Transcriptome/index.htm


sequencing data improves functional annotation for non-model
organisms. BMC Bioinformatics 2012, 13:170.

39. Buffalo V: Blast2cap3 software. [https://github.com/vsbuffalo/blast2cap3].
40. Huang X, Madan A: CAP3: A DNA sequence assembly program. Genome

Res 1999, 9:868-877.
41. Buffalo V: Findorf software. [https://github.com/vsbuffalo/findorf].
42. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL,

Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer EL, Eddy SR,
Bateman A: The Pfam protein families database. Nucleic Acids Res 2010,
38:D211-222.

43. Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, Maeda N, Oyama R,
Ravasi T, Lenhard B, Wells C, Kodzius R, Shimokawa K, Bajic VB, Brenner SE,
Batalov S, Forrest AR, Zavolan M, Davis MJ, Wilming LG, Aidinis V, Allen JE,
Ambesi-Impiombato A, Apweiler R, Aturaliya RN, Bailey TL, Bansal M,
Baxter L, Beisel KW, Bersano T, Bono H, et al: The transcriptional landscape
of the mammalian genome. Science 2005, 309:1559-1563.

44. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, Guernec G,
Martin D, Merkel A, Knowles DG, Lagarde J, Veeravalli L, Ruan X, Ruan Y,
Lassmann T, Carninci P, Brown JB, Lipovich L, Gonzalez JM, Thomas M,
Davis CA, Shiekhattar R, Gingeras TR, Hubbard TJ, Notredame C, Harrow J,
Guigo R: The GENCODE v7 catalog of human long noncoding RNAs:
analysis of their gene structure, evolution, and expression. Genome Res
2012, 22:1775-1789.

45. Xin M, Wang Y, Yao Y, Song N, Hu Z, Qin D, Xie C, Peng H, Ni Z, Sun Q:
Identification and characterization of wheat long non-protein coding
RNAs responsive to powdery mildew infection and heat stress by using
microarray analysis and SBS sequencing. BMC Plant Biol 2011, 11:61.

46. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F,
Aken BL, Barrell D, Zadissa A, Searle S, Barnes I, Bignell A, Boychenko V,
Hunt T, Kay M, Mukherjee G, Rajan J, Despacio-Reyes G, Saunders G,
Steward C, Harte R, Lin M, Howald C, Tanzer A, Derrien T, Chrast J,
Walters N, Balasubramanian S, Pei B, Tress M, et al: GENCODE: the
reference human genome annotation for The ENCODE Project. Genome
Res 2012, 22:1760-1774.

47. Ohno S: Evolution by Gene Duplication New York: Springer-Verlag; 1970.
48. Echols N, Harrison P, Balasubramanian S, Luscombe NM, Bertone P,

Zhang Z, Gerstein M: Comprehensive analysis of amino acid and
nucleotide composition in eukaryotic genomes, comparing genes and
pseudogenes. Nucleic Acids Res 2002, 30:2515-2523.

49. Wicker T, Matthews DE, Keller B: TREP: a database for Triticeae repetitive
elements. TRENDS in Plant Science 2002, 7:561-562.

50. Slater GS, Birney E: Automated generation of heuristics for biological
sequence comparison. BMC Bioinformatics 2005, 6:31.

51. Kitzman JO, Mackenzie AP, Adey A, Hiatt JB, Patwardhan RP, Sudmant PH,
Ng SB, Alkan C, Qiu R, Eichler EE, Shendure J: Haplotype-resolved genome
sequencing of a Gujarati Indian individual. Nat Biotechnol 2011, 29:59-63.

52. Bansal V, Bafna V: HapCUT: an efficient and accurate algorithm for the
haplotype assembly problem. Bioinformatics 2008, 24:i153-159.

53. Buffalo V: Readphaser - separate reads based on mapping results and
HapCUT data.[https://github.com/vsbuffalo/readphaser].

54. Chevreux B, Pfisterer T, Drescher B, Driesel AJ, Muller WE, Wetter T, Suhai S:
Using the miraEST assembler for reliable and automated mRNA
transcript assembly and SNP detection in sequenced ESTs. Genome Res
2004, 14:1147-1159.

55. Uauy C, Paraiso F, Colasuonno P, Tran RK, Tsai H, Berardi S, Comai L,
Dubcovsky J: A modified TILLING approach to detect induced mutations
in tetraploid and hexaploid wheat. BMC Plant Biol 2009, 9:115.

56. Akhunov ED, Akhunova AR, Dvorak J: BAC libraries of Triticum urartu,
Aegilops speltoides and Ae. tauschii, the diploid ancestors of polyploid
wheat. Theor Appl Genet 2005, 111:1617-1622.

57. Ling HQ, Zhao S, Liu D, Wang J, Sun H, Zhang C, Fan H, Li D, Dong L,
Tao Y, Gao C, Wu H, Li Y, Cui Y, Guo X, Zheng S, Wang B, Yu K, Liang Q,
Yang W, Lou X, Chen J, Feng M, Jian J, Zhang X, Luo G, Jiang Y, Liu J,
Wang Z, Sha Y, et al: Draft genome of the wheat A-genome progenitor
Triticum urartu. Nature 2013, 496:87-90.

58. Wheat Genome Sequencing Project. [http://www.cshl.edu/genome/
wheat].

59. Matvienko M, Kozik A, Froenicke L, Lavelle D, Martineau B, Perroud B,
Michelmore R: Consequences of normalizing transcriptomic and genomic
libraries of plant genomes using a duplex-specific nuclease and
tetramethylammonium chloride. PLoS One 2013, 8:e55913.

60. Buffalo V: Quick Read Quality Control. [http://bioconductor.org/packages/
2.11/bioc/html/qrqc.html].

61. Scythe - A Bayesian adapter trimmer. [https://github.com/vsbuffalo/
scythe].

62. Joshi N: Sickle - A windowed adaptive trimming tool for FASTQ files
using quality. [https://github.com/najoshi/sickle].

63. Kent WJ: BLAT–the BLAST-like alignment tool. Genome Res 2002,
12:656-664.

64. Li W, Godzik A: Cd-hit: a fast program for clustering and comparing large
sets of protein or nucleotide sequences. Bioinformatics 2006,
22:1658-1659.

65. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment
search tool. J Mol Biol 1990, 215:403-410.

66. BioPerl production scripts - Taxonomy. [http://www.bioperl.org/wiki/
Bioperl_scripts#Taxonomy].

67. Eddy SR: Accelerated Profile HMM Searches. PLoS Comput Biol 2011, 7:
e1002195.

68. Slater GSC: Exonerate software. [http://www.ebi.ac.uk/~guy/exonerate/].
69. Garrison E, Marth G: Haplotype-based variant detection from short-read

sequencing. 2012 [http://arxiv.org/abs/1207.3907], arXiv.
70. Ellison CE, Hall C, Kowbel D, Welch J, Brem RB, Glass NL, Taylor JW:

Population genomics and local adaptation in wild isolates of a model
microbial eukaryote. Proc Natl Acad Sci USA 2011, 108:2831-2836.

71. Pages H, Aboyoun P, Gentleman R, DebRoy S: Biostrings: String objects
representing biological sequences, and matching algorithms. R package
version 2241 .

72. Pages H, Aboyoun P, Lawrence M: IRanges: Infrastructure for
manipulating intervals on sequences. R package version 1144 .

73. USDA GrainGenes. [http://wheat.pw.usda.gov/GG2/WheatTranscriptome/].

doi:10.1186/gb-2013-14-6-r66
Cite this article as: Krasileva et al.: Separating homeologs by phasing in
the tetraploid wheat transcriptome. Genome Biology 2013 14:R66.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Krasileva et al. Genome Biology 2013, 14:R66
http://genomebiology.com/content/14/6/R66

Page 19 of 19

https://github.com/vsbuffalo/blast2cap3
https://github.com/vsbuffalo/findorf
https://github.com/vsbuffalo/readphaser
http://www.cshl.edu/genome/wheat
http://www.cshl.edu/genome/wheat
http://bioconductor.org/packages/2.11/bioc/html/qrqc.html
http://bioconductor.org/packages/2.11/bioc/html/qrqc.html
https://github.com/vsbuffalo/scythe
https://github.com/vsbuffalo/scythe
https://github.com/najoshi/sickle
http://www.bioperl.org/wiki/Bioperl_scripts#Taxonomy
http://www.bioperl.org/wiki/Bioperl_scripts#Taxonomy
http://www.ebi.ac.uk/~guy/exonerate/
http://arxiv.org/abs/1207.3907
http://wheat.pw.usda.gov/GG2/WheatTranscriptome/

	Abstract
	Background
	Results
	Conclusions

	Background
	Results and discussion
	Sequencing and evaluation of experimental and digital normalization
	Double-stranded DNA nuclease (DSN) normalization
	Digital normalization

	Distribution of percent identity and SNP distances between A and B homoeologs
	Effect of different k-mersizeson the assembly of diploid and tetraploid wheat transcriptomes
	Advantages and disadvantages of merged multiple k-mer assemblies
	Open reading frame prediction and functional annotation of wheat transcriptomes
	Pseudogenes
	Artificially fused transcripts

	Gene structure
	Phasing of merged homoeologs to reconstruct genome-specific sub-assemblies
	Conclusions

	Materials and methods
	Plant growth conditions and sample collection
	Benchmark gene sets
	Library construction and sequencing
	Transcriptome assembly
	ORF prediction and functional annotation
	Identification of pseudogenes and codon bias analyses
	Identification of artificially fused transcripts (<1 ORF)
	Predicting gene exons and assigning genes to chromosome arms
	Phasing SNPs from different homoeologs
	Assembling phased reads into homoeolog-specific sequences

	Data access
	Endnotes
	Abbreviations
	Competing interests
	Authors’ contributions
	Acknowledgements
	Author details
	References

