
Biofuels and sustainability
Th e replacement of fossil fuels by biofuels is an ongoing 
eff ort in many countries. With decreasing oil reserves 
and increasing fossil fuel prices, bioenergy is a promising 
alternative. Advantages of biofuels can include a positive 
energy balance, reduction of greenhouse gas emissions 
and indirect eff ects, such as rural development. Studies 
based on life-cycle analysis conclude that when ethanol 
from sugarcane is used to replace fossil fuels in trans-
portation, a substantial reduction in net greenhouse gas 
emissions may result (from 80% to greater than 100% 
savings [1]). Biomass can also be used to generate 
electricity, with electric vehicles presenting several 
advan tages over combustion engines. Wood, cellulose 
and biofuel generation of electricity and stationary 
genera tion of energy can be very effi  cient and are also 
being implemented as options. In the last 5 years we have 
seen a 109% increase in global biofuel production. World 
projections provided by the Organisation for Economic 
Co-operation and Development (OECD)/Food and Agri-
cul ture Organization (FAO) indicate further increases in 
bioethanol and biodiesel production from the present 
140  billion liters to 221  billion liters in 2021, corres-
ponding to an additional 60% increase.

Increased biofuel production, and the associated in-
crease in production of energy feedstocks, raises sus-
tainability concerns over issues such as changes in land 

use, competition between energy crops and food and 
feed crops, and impacts on ecosystem services, including 
soil and water resources. Mandates in several countries 
to substitute gasoline for bioethanol require a substantial 
contribution from advanced fuels (sugar-derived and/or 
lignocellulosic bioethanol) to guarantee a reduction of 
greenhouse gas emissions.

Which plants are best suited to the requirements of 
future bioenergy feedstocks? To produce energy from 
plant-fi xed C-bonds, crops should be high yielding, fast 
growing, with C-bonds that are easy to convert to useful 
forms, and require relatively small energy inputs for 
growth and harvest. To achieve sustainability, energy crops 
should not require extensive use of prime agricultural 
lands and they should have a low cost of energy 
production from biomass. Both the realities of agriculture 
in environments that are always heterogeneous and 
energy security require that feedstocks include a portfolio 
of diverse crops rather than merely a single crop.

A strong case can be made that members of the 
Saccharinae subtribe, particularly Saccharum (sugarcane 
and energy cane), Miscanthus and Sorghum species 
(Figure  1), best encompass these requirements. For 
commer cial markets to develop, these crops are being 
evaluated with respect to their productivity as perennial 
crops (ratoon) in short growing seasons under diff erent 
conditions, such as periodic drought, low temperatures 
and low nutrient inputs [2]. A recent development includes 
breeding eff orts to produce an ‘energy cane’ (Saccharum 
species or interspecifi c hybrid) more amenable for 
hydrolysis of the bagasse and straw ligno cellulosic fi bers. 
Th e high yield of Saccharum (sugarcane) in tropical 
climates is particularly well documented, and Miscanthus 
and sorghum show similar promise in temperate climates. 
Herein, we review the merits of these grasses as a 
complementary package of bioenergy feedstock crops, the 
state of knowledge useful for their study and improvement, 
and synergies that might be gained by their parallel study.

The Saccharinae group: many energy crop traits 
combined
Within the Andropogoneae grasses, sugarcane (Saccha
rum) and Miscanthus belong to the Saccharinae subtribe. 
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Sorghum has been considered a member of the Sorghinae 
subtribe, although more recently a good case has been 
made (that we will accept herein) for expanding the 
Saccha rinae to include the Sorghinae [3].

Sugarcane is a common name of a group of predomi-
nantly tropical species that originated in Southeast Asia 
(Table  1). Modern varieties result from crosses of the 
sucrose-accumulating relative Saccharum offi  cinarum 
and the wild relative Saccharum spontaneum, with 
contri butions from Saccharum robustum, Saccharum 
sinense, Saccharum barberi, Erianthus and Miscanthus 
[4,5]. Commercial varieties have the remarkable capa-
bility of storing high sucrose levels in the stem that can 
reach 40% of dry weight [6]. In a study of sugarcane yields 
across the world, commercial maximum cane yield 
averaged 69 t ha-1 year-1 and the experimental maximum 
averaged 98 t ha-1 year-1 in the countries with the highest 
sunlight [7]. Today, commercial yields closer to the experi-
mental maximum are frequently reported. Sugarcane 
average annual production per hectare (39  t  ha-1 of dry 

stalks and trash) compares favorably with other high-
yield bioenergy crops such as Miscanthus (29.6 t ha-1) and 
switchgrass (10.4 t ha-1) [8] (Table 2). Estimates from fi eld 
trials show an average yield of 22.8 and 12.2 t ha-1 for 
sugarcane ancestral species S.  spontaneum and S. offi  ci
narum, respectively [9].

Complementing the tropical adaptation of Saccharum, 
with most species native to eastern or southeastern Asia 
[10], its adaptability to continental Europe [11-13] shows 
the feasibility of producing Miscanthus in temperate 
latitudes (Table  1). Miscanthus  × giganteus, a sterile, 
vegetatively propagated hybrid (2n = 3x = 57) believed to 
originate from crosses between tetraploid Miscanthus 
saccharifl orus and diploid Miscanthus sinensis [14], 
generally produces high yields, similar to (and in some 
cases better than) other biomass crops [8,15]. Con-
siderable leveraging of breeding, production and proces s-
ing infrastructure might be gained by the close relation-
ship of Miscanthus to Saccharum  - thought to be the 
closest relatives of one another, and polyphyletic [16]. 

Figure 1. The Saccharinae plants. (a) Glaucia Souza’s group collecting photosynthetic data from sugarcane plants in Brazil. (b) A sorghum fi eld in 
Mali; all plants are over 3 m high.
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Saccharum × Miscanthus hybrids (‘Miscanes’) have been 
used for sugarcane improvement [17-19], and also show 
promise as a highly productive cellulosic biomass crop.

Increased demand for limited fresh water, along with 
rising global temperatures and aridity, suggest that 
sustainable future biomass production will have to occur 
using little or no irrigation, highlighting an important 
role of sorghum in a portfolio of bioenergy crops. One of 
the most drought tolerant of cereal crops thanks to its 
origins in Sudan and Ethiopia [20], the multifaceted 
history of sorghum improvement offers a wider range of 
genetic variations than found in many crops, exemplified 
by the fact that sorghum is one of the few crops suited to 
all proposed approaches for renewable fuel production 
(such as from starch, sugar, and/or cellulose; Table  1). 
About 30% of the US sorghum crop is presently used as 
feedstock in the grain-to-ethanol process, which has also 
been commercialized in India and China. The completely 
sequenced genome of sorghum, which has the further 
advantages of being relatively small and with minimal 
gene duplication [21], together with transformation 
poten tial, knowledge of cell wall composition and 
architecture and other features ([22] and references 
therein), make sorghum an important model for research 
concerning bioenergy grasses [22,23].

Plants in the Andropogoneae use C4 photosynthesis 
(Box 1), which avoids photorespiration, leading to higher 
maximal photosynthetic energy conversion efficiency 
than the C3 pathway used by rice, wheat and many other 
grasses [5,24], resulting in more biomass accumulation. 
In elevated CO2 conditions, the C4 grasses sugarcane 
[25], maize and sorghum [26] show better responses to 
drought stress than C3 grasses. Plants in the Saccharinae 
have some further advantages in comparison with other 
C4 grasses, such as maize. First, many routinely produce 
a ‘ratoon’ crop, regrowing after harvest and thus 

elimi nating the need for replanting each year. Indeed, the 
Sorghum genus, with annual and perennial species that 
are genetically compatible, has become a botanical model 
for study of attributes related to perenniality [27-29]. 
Second, sugarcane and Miscanthus have lower nitrogen-
input requirements [13,30], and the latter can relocate 
some nutrients from aerial parts to the roots and/or 
rhizomes at the end of the growing season [31]. Third, 
some reports show better photosynthetic features of 
Saccharinae plants than other Andropogoneae. Light 
interception by the leaves is higher in Miscanthus than in 
maize [15] and Miscanthus can sustain higher levels of 
CO2 assimilation than maize in lower temperatures [32]. 
Sugarcane photosynthesis is enhanced in elevated CO2 in 
open-top chambers, increasing biomass productivity 
[33], which does not occur in maize grown in open-air 
elevation of CO2 [34]. However, this finding is 

Table 1. Origin, production and method of bioenergy production of the Saccharinae plants

 Miscanthus Saccharum Sorghum

Center of diversity South to temperate east Asia South Asia Africa

Production Limited: Asia, Europe, USA Extensive: Brazil, India, China, others Extensive: USA, Africa, central 
America, south Asia

Ethanol production Cellulosic Sugar; cellulosic Starch (grain); sugar; cellulosic

Electricity production Biomass burning Biomass burning Biomass burning

Table 2. Summary of the average biomass yield of the 
Saccharinae plants

Crop Dry biomass (t ha-1) Reference(s)

Sugarcane commercial  39 [2,7] 
hybrids (Saccharum)

Sorghum 15-25 [111]

Miscanthus 29.6 [8]

Box 1. C4 photosynthesis

Many of the most productive agricultural crops use the C4 
photosynthetic pathway to increase net carbon assimilation at 
high temperature (Figure 3, adapted from [97]). Discovered in 
sugarcane [98], C4 photosynthesis may have been an adaptation 
to hot, dry environments or CO2 deficiency [99-102], and 
appears to have evolved repeatedly from ancestors that used 
C3 photosynthesis [103,104], including multiple origins within 
some angiosperm families [105,106]. Most C4 plants are grasses, 
including the entire Andropogoneae tribe (including sorghum, 
sugarcane and Miscanthus), and it has been inferred that C4 
photosynthesis first arose in grasses during the Oligocene epoch 
(24 to 35 million years ago) [107,108]. The high photosynthetic 
capacity of C4 plants is achieved by CO2 assimilation in mesophyll 
cells (by phosphoenolpyruvate carboxylase together with 
carbonic anhydrase to facilitate rapid equilibrium between CO2 
and HCO3

-) then diffusion of the resulting C4 acids into bundle 
sheath cells, where CO2 is discharged by various decarboxylases 

at up to 10-fold higher than atmospheric level at the site of 
ribulose-1,5-bisphosphate carboxylase oxygenase (Rubisco), 
the primary enzyme of C3 photosynthesis. This high CO2 
concentration mitigates wasteful fixation of oxygen by Rubisco, 
reducing photorespiration, or CO2 loss during C3 photosynthesis, 
at high temperatures [109]. C4 plants are classified in part based 
on the type of decarboxylases used in the bundle sheath: NADP 
malic enzyme, NAD malic enzyme or phosphoenolpyruvate 
carboxykinase.
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contro versial since enclosure and open-air studies give 
different results for the same crop, and some authors 
argue that enclosed studies are not the best scenario to 
mimic future increases in CO2 concentration [35]. 
Moreover, experi ments with Miscanthus in ambient and 
open-air eleva tion of CO2 show no differences in yield 
[36].

Since lignocellulosic biofuels use the plant cell wall as a 
source for fermentable sugars, it is important to under-
stand the composition and architecture of the cell wall to 
develop strategies to degrade it efficiently. Grasses 
present a particular cell wall structure and composition 
(Figure  2), making a ‘type II’ cell wall that differs 
substantially from the ‘type I’ cell walls of other feed-
stocks, such as wood species [22,37,38]. This also implies 
the evolution of different gene families involved in the 
synthesis of the cell wall [22]. Recently, a model for 
sugarcane cell wall architecture and for hierarchical 
enzy matic hydrolysis was proposed [39]. By under stand-
ing the structure of the cell wall, it is possible to choose 
the best method to improve hydrolysis yield, and design 

breeding strategies or develop improved procedures to 
recover the released carbohydrates.

Genomics meets biotechnology for the 
improvement of Saccharinae biofuel grasses
Improvements in sorghum are characteristic of many 
other major food and feed crops, and Miscanthus 
improve ment is just beginning; examining sugarcane 
improvement therefore exemplifies the methods and 
approaches likely to be employed in biofuel grasses.

Sugarcane improvement efforts follow both molecular-
assisted breeding and transgenic routes [40]. S.  offici
narum is a plant with high sugar content in its stems but 
low productivity, and S.  spontaneum has high tillering 
and biomass yield but low sugar accumulation. Modern 
sugarcane cultivars derive from a few crosses between 
S. officinarum and S.  spontaneum and have been shown 
to be genetically very similar [41]. Breeding programs 
have been able to increase yield and sucrose content by 
crossing cultivars but gains are becoming slimmer. To 
continue the improvement of yield it may be necessary to 

Figure 2. Simplified schematic representation of the cell wall. The wall is shown as a transverse section. Grasses and non-grass angiosperms 
possess different types of cell wall. The text in red denotes the main differences. Surrounding the cellulose microfibrils, the inner and outer 
hemicellulose circles show tightly and loosely bound polysaccharides, respectively. Grasses have glucuronoarabinoxylans (GAX) as the main cross-
linking hemicellulose and a primary wall matrix enriched in mixed-linkage glucans, with lower pectin content. The thin red boundary in the primary 
wall of the grasses denotes the phenolic compounds, mainly ferulic acid, linked to GAX molecules. In grasses, seven cellulose microfibrils can be 
structured in a cellulose macrofibril. Typically, grasses have more lignin than other angiosperms. Non-grasses possess xyloglucan as the major cross-
linking hemicellulose, a pectin-based matrix and structural proteins. In the secondary wall, note that pectins and mixed-linkage glucans are minor 
components. Also, we can see lignin forming a structural barrier surrounding the carbohydrates. Adapted from [39] and [110] with permission.
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turn back to ancestral genotypes and broaden the genetic 
basis of crosses. S. spontaneum and S. robustum are also 
being used as parents, with the goal of designing a crop 
more amenable for cellulosic biofuel production, with 
increased stress tolerance and increased yield but less 
emphasis on stalk sugar concentration, the so-called 
‘energy cane’. World collections of Saccharum germplasm 
are held in Florida [42] and India [43], which keep 
ancestral genotypes and cultivars, and many private 
collections are also kept and used for crosses in specific 
breeding programs. Each world collection has over 1,500 
accessions of ancestral genotypes, most of them S. offici
narum (about 750), S.  spontaneum (about 600) and 
S.  robustum (about 130), and 500 to 1,000 hybrids or 
cultivars. Sorghum, like sugarcane, has large germplasm 
collections held by the US National Plant Germplasm 
System and at the International Crops Research Institute 
for the Semi-Arid Tropics (ICRISAT, the CGIAR center 
with a sorghum improvement mandate). Only a few small 
Miscanthus collections are held publicly, but several 
private collections associated with breeding programs are 
similar in size to the Saccharum collections.

Crosses between members of the Saccharinae are 
viable. In fact, sugarcane has been crossed to both 
Miscanthus and sorghum, generating viable progenies, 
and the strategy has been used to incorporate cold and 
drought resistance traits from Miscanthus into sugarcane 
[19].

The transformation of sugarcane is becoming an 
interesting and growing field. Methods for transformation 
are already established with efforts aimed mostly at sugar 
yield and quality [44-46], disease resistance [47,48], and 
the use of sugarcane as a biofactory to produce high-
value bioproducts [49,50]. For biofuel production, some 

approaches show interesting results, with lower biomass 
recalcitrance [51] and expression and accumulation of 
microbial cellulolytic enzymes in sugarcane leaves [52] to 
improve biomass hydrolysis. The most widely used 
promoters are the constitutive CaMV 35S and maize 
ubi1, but sugarcane promoters have already been used or 
characterized, including tissue-specific [46,47] and res-
pon sive promoters [53]. However, sugarcane transfor ma-
tion is not a trivial task since problems such as transgene 
silencing frequently occur ([40,54] and references there-
in). Sorghum transformation is also routine (although at 
lower efficiency than in some crops [55]), and Miscanthus 
transformation methods have been established [56].

Advantages of a reference genome
For both molecular-assisted and transgenic strategies 
outlined above, the availability of a reference genome 
sequence is highly desirable, as well as the definition of 
the complete complement of genes and proteins. For the 
Saccharinae, the relatively small (740  Mb) and diploid 
genome of sorghum, which has not experienced genome 
duplication in about 70  million years [21], has become 
the best reference for genomics and transcriptomics in 
sugarcane [57]. Nonetheless, the sugarcane genome itself 
is being sequenced using a combination of approaches. In 
a first phase, researchers are sequencing bacterial arti-
ficial chromosomes (BACs) combined with whole-genome 
shot-gun sequencing to produce a reference genome [58]. 
Currently, three sugarcane BAC libraries are available; 
from variety R570 [59], selfed progenies of R570 [60] and 
SP80-3280 [61]. The two former libraries have 103,000 to 
110,000 clones comprising about 12 times coverage of the 
basic genome complement but only about 1.3 to 1.4 times 
coverage of the individual alleles. The latter library has 

Figure 3. Simplified C4 and C3 pathways. (a) C4 pathway. (b) C3 pathway. Red numbers indicate the enzymes involved in the reaction: 1, 
carbonic anhydrase; 2, phosphoenolpyruvate carboxylase; 3, NADP malate dehydrogenase; 4, NADP malic enzyme; 5, ribulose-1,5-bisphosphate 
carboxylase oxygenase (Rubisco); 6, pyruvate, orthophosphate dikinase. The C4 pathway increases the CO2 concentration in bundle sheath cells, 
minimizing the competition with O2 for the Rubisco catalytic site, thus avoiding photorespiration. Glycerate-3-P, glycerate 3-phosphate; PEP, 
phosphoenolpyruvate.
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about 36,000 clones, and all three have inserts of about 
125 to 130 kb. BAC sequencing has enabled research to 
deduce synteny and collinearity of much of the sugarcane 
genome with other grasses, especially sorghum, particu-
larly in genic regions [61-63]. Unaligned regions between 
sorghum and sugarcane genomes are largely repetitive 
[62], enriched in transposon-related sequences [61,63]. 
Consistent with several genetic mapping efforts, the 
sequencing of BAC clones revealed high levels of gene 
structure/sequence conservation and collinearity among 
hom(oe)ologous haplotypes of the sugarcane genome 
[64], and several putative sugarcane-specific genes/
sequences [61-63]. Groups from Australia, Brazil, France, 
South Africa and the USA are advancing these efforts in 
genome sequencing, increasing the number of BACs 
sequenced and producing shot-gun data of several 
cultivars. It is expected that reference genome sequences 
will be made available for both cultivars and ancestral 
genotypes [65] and, to that end, researchers are develop-
ing statistical models using SNPs where homology groups 
with any ploidy level may be estimated [66]. This will be 
essential to obtain a saturated genetic map of the 
sugarcane genome that may aid genome assembly. The 
greatest challenge that distinguishes the sequencing of 
Saccharum and Miscanthus from the more tractable 
genomes of sorghum and other cereal models is large 
physical size (approximately 10 Gb) and large copy 
numbers of even ‘low-copy’ elements (8 to 12 in sugar-
cane; 4 to 6 in Miscanthus). During assembly of such 
genomes, many closely related alleles ‘collapse’ into single 
gene/element models that fail to capture allelic and 
perhaps also paralogous diversity within even a single 
genotype. The sorghum genome will greatly help in the 
assembly, but around 20% of the sugarcane expression 
sequence tags (ESTs) from the SUCEST project [67] 
appear to be specific to sugarcane, since they do not 
match sorghum, Miscanthus, maize, rice or Brachy
podium [68], requiring other strategies in the assembly. 
Linkage maps based on molecular markers have shown 
synteny and collinearity of sorghum and sugarcane 
genomes, but are complicated to make in sugarcane due 
to the polyploidy and absence of inbred lines ([69] and 
references therein). This problem was partly overcome 
with the use of single-dose markers [70], which segregate 
in a 1:1 ratio in the gametes of a heterozygous genotype, 
and account for approximately 70% of polymorphic loci 
in sugarcane [71]. However, among 20 to 30 linkage maps 
based on a few thousand markers available for sugarcane 
([71,72] and references therein), it remains true that only 
33% to 60% of the sugarcane genome is represented on 
these maps [71]. A recent development that may help 
breeders in marker-assisted selection efforts has been the 
development of an algorithm and software (ONEMAP) 
for constructing linkage maps of outcrossing plant 

species that has been successfully applied to sugarcane 
[73]. Enriched mapping of DNA polymorphisms that also 
provide for deconvolution of closely related sequences 
may also aid in assembly of such highly polyploid 
genomes.

Saccharinae transcriptomics
Changes in gene expression associated with allo poly-
ploidy are well known, but sugarcane functional 
genomics is a challenge due the complexity of its largely 
autopolyploid and aneuploid genome and the absence of 
a reference sequence. Again, the sorghum genome has 
been serving as a reference to define putative transcripts. 
The sorghum transcriptome has been studied by different 
high-throughput technologies such as cDNA microarrays 
and massively parallel sequencing (Tables  3 and 4) to 
understand the expression profiling and biological 
function of genes in response to herbivory, biotic and 
abiotic stress in different tissues and treatments [68], and 
how the genes and their structural/functional changes 
contribute to the morphological variations between 
sorghum lines integrating genome evolution and expres-
sion divergence [74]. Deep RNA sequencing methods 
have overcome many limitations of microarray technolo-
gies and have allowed recent studies to reveal sorghum 
genes, gene networks, and a strong interplay among 
various metabolic pathways in different treatments [75], 
as well as the identification of particular paralogs that 
putatively encode enzymes involved in specific metabolic 
networks [76].

Despite the absence of a sequenced genome and the 
complexities associated with the presence of about 8 to 
12  copies of each gene, functional genomics has made 
considerable progress towards understanding unique 
bio logical attributes of sugarcane. These studies assist in 
the development of new applications for bioenergy, 
biomaterial industries and improved ‘energy’ cultivars 
[57]. The fundamental databases and resources for studies 
of functional genomics in sugarcane have been reviewed 
recently [57,77,78] and a sugarcane computa tional environ-
ment (SUCEST-FUN Database) has been developed for 
storage, retrieval and integration of genome sequencing, 
transcriptome, expression profiling, gene catalogs, 
physio logy measures and transgenic plant data [79]. 
Studies on sugarcane gene expression have been based 
mainly on EST information from different tissues, treat-
ments and genotypes. The largest contri bution to the 
available ESTs (>80%) comes from the SUCEST project 
[67], and most of the remainder comes from Australia, 
USA, South Africa and India (reviewed by [57,68]). To 
obtain a less redundant dataset including ESTs not 
sampled by the SUCEST project, a comparison with SoGI 
[80] was carried out and 8,106 sequences lacking detec-
table similarity to SAS (sugarcane assembled sequences) 
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were identified. The clustering strategy in SoGI produces 
redundant clusters and makes the SUCEST assembly 
more appropriate for gene and orthology-based analysis 
[81]. The SUCEST-FUN project and SAS sequences have 
been updated with the whole sugarcane ESTs from the 
National Center for Biotechnology Information (NCBI) 

and compared with the SoGI assembly (Table 5). A total 
of 282,683 ESTs are currently catalogued in the SUCEST-
FUN Database.Comparison of ESTs from sorghum with 
sugarcane, maize and rice has revealed mean sequence 
identities of 97%, 93% and 86%, respectively, indicating a 
close relationship between sorghum and sugarcane 

Table 3. Summary of the microarray data available for sugarcane and Sorghum

   No. of 
Platform Record GEO/NCBI Features samples Sample description Variety Reference

Sugarcane ESTs 
nylon arrays I GPL210 1,536 12 Plantlet samples exposed to cold for up 

to 48 h
Saccharum hybrid cv. 
SP80-3280 [112]

SUCAST Sugarcane 
2208 v1.0 (cDNA 
microarray)

GPL3799 2,208

16
Roots from six plants harvested 6, 12, 24 
and 48 h after exposure to phosphate 
starvation

Saccharum hybrid cv. 
SP80-3280

[113]

8 Response to herbivory by Diatraea 
saccharalis

28 Hormone treatment

8 Response to N2-fixing endophytic bacteria 
association

Saccharum hybrid cv. 
SP70-1143

12
Leaves collected 24, 72 and 120 h after 
exposure to drought conditions for the 
control and experimental groups

Saccharum hybrid cv. 
SP90-1638

SUCAST 1920v3 
(cDNA microarray) GPL1376 1,920

26

The abundance of transcripts among 
six different sugarcane tissues (flowers, 
roots, leaves, lateral buds, 1st and 4th 
internodes) Saccharum hybrid cv. 

SP80-3280 [114]

4
Leaves from sugarcane population 
segregated in relation to high and low 
brix

Affymetrix 
Sugarcane Genome 
Array

GPL3844 6,024

12
Leaves of sugarcane in response to sugar 
accumulation in meristem, internodes 1 
to 3, internode 8, internode 20

Saccharum hybrid cv. 
Q117 [115]

8
Cold-girdles were attached to sugarcane 
leaves (n = 4) for a period of 56 h prior to 
harvest

Saccharum hybrid cv. 
N19 [116]

SUCEST-FUN Agilent 
44k (oligo array) GPL14862 21,902 6

Leaves were collected 24, 72 and 120 h 
after exposure to drought conditions for 
the control and experimental groups

Saccharum hybrid cv. 
SP90-1638 [86]

cDNA microarray http://fungen.org/
Sorghum.htm

12,982 118 Seedlings exposed to high salinity, 
osmotic stress, and ABA for 3 and 27 h

Seedlings of Sorghum 
bicolor L. Moench cv 
BTx623

[117]

12,982 >102
Seedlings exposed to salicylic acid, methyl 
jasmonate, and the ethylene precursor 
aminocyclopropane for 3 and 27 h

Seedlings of S. bicolor 
L. Moench cv BTx623 [118]

cDNA glass slide Not available

672 >6 Herbivory with Schizaphis graminum Seedlings of S. bicolor 
ATx399 _ RTx430 [119]

3,508 >4 Herbivory with Schizaphis graminum Seedlings of S. bicolor 
M627 and Tx7000 [120]

Sorghum Agilent 44k 
(oligo array) GPL15369 41,977 12

Leaves were collected 24, 72 and 120 h 
after exposure to drought conditions for 
the control and experimental groups

Grain of S. bicolor 
L. sweet Keller cv BTx623 [74]

ABA, abscisic acid; GEO, Gene Expression Omnibus; NCBI, National Center for Biotechnology Information.
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(Figure S7 of [21]). A total of 39,021 sugarcane proteins 
were predicted from 43,141 clusters [67] using ESTScan 
[82] and the Oryza sativa matrix (Table  5). Putative 
orthologs and paralogs were identified by pairwise 
proteome comparisons with InParanoid software [83]. 
With the aid of MultiParanoid software [84], we found 

orthology relationships among multiple proteomes 
(Table 6). The analysis encompassed a comparison among 
five species: Saccharum sp., Sorghum bicolor, Zea mays, 
O. sativa and Arabidopsis thaliana. Proteins were grouped 
into 18,611 orthologous clusters. A total of 16,723 sugar-
cane proteins found 13,804 orthologs in sorghum, 22,312 

Table 5. ESTs corresponding to SUCEST, SoGI, JGI, GenBank (as of 4 March 2013)

 Saccharum Sorghum

 SUCEST GenBank SoGI JGI GenBank

Number of ESTs 238,208 283,677 282,683 227,154 232,681

Number of ESTs not in SUCEST - 45,469 - - 5,527

Number of clusters 26,303 - 42,377 34,496 -

Number of singletons 16,838 - 78,924 - -

Number of predicted proteins 39,021 - - 34,496 -

EST, expression sequence tag; JGI, Joint Genome Institute.

Table 4. Summary of the high-throughput sequencing data available for sugarcane, Sorghum and Miscanthus

 Record No. of  
Platform GEO/NCBI, SRA samples Sample description Variety Reference

Illumina Genome 
Analyzer IIx GPL16316 8 sRNA and non-coding RNAs of sugarcane in response 

to drought stress Saccharum hybrid (mixed) [92]

Illumina Genome 
Analyzer IIx GPL15137 3

Examination of small RNAs in the sugarcane leaves 
that match to sugarcane LTR-RTs

Saccharum hybrid cv. 
SP80-3280 [93]

Identification of small RNAs associated with auxiliary 
bud outgrowth

Saccharum hybrid cv. 
SP80-3280 [121]

Illumina Genome 
Analyzer IIx GPL16317 6

Screening of small RNA transcriptome of sugarcane 
plants infected with Acidovorax avenae subsp. avenae 
after 7 days

Saccharum hybrid cv. 
SP70-1143

[92]

Identification of sugarcane microRNAs after exposure 
to pathogens and microorganisms

Saccharum hybrid cv. 
SP70-1143

SOLEXA technology Not available 8
Identification of microRNA differentially expressed 
under drought stress, correlation between two 
cultivars with different drought tolerance

Saccharum hybrid cv. 
RB867515, RB855536 [90]

SOLEXA technology Not available 2
Increase the understanding of the role of microRNAs 
in the complex regulation of drought stress in field-
grown sugarcane

Saccharum hybrid cv. 
RB867515, RB855536 [91]

Illumina Genome 
Analyzer II GPL13779 24 RNA-Seq of Sorghum bicolor 9-day seedlings in 

response to osmotic stress and abscisic acid Sorghum bicolor [75]

Illumina Genome 
Analyzer IIx GPL14633 3

Comparative sequence analysis of plant small RNAs S. bicolor GEO

Comparative sequence analysis of plant small RNAs 
from leaves, flowers and panicle tissues S. bicolor GEO

Illumina Genome 
Analyzer II GPL9983 3

Develop sequence resources of small RNAs from 
different Miscanthus × giganteus tissues (including 
leaves, flowers and rhizomes)

Miscanthus × giganteus [94]

Illumina Genome 
Analyzer II

SRX131848/
SRX131845 1

RNAseq from two Miscanthus sinensis to define single 
nucleotide variants and find simple sequence repeat 
markers for understanding genomic responses to 
tetraploidy and chromosome fusion

Miscanthus sinensis [96]

Data were catalogued based on MIAME compliant public repositories such as Gene Expression Omnibus/Center for Information Biology Gene (GEO/NCBI) Expression 
Database (CIBEX), Microarray Gene Expression Data Society (MGED) and ArrayExpress. LTR-RT, long terminal repeat retrotransposon.
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in maize, 16,913 in rice and 13,998 in Arabidopsis, with a 
confidence score ≥0.05 and group merging cut-off >0.5 
using the BLOSUM80 matrix, suitable for closely related 
sequences (Table 6).

The sugarcane transcriptome has been studied using 
technologies, including cDNA macroarrays (nylon mem-
branes), cDNA microarrays spotted onto glass slides, and 
oligonucleotide arrays either spotted or synthesized in 
situ. A summary of the available platforms, samples and 
related works for sugarcane and sorghum using array 
technologies is shown in Table 3 and has been reviewed 
recently [57,68,78,85]. Sugarcane transcriptomics has 
identi fied genes associated with sucrose content, biotic 
and abiotic stresses, photosynthesis, carbon partitioning 
and roles of phytohormones and signaling pathways in 
adaptive responses. These studies also allowed for the 
identification of promoters that can be used to drive 
transgene components in a tissue-specific or controlled 
manner. Several other methods to study sugarcane 
expres sion profiles at a moderate scale have been used to 
confirm the expression patterns observed in large-scale 
transcript studies [57].

More recently, the use of oligoarrays has included 
studies on the regulation of antisense gene expression in 
sugarcane, pointing to a role for these transcripts in 
drought responses [86]. Some years ago, serial analysis of 
gene expression (SAGE) in sugarcane revealed an 
unexpectedly high proportion of antisense transcripts 
and chimeric SAGE [87]. High-throughput sequencing 
(Table 4) is useful for assessing transcriptomes, providing 
detailed information for transcript variants, particularly 
SNPs, assessment of the expression of hom(oe)ologous 
alleles in the polyploid genome, spliced isoforms and so 
on [88]. Using this strategy, some sugarcane genes were 
characterized for SNP density and gene haplotypes across 
varieties [89]. In recent studies, it has become apparent 
that small RNAs, particularly microRNAs, have impor-
tant regulatory roles in sugarcane, playing a key role in 
development and responses to biotic and abiotic stresses 
[90-92]. Evidence suggests that long terminal repeat 
retro transposon (LTR-RT) families may affect nearby 
genes by generating a diverse set of small RNAs that 
trigger gene-silencing mechanisms [93].

In contrast to sorghum and sugarcane, genomic and 
transcriptomic studies on Miscanthus are just beginning. 

The recent high-throughput sequencing of its genome 
and transcriptome identified the presence of repeats that 
are actively producing small RNAs [94], and the con-
struction of a genetic map identified informative simple 
sequence repeats in sugarcane and a genome-wide dupli-
cation in Miscanthus relative to S.  bicolor [95]. These 
studies will increase the understanding of complex 
genomes [96].

Conclusions
The Saccharinae grasses sugarcane, Miscanthus and 
sorghum are promising and complementary elements of 
a portfolio of bioenergy feedstocks. As sustainability 
criteria take dominant roles in the commercialization of 
biomass sources, these plants are likely to contribute to 
provide cheap, reliable and politically viable options for 
bioenergy production. Biotechnology for these crops is 
less advanced than in food crops such as maize and rice, 
but it is progressing quickly. Many efforts are underway 
to define genes associated with traits of interest such as 
sucrose content, drought tolerance, yield and adaptation 
to climate changes, and much is known about genes and 
markers for the improvement of these crops. Breeding 
programs are improving germplasm collections and 
defining routes to speed up selection of progenies and 
choice of ideal parents for crossing. It is expected that 
prudent integration of conventional breeding methods 
with marker-assisted and transgenic options may 
increase the (currently slow) rates of yield improvement, 
decreasing the amount of land required for large-scale 
biofuel production, as well as the need for inputs such as 
water, herbicides and fertilizers to maintain economical 
levels of production. Finally, the transition to a more 
biobased economy may be expedited by the increased 
value of biobased chemicals that might be harvested from 
the production chain through the adoption of integrated 
biorefinery systems. Better understanding of and greater 
control over carbon partitioning in these plants may 
greatly increase the number of co-products, including 
bioethanol, biodiesel, biokerosene, bioplastics and bio-
electricity to name a few.

Abbreviations
BAC, bacterial artificial chromosome; EST, expressed sequence tag; SAGE, serial 
analysis of gene expression; SAS, sugarcane assembled sequence; SNP, single 
nucleotide polymorphism.

Table 6. Number of putative ortholog/paralog genes between sugarcane, other grasses and Arabidopsis

Species No. of proteins No. of cane orthologs (pairwise species) No. of orthologs (multiple species)

Saccharum 39,021 - 17,176

Sorghum 36,338 13,804 19,414

Maize 10,6046 22,312 45,237

Rice 51,258 16,913 29,888

Arabidopsis 35,386 13,998 22,165
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