
RESEARCH Open Access

Comprehensive genotyping of the USA national
maize inbred seed bank
Maria C Romay1, Mark J Millard2,3, Jeffrey C Glaubitz1, Jason A Peiffer4, Kelly L Swarts5, Terry M Casstevens1,
Robert J Elshire1, Charlotte B Acharya1, Sharon E Mitchell1, Sherry A Flint-Garcia2,6, Michael D McMullen2,6,
James B Holland2,7, Edward S Buckler1,2,5* and Candice A Gardner2,3*

Abstract

Background: Genotyping by sequencing, a new low-cost, high-throughput sequencing technology was used to
genotype 2,815 maize inbred accessions, preserved mostly at the National Plant Germplasm System in the USA.
The collection includes inbred lines from breeding programs all over the world.

Results: The method produced 681,257 single-nucleotide polymorphism (SNP) markers distributed across the
entire genome, with the ability to detect rare alleles at high confidence levels. More than half of the SNPs in the
collection are rare. Although most rare alleles have been incorporated into public temperate breeding programs,
only a modest amount of the available diversity is present in the commercial germplasm. Analysis of genetic
distances shows population stratification, including a small number of large clusters centered on key lines.
Nevertheless, an average fixation index of 0.06 indicates moderate differentiation between the three major maize
subpopulations. Linkage disequilibrium (LD) decays very rapidly, but the extent of LD is highly dependent on the
particular group of germplasm and region of the genome. The utility of these data for performing genome-wide
association studies was tested with two simply inherited traits and one complex trait. We identified trait
associations at SNPs very close to known candidate genes for kernel color, sweet corn, and flowering time;
however, results suggest that more SNPs are needed to better explore the genetic architecture of complex traits.

Conclusions: The genotypic information described here allows this publicly available panel to be exploited by
researchers facing the challenges of sustainable agriculture through better knowledge of the nature of genetic
diversity.
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Background
Maize (Zea mays L.) is one of the most important crops
in the world, being one of the main sources of human
food, animal feed, and raw material for some industrial
processes [1].Furthermore, maize is a significant model
plant for the scientific community to study phenomena
such as hybrid vigor, genome evolution, and many other
important biological processes. The maize genome is
complex, and has a very high level of genetic diversity
compared with other crops and model plant species [2].

The Zea genome is in constant flux, with transposable
elements changing the genome and affecting genetic
diversity [3]. Structural variations between any two
maize plants are prevalent and are enriched relative to
single-nucleotide polymorphism (SNP) markers as sig-
nificant loci associated with important phenotypic traits
[4]. The availability of new sequencing technologies at
increasingly affordable prices has provided the opportu-
nity to investigate more deeply the maize genome and
its diversity, enabling genome-wide association studies
(GWAS) and genomic selection (GS) strategies.
Since the beginning of the 20th Century, when Shull

[5] and East [6] first investigated inbreeding and hetero-
sis in maize, breeding programs around the world have
developed maize inbred lines using diverse strategies.
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The USDA-ARS North Central Regional Plant Introduc-
tion Station (NCRPIS) in Ames, Iowa, an element of the
National Plant Germplasm System, along with germ-
plasm banks around the world, has conserved distinct
inbred lines that represent nearly a century of maize
breeding efforts. Researchers have genotypically charac-
terized subsets of these maize inbred lines to assist with
curatorial management of germplasm collections, to
evaluate diversity within breeding programs, and for use
in association mapping [7-10]. Some association panels
have been used successfully to characterize many differ-
ent traits, frequently through a candidate gene strategy
[11]. However, the sample sizes used in these studies
may not have been large enough to detect all of the key
quantitative trait loci (QTL) for the complex traits.
Furthermore, the nature of population structure in
maize may have resulted in further dilution of statistical
power and high rates of false discovery [12]. In addition,
candidate gene strategies require an understanding of
the biochemical or regulatory pathways controlling the
traits.
Recently, Elshire et al. [13] developed a simple new

sequencing procedure that provides a large number of
markers across the genome at low cost per sample. The
approach, called genotyping by sequencing (GBS), can
be applied to species with high diversity and large gen-
omes such as maize. It does not rely on previous knowl-
edge of SNPs; however, the high-quality reference
genome for the maize inbred B73 [14] is used at this
point to anchor the position of the SNPs. The method
enables characterization of germplasm collections on a
genome-wide scale, and greatly expands the number of
individuals and markers under study, which then
increases the chances of discovering more uncommon
or rare variants [15]. In maize, there are examples of
important rare alleles unique to some groups of germ-
plasm, such as alleles at crtRB1 that increase b-carotene
concentrations in kernels [16]. Several studies have also
suggested that rare alleles could explain the ‘missing
heritability’ problem. This is the phenomenon by which
a large portion of the inferred genetic variance for a
trait is often not fully accounted for by the loci detected
by GWAS [17]. Moreover, the increased number of
samples and markers allow a deeper study of haplotype
structures and linkage disequilibrium (LD). Regions with
strong LD and large haplotype blocks as a result of
reduced recombination make it more difficult to sepa-
rate genes that can have different effects, affecting both
mapping and/or selection of the positive alleles for a
trait. This linkage between favorable and negative alleles
also contributes to heterosis [18].
In the current study, we used GBS to analyze a total

of 4,351 maize samples from 2,815 maize accessions
with 681,257 SNP markers distributed across the entire

genome. These data allowed us to 1) compare this new
sequencing technology with other available options, 2)
explore the potential of this new technology to help
with curation and use of germplasm, 3) evaluate genetic
diversity and population structure both across the gen-
ome and between groups of germplasm, 4) investigate
the history of recombination and LD through the differ-
ent breeding groups, and 5) explore the potential of the
collection as a resource to study the genetic architecture
of quantitative traits.

Results
Marker coverage and missing data
The germplasm set examined in this experiment com-
prised 2,711 available maize inbred accessions preserved
in the USDA-ARS NCRPIS collection (some of them
with more than one source), another 417 candidates to
be incorporated into the USDA collection as new sources
of diversity, and the 281 maize inbred lines from the
Goodman maize association panel [8]. Most of the acces-
sions were sequenced once, with one representative plant
chosen for the DNA extraction, resulting in a single GBS
sample. However, for 558 accessions, more than one
plant was sequenced so different sources could be com-
pared, and therefore more than one GBS sample was
available. Moreover, 326 DNA samples were sequenced
multiple times as technical replicates. Thus, the total
number of GBS samples analyzed in this study was 4,351
(see Additional file 1). From the complete set of 681,257
SNP markers across all maize lines analyzed to date, we
selected 620,279 SNPs that are polymorphic among our
samples. These SNPs are distributed along the 10 maize
chromosomes, and more highly concentrated in sub-telo-
meric than pericentromeric regions (Figure 1).
The average base-call error rate based on repeated sam-
ples was 0.18%. An additional level of quality control
was provided by approximately 7,000 SNPs that over-
lapped with those obtained with a large genotyping
array [19] for the 281 maize inbreds from the Goodman
association panel. The mean discrepancy rate between
the GBS and array SNP genotypes for all calls was 1.8%.
When heterozygote calls are excluded from the compar-
ison, the discrepancy rate decreased to 0.58%.
The average coverage (SNP call rate) by sample was

35%, with values ranging from 2 to 75%. However, when
samples were sequenced more than once, coverage
improved substantially. For example, the Goodman asso-
ciation panel was evaluated twice, and reduced the average
missing data from 63% based on a single run to 35% for
the merged data. The nested association mapping (NAM)
parents [18], covered by seven replicate sequencing runs,
was found to have only 23% missing data. The inbred line
SA24, used as a check, was analyzed more than 25 times
and had only 16% missing data. In addition, coverage was
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highly dependent on the genotype. A substantial number
of the total reads could not be aligned to the reference
genome, some because of limited sensitivity of the Bur-
rows-Wheeler Alignment (BWA) software, but most
because of presence/absence variation (PAV). Use of the
B73 reference genome resulted in inbreds more closely
related to B73 achieving values of less than 20% missing
data with only two samples, whereas more distant inbreds
maintained values of around 30% missing data even after
several replicate sequencing runs.
Imputation of missing data was performed using an

algorithm that searched for the closest neighbor in small
SNP windows across our entire maize database (approxi-
mately 22,000 Zea samples), allowing for a 5% mismatch.
If the requirements were not met, the SNP was not
imputed, leaving only about 10% of the data unimputed.
When comparing the imputed GBS data with the results
from the genotyping array [19] for the 281 maize inbreds
from the Goodman association panel, the median discre-
pancy rate for all calls was 4%. Excluding heterozygote
calls, the median error rate was 1.83%. Imputed data
were used only to perform GWAS analysis.

Integrity and pedigree relationships of the germplasm
collection
Curatorial management of such an enormous collection
of an annual plant is challenging, and various steps of the
process may contribute to problems such as errors or
material duplications. However, when we calculated the
proportion of markers identical by state (IBS) for all pairs
of lines (Figure 2A), GBS data showed that more than
98% of the approximately 2,200 samples that shared an
accession name were more than 0.99 IBS even when
derived from different inventory samples (Figure 2B).

Most of the mismatches were traced back to problems
during the DNA manipulation step. This showed that
misclassification or contamination problems are not
common in the bank. When more than one sample per
accession was available, intra-accession variability was
detected (Figure 2B). For those accessions, the IBS value
was lower than expected, owing to residual heterozygos-
ity. However, for most of the accessions in this study,
only one plant was analyzed, and thus intra-accession
variability could not be assayed. Based on our average
error rates, we selected 0.99 as a conservative value to
assume that two different samples with the same name
but different origins are actually the same accession.
When more than two samples per accession were avail-
able, if IBS values were consistent between all compari-
sons we considered the differences to be the result of
residual heterozygosity. We merged the information from
replicated samples that met those criteria to obtain a final
list of 2,815 unique maize inbred lines.
Maize inbred development through the world has been

accomplished in many different ways, but some of the
most common procedures consist of intermating existing
elite materials or incorporating a desirable trait from a
donor into an elite inbred line through backcross breed-
ing [20]. Thus, we expected that a high number of the
inbred lines in our collection would be closely related.
Using IBS, we examined the distribution of the IBS rela-
tionships (Figure 2A) and the 10 closest neighbors for
each unique inbred line (see Additional file 2). The data
reflect the continuous exchange and refinement of germ-
plasm that has occurred over the breeding history of
maize and the efforts by breeders to introduce new diver-
sity into their programs. We calculated identity by des-
cent (IBD) for all possible pairwise combinations of the

Figure 1 distribution of single-nucleotide polymorphisms (SNPs) across the genome. Distribution of the number of SNPs found in 1 Mb
windows across the 10 maize chromosomes. Centromere positions are shown in black.
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inbreds, and found that 603 lines (21% of the collection)
had at least one other accession that was 97% identical
(equal to the relationship expected between a parental
inbred and a progeny derived by four backcrosses to that
parent). For some of the more historically important

inbred lines, the number of relationships exceeded 10.
For example, B73 shares more than 97% of its genome
with more than 50 inbreds (Figure 3), congruent with its
contribution to the pedigrees of many important com-
mercial lines [21].

Figure 2 Identical by state (IBS) distribution across GBS samples. Distribution of IBS values across (A) the 2,815 accessions and (B) for
accessions with multiple samples.
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The network of relationships obtained using GBS data (see
Additional file 3), combined with pedigree information,
provides a tool to identify anomalies and potential errors
in the identity of accessions. These data, in hands of
experts on maize germplasm (for example, the USDA
maize curator), can be used to identify accessions that
may have been misclassified, select best sources for multi-
plication/distribution, eliminate duplications, select core
collections, add or recommend new experimental entries,
and in theory, to assess genetic profile changes over suc-
cessive regenerations, another quality-assurance measure.

Population structure
Maize lines from breeding programs with different objec-
tives and environments were included in our final set of
lines (see Additional file 1). It is expected that different
groups of germplasm will result in population stratification
[7,8]. An analysis of the similarity matrix using principal
coordinate analysis (PCoA) with a multidimensional scal-
ing (MDS) plot showed that GBS data could describe the
genetic variation among our breeding lines in accordance
with their known ancestral history (Figure 4A). For exam-
ple, the inbreds grouped into different subpopulations

along the PCo1 axis, with tropical materials on one side,
and sweet corn, derived from Northern Flint materials, on
the other.
When the inbreds were classified according to breeding

program of origin (Figure 4B), the different breeding pro-
grams also tended to group together, with most of the
USA programs in the two major germplasm groups recog-
nized by temperate maize breeders (referred to as stiff
stalk and non-stiff stalk [21]). However, some USA inbred
lines (for example, the temperate-adapted all-tropical lines
developed at North Carolina State University) were found
to be interspersed with tropical lines from CIMMYT (the
International Maize and Wheat Improvement Center),
while others (for example, the semi-exotic inbreds from
the Germplasm Enhancement of Maize (GEM) program,
derived from crossing USA and tropical lines) were
located between the stiff stalk/non-stiff stalk and the tropi-
cal clusters. Finally, other materials from international
programs (for example, Spain, France, China, Argentina,
or Australia) seem to represent germplasm pools different
from those commonly used in North American programs.
As expected, these usually did not form clusters with any
of the other groups.

Figure 3 B73 network diagram. Network relationships of maize inbred lines with values of IBS greater than 0.97 for B73.
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Figure 4 Multidimensional scanning for 2,815 maize inbred lines. Genetic relationships between the maize inbred lines preserved at the
NCRPIS germplasm bank visualized using a principal coordinate analysis of the distances matrix. The × and Y axes represent PCo1 and PCo2
respectively. Colors are assigned based on (A) population structure or (B) breeding program. Inbred lines obtained directly from landraces
without selection are highlighted in red to serve as reference.
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Distribution of alleles and allele frequencies
The site frequency spectrum (SFS) for the entire collec-
tion showed that most of the SNPs in the Ames inbred
panel (68%) had a minor allele frequencies (MAF) less
than 0.1, with more than half of all SNPs being rare
(MAF < 0.05) (Figure 5). This result suggests that some
alleles might be unique to different subgroups of germ-
plasm. To compare levels of diversity between different
germplasm groups, we analyzed the percentage of alleles
present in those groups. The inbreds of tropical origin
were found to contain 77% of the total allelic diversity
of the collection, whereas the non-stiff stalk and stiff
stalk groups were found to present a substantial bottle-
neck, with only 48% and 42% of the total allelic diver-
sity, respectively, being present. Of the total number of
polymorphic SNPs, only about 35% were shared between
all three of the groups (Figure 5). Another difference
between stiff stalk/non-stiff stalk and the remainder of
the collection was a shift in the MAF distribution, with
more than half of their SNPs (68% and 59%, respec-
tively) having a MAF greater than 0.1. By contrast, the
Goodman association panel captured 75% of the total
allelic diversity and was highly representative of the
entire collection, with an SFS similar to that obtained
using all the samples. The diverse panel formed by the
27 maize inbred founders of NAM and IBM contained
57% of the overall allelic diversity, showing that, even
with a very small number of samples, NAM captured
more than half the total allelic diversity present in the
inbred line collection.

Both Canadian and USA public breeding efforts have
successfully incorporated genetic diversity. Collectively,
those inbred lines contained 83% of the total allelic
diversity of the collection. However, only a modest
amount of this diversity has been commercially
exploited, and proprietary germplasm with Expired
Plant Variety Protection (ExPVP) contains only 45% of
the total number of polymorphic SNPs. Moreover, pri-
vate breeding efforts have favored the divergence
between three main heterotic pools (stiff stalk, non-stiff
stalk, and iodent). In analyzing the network relationships
for the ExPVP inbreds, only 2% of the pairwise IBS rela-
tionships with greater than 90% IBS were found to be
between inbreds from different heterotic pools (Figure
6A), and only 30% of the total SNPs segregating in the
ExPVP materials were shared between all three groups
of germplasm (Figure 6B).
We also analyzed pairwise fixation indexes (Fst)

between different groups of accessions. The small Fst
estimates, averaging only 0.06, indicated that there is
moderate differentiation [22] between tropical, stiff
stalk, and non-stiff stalk maize populations. Analysis of
pairwise Fst and average nucleotide divergence between
different USA breeding programs (Table 1) confirmed
the picture obtained by analyzing genetic distances.
Most of those programs used similar sources of diver-
sity, with an average pairwise Fst of 0.04. Although the
maximum values for nucleotide divergence between pro-
grams differed, the average values for all the compari-
sons were around 0.14 (Table 1). The main commercial

Figure 5 Minor allele frequency (MAF) distribution and percentage of single-nucleotide polymorphisms (SNPs) shared between maize
subpopulations. Histogram of MAF distribution over all groups, and cumulative percentage of SNPs shared between different groups of
germplasm for each class of MAF. Columns represent the percentage of SNPs in each MAF category; lines represent the percentage of alleles
shared between the groups of germplasm at equal or lesser MAF value.
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companies, responsible for most of the maize cultivated
in the USA, have had very similar strategies when decid-
ing which sources of germplasm will benefit their breed-
ing programs and, based on the data obtained from
their ExPVP, their populations differ genetically by only
3%. They also had the smallest value for average nucleo-
tide divergence (0.13).
Within chromosomes, all groups consistently displayed

smaller values of Fst and lower MAF in the pericentro-
meric regions versus the remainder of the genome.

Genetic diversity
To evaluate the levels of diversity and divergence in
the entire collection and within different groups of

germplasm, we calculated LD, haplotype length, and popu-
lation differentiation (Fst) across the entire maize genome.
We also calculated the correlation between those mea-
surements and previous recombination rates across the
genome estimated with NAM [23] (Figure 7).
LD decayed very rapidly within the entire collection,

and reached an average r2 of 0.2 within about 1 Kb
(Figure 8), but the variance is large because the level of
LD is dependent on the particular group of germplasm
and region of the genome, as can be seen with the dif-
ferences for the median value for r2 within diverse
groups of germplasm (see Additional file 4). LD decay
was slower within the stiff stalk, non-stiff stalk, and
ExPVP groups, for which an average r2 of 0.2 was not

Figure 6 Expired Plant Variety Protection (ExPVP) network diagram and distribution of segregating single-nucleotide polymorphism
(SNPs). (A) Network of relationships for the ExPVP inbreds constructed using identical by state (IBS) values greater than 0.9. Each dot (inbred
line) has a different color assigned based on the company where it was developed. (B) Distribution of the segregating SNPs between the three
heterotic groups that form the three main clusters in the network graph.

Table 1 Pairwise differences between maize breeding programs in the USA.a

IL IN IA MI MN MO NE NC ND W Mon Pion

Illinois (IL) 0.14 0.96 0.14 0.99 0.14 0.98 0.14 0.97 0.15 0.98 0.14 0.98 0.14 0.98 0.15 0.93 0.15 0.98 0.14 0.98 0.14 0.95

Indiana (IN) 0.01 0.14 0.99 0.14 0.95 0.14 0.98 0.15 0.99 0.14 0.96 0.14 0.96 0.15 0.92 0.15 0.96 0.14 0.96 0.14 0.96

Iowa (IA) 0.01 0.01 0.14 0.93 0.14 0.99 0.15 0.99 0.13 0.99 0.14 1.00 0.15 0.99 0.14 0.98 0.13 0.99 0.14 0.96

Michigan (MI) 0.01 0.02 0.03 0.14 0.97 0.15 0.93 0.14 0.91 0.15 0.91 0.15 0.93 0.15 0.97 0.14 0.95 0.14 0.92

Minnesota (MN) 0.02 0.02 0.02 0.02 0.15 0.96 0.14 0.98 0.15 0.99 0.15 0.94 0.14 0.99 0.14 0.98 0.14 0.95

Missouri (MO) 0.02 0.02 0.03 0.03 0.03 0.14 0.97 0.15 0.95 0.15 0.92 0.15 0.99 0.14 0.99 0.14 0.96

Nebraska (NE) 0.04 0.04 0.03 0.06 0.05 0.05 0.14 0.99 0.15 0.89 0.14 0.97 0.13 0.98 0.13 0.95

North Carolina (NC) 0.05 0.05 0.04 0.06 0.05 0.04 0.06 0.15 0.90 0.15 0.93 0.14 0.98 0.14 0.95

North Dakota (ND) 0.03 0.03 0.04 0.03 0.02 0.03 0.08 0.06 0.15 0.94 0.15 0.94 0.15 0.88

Wisconsin (WI) 0.02 0.03 0.03 0.03 0.02 0.04 0.07 0.07 0.03 0.14 0.98 0.15 0.94

Monsanto (Mon) 0.04 0.03 0.02 0.05 0.03 0.05 0.05 0.04 0.07 0.06 0.13 0.99

Pioneer (Pion) 0.04 0.04 0.03 0.05 0.04 0.04 0.06 0.06 0.07 0.06 0.03
aLower diagonal shows pairwise Fst estimates between USA breeding programs, whereas upper diagonal shows average nucleotide divergence and maximum
nucleotide similarity.
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reached until a distance of approximately 10 Kb. Tropi-
cal materials displayed the fastest decay of LD with
values similar to the overall sample.
The average GBS marker haplotype length, estimated

around each SNP as the number of contiguous SNPs that
two random lines from a group share, extending from a
focal point forward in both directions, was 52 SNPs
(around 1.4 Mb) for the entire collection, with a smaller
length within the tropical materials (44 SNPs) and a
much larger length in the non-stiff stalk (152 SNPs) and
stiff stalk (495 SNPs) groups. The ExPVP group also dis-
played a large average haplotype length of 200 SNPs
(around 5.1 Mb), with mean haplotype lengths greater
for lines developed by breeding programs now owned by
Monsanto than for Pioneer lines. Core collections such

as the Goodman association panel or NAM parents,
which were selected to maximize diversity, had the smal-
lest haplotype lengths (81 and 48 SNPs, respectively)
(Table 2). Haplotype lengths for the overall sample
showed high correlation with the estimates of the recom-
bination rates in NAM (Spearman correlation r2 =0.74)
(see Additional file 5, Figure 7).
None of the other correlations tested was strong,

probably because of the large diversity of the sample
and large physical size of the NAM genetic map bins
(average of 2.4 Mb). However, the fixation indexes
between both temperate groups and tropical materials
showed an r2 of 0.26, indicating common allele fre-
quency differences between groups, probably related to
the adaptation bottleneck.
In addition, when analyzing the entire chromosome

with all samples, chromosome 4 was found to have a
larger haplotype length (sites) compared with the rest of
the chromosomes (Table 2). When looking at physical
distance (in Mb), this increase was consistent in all
groups. One region on chromosome 4 that seemed to
increase the average haplotype length is located between
40 and 65 Mb, a region with important genes related to
the domestication and improvement processes [24,25].
This region also showed lower diversity and MAF. The
stiff stalk, non-stiff stalk, and ExPVP groups also exhibit
a longer than average haplotype length for chromosome
10, where one of the major photoperiod response genes
is located [26].

Genome-wide association studies
The germplasm set conserved in the USDA collection is
extensive and publicly available, and contains a high
amount of allelic diversity and rapid LD decay. For
these reasons, we wanted to explore its possible use as a
panel to study quantitative traits, combined with a strat-
egy of low-coverage data in multiple samples. We used
a simple Mendelian trait, namely, kernel color, with an

Figure 7 Genome-wide pairwise relationships between different
genetic diversity measurements. Relationships between nested
association mapping (NAM) recombination rate (log10 cM/Mb),
average haplotype length (bp), average LD (r2), and fixation indexes
(Fst) between stiff stalk, non-stiff stalk, and tropical lines at the NAM
genetic map bin scale. The numbers indicate the coefficient of
determination (r2) calculated using Spearman’s rank correlation. LD,
linkage disequilibrium.

Figure 8 Decline of genome-wide linkage disequilibrium (LD) across all maize inbreds. Mean LD decay measured as pairwise r2 between
all single-nucleotide polymorphisms in the collection. The red line represents the average value while the darker gray area represents the 50%
range of values and light gray 90%.
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approximate frequency of 20% for white kernels in our
population, to perform GWAS using GBS markers. The
SNP with strongest association (P = 10-86) with kernel
color was found within the Y1 gene that reduces the
presence of carotenoid pigments in the endosperm [27]
(see Additional file 6, Figure 9).
Because the power to detect alleles at lower frequencies
is expected to be less, we decided to test another Men-
delian trait, sweet corn versus starchy corn, where the
sweet phenotype is present at a much lower frequency
(5%) than the white kernel type. This trait has been
affected by strong selection pressure, both during
domestication and the breeding process [28], resulting
in an extensive block of elevated LD surrounding the
targeted area, especially when the inbred is a dent line
that has been converted into a sweet line. The two
SNPs with strongest association (P values between 10-61

and 10-52) defined a 14 Mb interval containing Su1, a
gene that participates in kernel starch biosynthesis [29]
(see Additional file 7, Figure 10).
Finally, we tested the power of this association panel with
a complex trait, the number of growing degree days from
planting to the day that 50% of the plants show silk (see
Additional file 8, Figure 11). The best association, with P =
10-23, lies about 2 Kb from ZmCCT, an important gene
related to photoperiod response and flowering time in
maize [26]. The second strongest associations (P values
between 10-18 and 10-14) are located on chromosome 8,
surrounding the region where Vgt1, one of the major flow-
ering time QTL for maize is located [30]. The next best hit
on chromosome 3 (P = 10-14) does not have any identified
candidate gene association, but overlaps with one of the
flowering time QTL detected using NAM [31]. A chromo-
some 7 hit (P = 10-12) also overlaps with one of the NAM

Table 2 Average haplotype length for different groups of germplasm.a

Type Chromosome number Mean

1 3 4 5 6 7 8 9 10

All maize 49.8 49.7 53.0 58.9 49.8 51.0 52.3 51.6 48.7 57.8 52.3

Tropical 51.9 43.0 43.9 46.5 43.5 38.1 43.0 43.5 42.6 43.3 43.9

Stiff stalk 494.4 493.3 546.6 523.5 432.9 527.8 410.5 488.9 388.4 647.0 495.3

Non-stiff stalk 170.5 135.7 149.0 154.1 164.2 123.6 156.5 132.6 144.9 190.7 152.2

ExPVPb 200.8 203.0 170.8 216.1 192.5 186.0 179.4 209.3 168.8 277.4 200.4

Monsanto 268.4 384.9 246.0 327.4 318.0 253.6 221.7 277.1 232.2 333.8 286.3

Pioneer 223.6 139.6 167.8 226.5 170.5 198.9 206.7 175.6 188.3 267.2 196.5

Association panel 79.6 79.8 90.1 87.4 76.3 81.7 75.3 81.9 76.2 86.4 81.5

NAMc 45.0 45.4 53.6 57.0 47.9 43.3 43.3 52.3 43.4 52.1 48.3
aNumber of sites defining a haplotype by chromosome calculated using genotyping by sequencing; markers for different groups of germplasm.
b Expired Plant Variety Protection
c Nested association mapping

Figure 9 Genome-wide association study (GWAS) for yellow versus white kernels. GWAS for kernel color on 1,595 maize inbred lines with
yellow or white kernels.

Romay et al. Genome Biology 2013, 14:R55
http://genomebiology.com/2013/14/6/R55

Page 10 of 18



flowering time QTL [31] and is close to the maize flower-
ing time gene DLF1-DelayedFlowering1 [32] and the
GRMZM2G017016 gene, a putative orthologue of the
Arabidopsis FRI-Frigida gene [33]. The fifth best hit, on
chromosome 1, is located near a very interesting suite of
genes spread across a 3 Mb interval, where teosinte-
branched1 and dwarf8 flank one side, while Phytochro-
meA1 flanks the other side [34]. A gene, GRMZM2G1
44346, containing a CCT domain is also located in the
region, only 0.2 Mb away from our hit. Recent work has
suggested that dwarf8 has been a target of selection in
early flowering lines [35,36], but it is unlikely to directly
contribute much to flowering time [37]. These regions cer-
tainly warrant further study.

Discussion
The challenges currently facing agriculture, that is, rapid
human population growth, climate change, and the need
to balance increasing production with reduced environ-
mental effects, make it necessary to optimize the use of
available resources. Genomic data can be used to address
these challenges by helping breeders to compare individual
plant genomes and optimize the characterization, discov-
ery, and use of functional genetic variation [38]. Germ-
plasm banks around the world curate thousands of maize
accessions that, in combination with genomic data, can be
explored through GWAS or GS, and could potentially be
used for improving agriculturally significant quantitative
traits. Inexpensive methods to obtain dense genetic

Figure 10 Genome-wide association study (GWAS) for sweet versus starchy corn. GWAS for kernel color on 2,145 maize inbred lines with
sweet or starchy kernels. SNP, single-nucleotide polymorphism.

Figure 11 Genome-wide association study (GWAS) for growing degree days to silking. GWAS for growing degree days to 50% silking on
2,279 maize inbred lines. NAM, nested association mapping; QTL, quantitative trait loci.
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marker information on large samples of germplasm are
needed to take full advantage of this tremendous resource
[39].
The enormous progress in sequencing technologies

that has occurred over the past few years has allowed
better understanding of the maize genome. High-density
genome sequencing has been used to study maize diver-
sity [4,23-25]. In addition, several studies [39-42] have
taken advantage of recently developed SNP genotyping
arrays for maize, which have evolved quickly from only
a few thousand SNPs to more than 50,000. Although
high-density genome sequencing can provide a larger
number of markers and a more accurate vision of the
genome, its expense has restricted it to only a few hun-
dred samples per study. SNP arrays are cheaper and can
analyze larger samples of germplasm; however diversity
studies can be confounded by the fact that SNPs are
developed using reference sources of diversity, which
may cause an important ascertainment bias (Ganal et al
[19] describes an example with B73 and Mo17 in the
maizeSNP50 chip). GBS has been shown to be a less
expensive method for genotyping large numbers of sam-
ples, and provides many more SNPs than do SNP arrays.
Although the use of a reference genome for calling
SNPs from GBS data might cause bias and underesti-
mate the amount of diversity from the groups more dis-
tant from the reference, the diversity picture obtained
when analyzing the distance matrix seems to be closer
to the expectations from simple sequence repeats stu-
dies [8], whole-genome sequencing, and maize domesti-
cation data [23] than that obtained with SNP arrays.
The percentage of missing data from GBS with enzymes

such as ApeKI and the levels of coverage obtained here
may be a problem for some applications, especially GWAS
and GS. Although better coverage can be achieved with
more repetitions of the samples, this will increase cost,
and quickly reaches a point where there is little reduction
in missing data with increased investment in repeated
sequencing runs. Given the importance of PAV in maize
[2,3,24,43] some of the missing data are very probably due
to the absence of some regions of the B73 genome in
other inbred lines. As shown here, simple imputation pro-
cedures based on identifying the most similar haplotype
can be used to supply some of those missing data, and this
imputation may be sufficiently accurate provided that
similar haplotypes are present in the sample of genotypes.
This kind of procedure may work better as the total num-
ber of maize samples in the GBS database increases, but it
may also cause over imputation of data that are actually
biologically missing as a result of a PAV. Alternative meth-
ods for handling missing SNP data in GBS datasets include
an approach that avoids using a reference genome, such as
the one recently used for switchgrass [44], or one that

genetically maps individual GBS sequence tags as domi-
nant markers [13].
Another important difference between the results

obtained with GBS and the results from SNP array
methods seems to be the MAF distribution. Whereas
array assays seem to oversample SNPs with intermediate
frequencies [45] even when analyzing diverse maize col-
lections [9,41], more than half of GBS SNPs within our
collection are rare (this is especially true within some of
the more diverse germplasm groups). As sequencing
technologies improve, the number of rare alleles
detected is increasing. In humans, recent studies have
found that the majority of variable genomic sites are
rare, and exhibit little sharing between diverged popula-
tions [46]. The importance of rare alleles is not yet com-
pletely clear, and further studies to understand the
magnitude of their role causing observable phenotypic
variation are underway [38]. There are strong arguments
both in favor and against the rare allele model, which
hypothesizes that quantitative traits are largely con-
trolled by rare alleles of large effect [15,17].
GWAS studies have shown that variation in some

traits is related to rare alleles, and that those rare var-
iants could explain an additional fraction of the missing
heritability [15]. However, identifying rare variants
through GWAS is challenging, and requires large sam-
ple sizes [38]. With the present work, we present an
extensive genetic characterization of the maize inbred
lines preserved by one of the largest crop germplasm
banks in the world, using a method that detects rare
alleles with high confidence levels. Moreover, our data
show that when there are not enough resources to
extensively evaluate the entire collection, a smaller num-
ber of samples (such as the maize association panel or
even the NAM parents), can, if chosen based on appro-
priate criteria to maximize haplotype diversity, capture a
high portion of the rare alleles, allowing detection of
rare allele effects that may be desirable to incorporate
into breeding programs.
A complication of using the entire USDA-ARS maize

inbred collection for breeding or GWAS is the close rela-
tionships between some of the lines. When the seed yield
of a few inbreds derived from the Iowa Stiff Stalk Synthetic
and their derivatives facilitated the transition to single-
cross hybrids, these inbreds became the female parents of
choice for many breeding programs [47]. For example
B73, the main founder of the stiff stalk group, is closely
related to more than 50 other inbred lines from different
programs in the collection. Several germplasm sources
were used to generate the male pool (non-stiff stalk).
However, the visualization of the genetic relationships
through the MDS shows that even if the non-stiff stalk
group forms a larger cluster (revealing a higher amount of
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diversity), an overlap between the stiff stalk and non-stiff
stalk group still exists.
As shown by the MDS plot and Fst values, most of the

germplasm from classic breeding programs of the Corn
Belt region is closely related. The bottleneck is even nar-
rower when ExPVPs are examined. Using a much smaller
sample of SNP markers, Nelson et al. [48] reported that
most of the ExPVPs released in the past three decades
could be clustered into six primary groups represented
by six prominent public inbred lines. More recently,
Mikel [49] studied the pedigree records of several inbreds
registered until 2008, and found that the genetic contri-
bution of the inbred Mo17 decreased, whereas that of
Oh43 increased. Our analysis shows that the ExPVP
inbreds tend to cluster into three main groups, with B73,
Mo17/Oh43, and PH207 being the principal connectors
within each cluster. Although all of the major private
seed companies are represented within each group (con-
sistent with the small value of divergence between com-
panies), Pioneer germplasm is represented more in the
iodent group (including PH207) and more of its germ-
plasm falls outside the three main clusters (B73, PH207/
Oh43, and PH207). This result is in concordance with the
observed smaller average haplotype length of Pioneer
germplasm.
Although the recycling of elite lines as breeding parents

has markedly reduced the amount of diversity used by
maize breeders over the past few decades, breeders have
also been aware of the importance of maintaining and
introducing diversity into their programs [50]. The deter-
mination of breeders to search for new sources of promis-
ing, exotic germplasm is reflected in the Ames inbred
collection. For instance, the GEM program aims to
broaden the germplasm base of corn hybrids grown by
farmers in the USA [51]. Combining the efforts of public
and private cooperators, this project has introduced tropi-
cal alleles into elite USA germplasm. Our molecular char-
acterization of these materials shows that the GEM
program has been effective, as most of its inbreds lie some-
where between the ExPVPs and tropical materials on the
MDS plot. According to our results, other public programs
that have succeeded in incorporating tropical diversity into
their materials are North Carolina State University and the
University of Missouri. On the other side of the graph,
adaptation to colder climates has been accomplished using
different heterotic pools within the Northern USA and
Canadian programs. Overall, although inbred lines from
breeding programs from other parts of the globe might
have different haplotype combinations (related to the use
of different breeding pools), the USA and Canadian public
inbred lines preserved at NCRPIS capture most of the total
allelic diversity uncovered in this study.
GBS has yielded the greatest number of SNPs ever

obtained from a large maize association panel to date.

As seen with our GWAS analysis, the data can provide
accurate mapping of simple and complex traits for the
most important genes. Van Inghelandt et al. [52] sug-
gested that with an association panel of 1,537 elite
maize inbred lines, 65,000 SNPs should be sufficient to
detect associations with the genes with biggest effects.
Lu et al. [41] used a panel containing tropical and tem-
perate materials, and suggested that 230,000 to 460,000
markers would be needed. However when comparing
the results for the two locations with the best flowering
time associations in our study, we observed that the
most important flowering time gene, ZmCCT, was tar-
geted with only one SNP, meaning that it could easily
have been missed. By contrast, the Vgt1 peak showed
more than 80 SNPs associated with the trait (Figure 11).
The main difference between these two important QTL
is that the ZmCCT polymorphism is very rare in tempe-
rate materials with very low levels of LD, whereas the
Vgt1 variation is common in temperate inbred lines that
have higher LD. When GBS data are used to perform
GWAS, the probability of finding the causative SNPs in
the dataset is highly dependent on the trait itself and
the germplasm in which it is expressed. The length and
number of the haplotypes detected vary enormously,
depending on the region of the genome and the germ-
plasm group. Some germplasm groups are currently
under-represented in our maize dataset. As a result,
population bottlenecks can cause a polymorphism that
is not present at an appreciable frequency to pass the
GBS pipeline quality filters. Therefore, it is unlikely that
a causative polymorphism is present in the GBS dataset
if it is unique to one of these germplasm groups. In
addition, if the region has high haplotype diversity, rapid
LD decay indicates that it is very likely that, even with
approximately 700,000 SNPs we might not find a mar-
ker in LD with a particular causative polymorphism of
interest. This situation is reflected in a large portion of
chromosome 10 where the ZmCCT gene is located, and
tropical inbreds have much greater haplotype diversity
than the rest of the collection. This means that,
although 700,000 SNP markers are likely to be sufficient
for analysis of temperate alleles, they are not sufficient
to perform accurate GWAS with tropical alleles.
However, numerous inbreds in the collection are IBD

for specific regions, allowing a strategy of accurate
imputation. Based on common local haplotypes defined
with GBS SNPs, high-density markers for a representa-
tive inbred obtained through whole-genome sequencing
can be imputed between GBS markers, thereby increas-
ing marker density.
In summary, our GWAS results for days to silking

showed that this association panel combined with the
GBS information can help to dissect the genetic archi-
tecture of important agronomic complex traits. Our best
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association signals corresponded to regions in which a
priori candidate genes or previously identified flowering
time QTL are located. Nevertheless, identifying the cau-
sal gene is complex. Excluding the ZmCCT gene hit on
chromosome 10, all other major associations contain
several SNPs. These hits cover regions that can extend
for more than 10 Mb, even though our average LD
decays very rapidly. For Arabidopsis [53] and rice [54],
the results suggest that the occurrence of these ‘moun-
tain landscapes’ could be related to the presence of sev-
eral linked genes across the region. In maize, the
dissection of a candidate region contributing to flower-
ing time variation on chromosome 6 suggests that a
cluster of tightly linked genes are responsible for the
phenotypic variation [55]. In our study, the linked asso-
ciations on chromosome 8 correspond with the position
of two known flowering time genes, ZmRap2.7 [30] and
ZCN8 [56]. A similar situation occurs for the hits on
chromosome 7 with candidates DLF1 and FRI. Lastly,
on our chromosome 1 region, extended haplotype
lengths for some subpopulations and a strong correla-
tion between the region and population structure have
been reported [37]. Within 3 Mb, there are genes that
have been under selection since the domestication of
maize including tb1 and d8 [25,36] and two strong can-
didate genes for flowering time (CCT and PhyA1). All
these results for our candidate regions support the
hypothesis of the presence of some multigene complexes
that may have evolved together during the process of
maize domestication and adaptation. Further studies to
unravel these regions and better understand the genetic
architecture of flowering time are needed. Flowering
time and adaptation to temperate climates are complex
traits that seem to be controlled by several genes with
small effects, organized in clusters across the genome.

Conclusions
As previous studies have suggested [7,8,39], the genetic
diversity preserved at germplasm banks can be a useful
resource for breeders and geneticists. Development of
new germplasm will benefit from the knowledge of
alleles from diverse materials associated with targeted
traits [57], and from the methods and tools used to
mine and translate this knowledge into products. How-
ever, collections may remain a hidden treasure if the
amount and distribution of genetic diversity preserved is
not understood, preventing users from making the right
choices with the available material. With this study, we
have provided the maize research community with a
new tool that can be used to better understand and
manipulate the genetic architecture of complex traits. It
will permit more efficient and targeted use of the bree-
ders’ work and of the vast amount of diversity available
in the USDA-ARS maize germplasm bank. Experimental

designs based on particular haplotypes or maximizing
the diversity for a determined number of entries may be
possible, optimizing the resources available to each
researcher.

Materials and methods
Sample collection and genetic characterization
Leaf samples from the entire available collection of
maize inbred lines conserved at the USDA Plant Intro-
ductory extension in Ames (IA), including several
sources for the same accession, and from other colla-
borators, were collected from an experiment planted
near Columbia-Missouri (MO) in 2010. Several checks
across the experimental design were planted in order to
collect accurate phenotypic data. Leaf samples from
those checks were also collected to serve as controls
during the DNA manipulation process. DNA extractions
were performed on leaf punches from a single plant
using a commercial kit (DNeasy 96 Plant Kit, Qiagen
Inc., Valencia, CA, USA). DNA from the Goodman
association panel was provided by the Institute for
Genomic Diversity (Cornell University, Ithaca, NY,
USA) This panel was sequenced twice to serve as tech-
nical replicates for quality control. Another 95 addi-
tional samples from the entire collection were selected
to maximize diversity, and sequenced several times with
the same purpose and as sources of data for imputation.
Genotype data was generated following the GBS pro-

tocol [13], using ApeKI as restriction enzyme and multi-
plexing 96 samples on each Illumina flow cell lane. Raw
reads from the machine for the samples reported here
were analyzed in conjunction with approximately 18,000
additional maize samples, including NAM and other
linkage populations. The GBS sequencing data has been
submitted to NCBI SRA (study accession number
SRP021921). The GBS discovery pipeline for species
with a reference genome, available in TASSEL (version
3.0) [58], was used. The pipeline parameters used to fil-
ter the SNPs were a minimum SNP call rate of 10%,
minimum inbreeding coefficient (coefficient of panmixia,
1-HO/HE, where HO = observed heterozygosity and HE

= expected heterozygosity) of 0.8, and MAF of 0.2%. For
the ‘biparental error correction’ step that uses the infor-
mation of biparental populations present in the overall
sample, we used a maximum error rate (apparent MAF
in biparental families where the SNP is not actually seg-
regating) of 0.01, and a minimum median r2 for LD
with markers in the local genome region across biparen-
tal families of 0.5. For the latter parameter, the r2 for
each individual biparental family in which a SNP was
segregating (minimum MAF of 0.15) was calculated as
the median r2 in a window centered on the SNP in
question and consisting of one-twentieth of the SNPs
on the corresponding chromosome. SNPs within 100 Kb
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of the SNP in question were excluded from the calcula-
tion, as they could alter the result because of possible
errors in the order of the sequenced bacterial artificial
chromosomes.
The imputed data used for the GWAS was generated

using a custom Java script that divided the entire SNP
dataset into 1,024 SNP windows and looked for the most
similar inbred line within each window to fill the missing
data. The algorithm takes advantage of small IBD regions
shared between pairs of inbred lines in the collection; if
the window from the closest neighbor has more than 5%
difference from the line being imputed, the data point is
left as missing. The entire GBS Zea database (approxi-
mately 22,000 samples) was used to search for the closest
sample.
Both GBS SNP datasets (raw and imputed) are pub-

licly available through Panzea [59]

Population structure and pedigree relationships
IBS and IBD were calculated for all possible pairwise
comparisons using PLINK (version 1.07) [60]. For each
individual, the values for the nearest neighbors, based on
how similar (IBS) they were, were summarized using the
‘–cluster –neighbour’ option in PLINK. To maintain the
assumption of independence between markers for the
IBD calculations, SNPs were pruned with a window of
100 adjacent SNPs and a step size of 25 SNPs. The r2

threshold was 0.2. The resulting number of remaining
SNPs was approximately 200,000.
Network diagrams were generated using the open-

source network visualization platform Gephi (version
0.8) [61].
MDS through principal coordinates analysis for two

dimensions was performed on the IBS matrix using the
isoMDS option of the package MASS from R [62].
Accessions were assigned to a specific group or breeding
program according to the information available in the
Germplasm Resources Information Network (GRIN)
database.

Distribution of alleles and allele frequencies
MAF were calculated using the ‘Geno Summary by Site’
analysis tool in TASSEL (version 4.0) [58]. Taxa and site
filter tools from that program were also used. To remove
possible sequencing errors, only alleles detected in at
least two individuals in a particular group were consid-
ered to be present for the allelic diversity calculations.

Genetic diversity
To analyze genetic diversity, each inbred was considered
a random sample of a single maize haplotype from the
populations being examined. Hence, heterozygous SNP
genotypes were set to ‘missing’. With the resulting data-
set, pairwise IBS for all pairs of individuals from each

set of populations being compared was calculated for
each 1 Mb window. Average nucleotide difference was
defined as 1 minus average IBS. To estimate average
haplotype length, we followed the procedure proposed
by Hufford et al.[25]. Choosing one random starting
data point across the genome and two random inbred
lines, we compared the genotypes of the two lines at the
focal point, extending outward in both directions until
we found different genotypes, then we sorted the results
according to the median site to calculate the average
distribution per interval. Filtering for allele frequency
was not applied before this calculation. Consequently, in
order to allow for possible sequencing errors, a one-
SNP mismatch was permitted on each side of the initial
counting site before assigning the end of the haplotype.
Pairwise Fst between each group of maize lines were
calculated for all the SNPs as described by Weir and
Cockerham [63], and an average Fst by Mb window was
presented. All genetic diversity calculations were per-
formed using custom Java and R scripts.
For the LD analysis, SNPs with more than 25% miss-

ing data and with a MAF less than 0.05 were filtered
before the analysis, resulting in a total set of 21,806
SNPs. To avoid the bias that differences in sample sizes
of the different populations could cause, one random set
of 180 inbreds from each of the tropical, ExPVP, and
overall populations was selected. LD was calculated
using TASSEL [58], and output report tables from that
program were summarized using R.

Genome-wide association analysis
The GRIN database contains public information for differ-
ent descriptors for each of its entries. When these analyses
were performed, kernel color phenotypes were available
for 1,595 accessions (1,281 yellow versus 314 white). We
first performed a GWAS for kernel color, with white ker-
nels coded as 0 and yellow as 1. In addition, information
about kernel type was used to analyze starchy corn (0) ver-
sus sweet corn (1), with 2,520 entries in the first category
and 140 into the second. Data on flowering time were col-
lected from plants grown in randomized augmented
designs in three environments (Ames, IA; Clayton, NC;
and Aurora, NY) during summer 2010. Growing degree
days were calculated using climate data from weather sta-
tions located near the farms. Best linear unbiased predic-
tors for each line across environments were constructed
with ASREML software (version 3.0) [64]. Blocking factors
included environment, field nested in environment, and
block nested in field. Each field environment error was
assumed to be independent and heterogeneous in var-
iance. A first-order autoregressive error term for range
and row error structures in each field were also included.
GWAS analyses were performed on the imputed data-

set using the GAPIT package for R [65]. For the 10%
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unimputed (missing) genotypes, the GWAS model
assigned an intermediate value before the analysis. For
all traits, we used a compressed mixed model [66],
where the kinship was calculated as described by Van-
Raden [67], with a random subset of 10% of the SNPs.
The first five principal components calculated with
those same SNPs were included as covariates.

Additional material

Additional file 1: Table S1. Details for the 2,815 accessions (accession
number, number of samples, number of plants, average identical by state
(IBS) value for all the samples, percentage of missing data, breeding
program, and pedigree group).

Additional file 2: Table S2. The 10 closest neighbors for each unique
entry in our maize list based on identical by state (IBS) values. IBS value
for each neighbor is presented between brackets.

Additional file 3: Figure S1. Network diagram showing the
relationships of maize inbred lines with identical by state (IBS) values
greater than 0.96.

Additional file 4: Figure S2. Median linkage disequilibrium (LD) decay
measured as pairwise r2 between all single-nucleotide polymorphisms
(SNPs) in the collection. Each line represents a different group of
germplasm.

Additional file 5: Figure S3. Relationships between nested association
mapping (NAM) recombination rate (log10 cM/Mb), average haplotype
length (bp), average linkage disequilibrium (LD) (r2), and fixation index
(Fst) between stiff stalk, non-stiff stalk, and tropical lines at the NAM
genetic map bin scale for each chromosome. The numbers indicate the
coefficient of determination (r2) calculated using Spearman’s rank
correlation.

Additional file 6: Figure S4 Quantile-quantile (QQ) plot for kernel color
genome-wide association study (GWAS) analysis.

Additional file 7: Figure S5 Quantile-quantile (QQ) plot for sweet corn
genome-wide association study (GWAS) analysis.

Additional file 8: Figure S6 Quantile-quantile (QQ) plot for flowering-
time genome-wide association study (GWAS) analysis.
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