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Abstract

As sequencing throughput approaches dozens of gigabases per day, there is a growing need for efficient software
for analysis of transcriptome sequencing (RNA-Seq) data. Myrna is a cloud-computing pipeline for calculating differ-
ential gene expression in large RNA-Seq datasets. We apply Myrna to the analysis of publicly available data sets
and assess the goodness of fit of standard statistical models. Myrna is available from http://bowtie-bio.sf.net/myrna.

Rationale
As cost and throughput continue to improve, second
generation sequencing [1], in conjunction with RNA-
Seq [2,3], is becoming an increasingly efficient and pop-
ular tool for studying gene expression. Currently, an
RNA-Seq sequencing run generates hundreds of millions
of reads derived from coding mRNA molecules in one
or more biological samples. A typical RNA-Seq differen-
tial-expression analysis proceeds in three stages. First,
reads are computationally categorized according to the
transcribed feature from which each likely originated.
Features of interest could be genes, exons or isoforms.
This categorization might be conducted comparatively
with respect to a reference [4], by de novo assembly [5],
or a combination of both [6-8]. Second, a normalized
count of the number of reads assigned to each feature is
calculated. The count acts as a proxy for the feature’s
true abundance in the sample. Third, a statistical test is
applied to identify which features exhibit differential
abundance, or expression, between samples.
Since second generation sequencing produces a very

large number of reads distributed across the entire tran-
scriptome, RNA-Seq affords greater resolution than
expression arrays. Preliminary comparisons of the data
from RNA-Seq also suggest that the measurements may
more precisely measure RNA abundance in spike-in
experiments than gene expression microarrays, provided
appropriate normalization is applied [4,9].
But improvements in sequencing cost and throughput

also pose a data analysis challenge. While sequencing

throughput grows at a rate of about 5× per year [10-12],
computer speeds are thought to double approximately
every 18 or 24 months [13]. Recent studies and com-
mentaries [13-17] propose cloud computing as a para-
digm that counteracts this disparity by tapping into the
economies of scale afforded by commercial and institu-
tional computing centers. If an algorithm can be made
to run efficiently on many loosely coupled processors,
implementing it as a cloud application makes it particu-
larly easy to exploit the resources offered by large uti-
lity-computing services. These include commercial
services such as Amazon’s Elastic Compute Cloud [18]
and Elastic MapReduce [19] services, or non-commercial
services such as the IBM/Google Cloud Computing Uni-
versity Initiative [20] and the US Department of Energy’s
Magellan service [21].
Here we present Myrna, a cloud computing tool for

calculating differential gene expression in large RNA-
Seq datasets. Myrna integrates short read alignment
with interval calculations, normalization, aggregation
and statistical modeling in a single computational pipe-
line. After alignment, Myrna calculates coverage for
exons, genes, or coding regions and differential expres-
sion using either parametric or non-parametric permu-
tation tests. The results are returned in the form of per-
gene P-values and Q-values for differential expression, a
raw count table, an RPKM table (of reads per kilobase
of exon model per million mapped reads), coverage
plots for significant genes that can be directly incorpo-
rated into publications (Figure 1), and other diagnostic
plots.
We apply Myrna to the analysis of a large publicly

available RNA-Seq data set. One major advantage of our
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Figure 1 The Myrna pipeline. (a) Reads are aligned to the genome using a parallel version of Bowtie. (b) Reads are aggregated into counts
for each genomic feature - for example, for each gene in the annotation files. (c) For each sample a normalization constant is calculated based
on a summary of the count distribution. (d) Statistical models are used to calculate differential expression in the R programming language
parallelized across multiple processors. (e) Significance summaries such as P-values and gene-specific counts are calculated and returned. (f)
Myrna also returns publication ready coverage plots for differentially expressed genes.
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cloud-based implementation is the ability to rapidly test
multiple plausible models for RNA-Seq differential
expression. It has been suggested that this type of flex-
ibility is necessary for computational applications to
keep pace with the rapidly increasing number of reads
in next-generation sequencing data sets [13]. Using
Myrna we show that biological replicates reflect sub-
stantially increased variation compared to technical
replicates in RNA-Seq and demonstrate that the com-
monly used Poisson model is not appropriate for biolo-
gical replicates.
Myrna is designed with a parallel Hadoop/MapReduce

model in mind. Myrna can be run on the cloud using
Amazon Elastic MapReduce, on any Hadoop cluster, or
on a single computer (without requiring Hadoop).

Results
Analysis of HapMap expression data
We applied Myrna to the analysis of a large population-
based RNA-Seq experiment [22]. This experiment
sequenced 69 lymphoblastoid cell lines derived from
unrelated Nigerian individuals studied by the HapMap
project [23], the largest publicly available RNA-Seq
experiment at the time of writing. Each sample was
sequenced at two separate labs (Argonne and Yale) on
Illumina Genome Analyzer II instruments. For each
sample, both labs contributed at least one lane of
unpaired reads. In cases where a lab contributed more
than one lane, we excluded data from all lanes beyond
the first. The total input consisted of 1.1 billion reads;
one center generated 35-bp unpaired reads and the
other 46-bp unpaired reads. All reads were truncated to
35 bp prior to alignment. For each gene, a minimal set
of genomic intervals was calculated such that all bases
covered by the interval set were covered by all anno-
tated gene transcripts. Where intervals for two or more
genes overlapped, the overlapping subinterval was
excluded from all sets. The result is one non-overlap-
ping interval set per gene encoding the portions of the
gene that are ‘constitutive’ (included in all transcripts)
according to the annotation, and unique to that gene.
Reads were aligned with Bowtie [24] using quality scores
and requiring that only reads with a single best align-
ment are retained. Instances where the base at the
extreme 3′ end of a read aligned inside a gene’s minimal
interval set were calculated, each such instance counting
as an ‘overlap’ between the gene and the sample from
which the read originated. For this experiment, about
594 million reads (54%) aligned uniquely, whereas about
412 million (38%) aligned non-uniquely and were dis-
carded, and about 97 million (8.8%) failed to align. Of
the 594 million reads that aligned uniquely, about 189
million (32% of the reads that aligned uniquely, 17.1% of

the input reads) overlapped the minimal interval set for
a gene.
For our analysis, we pooled all reads from both labs

for each sample. After pooling, Myrna filtered all genes
without any counts, resulting in 14,934 genes with
between 1 and 5,087,304 counts.
We used Myrna to analyze the HapMap data using six

different statistical models for significance. The first pair
of models used a test statistic based on a Poisson distri-
bution, the second pair used a test statistic based on a
Gaussian distribution (the well known t-test) for the
log-transformed counts, and the third pair calculated
statistics using the same Gaussian based test statistic,
but used a permutation approach to calculate signifi-
cance (see Materials and methods). For each of these
distributional assumptions we performed one of two
types of normalization: 75th percentile normalization [4]
or a new normalization procedure where the 75th per-
centile is included as a term in the statistical model (see
Materials and methods). We applied these methods to
the HapMap data after randomly assigning each sample
to one of two groups. In this case, we expect no differ-
ential expression signal, and P-values from these tests
should be uniformly distributed.
Methods for RNA-Seq differential expression fre-

quently assume that the count distribution follows a
Poisson model, with a normalization factor included as
an offset in the model, and this has been shown to be
appropriate when technical (especially lane-to-lane)
replication is considered [4,25,26]. The randomized
experiment considered here includes biological replica-
tion, and it is of considerable interest to assess how well
the standard Poisson model can be used to describe and
assess differential expression in this circumstance. We
found that the standard Poisson model is a poor fit, in
the sense that P-values produced by this model suggest
a large differential expression signal between the two
randomized groups (Figures 2a, b). At a 5% level we
found 5,410 differentially expressed genes where we
would expect 747 (5% of 14,934). This signal is present
across the entire range of expression, perhaps except for
very lowly expressed genes (Figures 3a, b).
The Gaussian model using 75th percentile normaliza-

tion overestimates significance as well, but the bias is
much smaller than the bias from the Poisson model and
is confined to genes with low counts (Figures 2c, c).
When the 75th percentile is included as a regression
term in the model (see Materials and methods), this
bias is reduced (Figure 2d). Including the normalization
constant as a term in the model reduces the effect of
the normalization constant on genes with a very small
number of observed counts (Figure 3d). The permuta-
tion approach shows a similar pattern of differential
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Figure 2 Hapmap results. Histograms of P-values from six different analysis strategies applied to randomly labeled samples. In each case the P-
values should be uniformly distributed (blue dotted line) since the labels are randomly assigned. (a) Poisson model, 75th percentile
normalization. (b) Poisson model, 75th percentile included as term. (c) Gaussian model, 75th percentile normalization. (d) Gaussian model, 75th
percentile included as term. (e) Permutation model, 75th percentile normalization. (f) Permutation model, 75th percentile included as term.
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Figure 3 Hapmap P-values versus read depth. A plot of P-value versus the log base 10 of the average count for each gene using the six
different analysis strategies applied to randomly labeled samples. In each case the P-values should be uniformly distributed between zero and
one. (a) Poisson model, 75th percentile normalization. (b) Poisson model, 75th percentile included as term. (c) Gaussian model, 75th percentile
normalization. (d) Gaussian model, 75th percentile included as term. (e) Permutation model, 75th percentile normalization. (f) Permutation
model, 75th percentile included as term.
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expression signal to the Gaussian model (Figure 2e, f),
which is not surprising in light of the relatively large
(n = 69) sample size. However, in this case, the bias is
mostly concentrated in high-count genes (Figure 3e) as
has been previously reported [27]. This bias is substan-
tially reduced, again by including the normalization con-
stant as a term; however, some slight read length bias is
still apparent (Figure 3f), as previously described [27].
These results suggest that the commonly assumed

Poisson model is not sufficiently flexible to model the
variation in RNA-Seq differential expression analysis.
This might be caused by the link between gene expres-
sion and variation of the gene expression assumed by
the Poisson model. Methods that estimate the variance
when calculating significance - such as the Gaussian
model or t-tests - may reduce bias in differential expres-
sion analyses. When the sample size of these experi-
ments is not sufficient to use a distributional
assumption to generate P-values, it may be more appro-
priate to use a permutation procedure like we have pro-
posed for Myrna, or to borrow strength across genes to
estimate variances [28-30].
We are surprised at the substantial improvement we

obtain by including the normalization factor in the
model. This is equivalent to using a gene-specific cor-
rection for the sequencing effort, or in other words,
genes are differentially affected by changes in sequen-
cing depth.
These results show that more work needs to be done

regarding assessing differential expression for RNA-Seq
experiments, for biological replicates. The often-used
Poisson distribution will vastly overestimate the amount
of differential expression. Note that procedures for cor-
recting for multiple testing, such as the Benjamini-
Horchberg procedure for controlling the false discovery
rate, will not affect this result as they assume that the
raw P-values are uniformly distributed in the case of no
differential expression.

Cloud computing performance
We demonstrate Myrna’s performance and scalability
using the HapMap RNA-Seq dataset described in the
previous section [22]. Recall this dataset consists of 1.1
billion 35-bp unpaired reads (after truncation),
sequenced on the Illumina Genome Analyzer II instru-
ment. Of the reads, 594 million (54%) align uniquely,
whereas 412 million (38%) align non-uniquely and are
discarded, and 97 million (8.8%) fail to align. Of the
594 million unique alignments, 189 million (32% of
the reads that aligned uniquely, 17.1% of the input
reads) overlap a minimal interval. Note that if gene
intervals are not required to be constitutive, the num-
ber of uniquely aligned reads overlapping genes
increases to 482 million (81% of the reads that aligned

uniquely, 43.7% of the input reads); thus, the addi-
tional requirement that alignments overlap constitutive
portions of genes reduces the usable evidence by a fac-
tor of about 2.5.
We ran the entire Myrna pipeline on this dataset

using Amazon Elastic MapReduce clusters of 10, 20 and
40 worker nodes (80, 160, and 320 cores). In each case,
the Myrna pipeline was executed end-to-end using
scripts distributed with the Myrna package. The nodes
used were EC2 Extra Large High CPU Instances, that is,
virtualized 64-bit computers with 7 GB of memory and
the equivalent of 8 processor cores clocked at approxi-
mately 2.5 to 2.8 Ghz. At the time of this writing, the
cost of such nodes was $0.68 ($0.76 in Europe and parts
of the US) per node per hour, with an Elastic MapRe-
duce surcharge of $0.12 per node per hour.
Before running Myrna, the input read data must be

stored on a filesystem accessible to the cluster. Users
will typically upload and preprocess the input data to
Amazon’s Simple Storage Service (S3) [31] before run-
ning the rest of the Myrna pipeline. An efficient method
to move data into S3 is to first allocate an Elastic
MapReduce cluster of many nodes and have each node
transfer a subset of the data from the source to S3 in
parallel. The first stage of the Myrna pipeline performs
such a bulk copy while also preprocessing the reads into
the form required by later stages of the Myrna pipeline.
This software was used to copy 43 gigabytes of com-
pressed short read data from a public HTTP server
located at the University of Chicago [32] to an S3 repo-
sitory located in the US in about 1 hour 15 minutes
(approximately 82 Mb/s effective transfer rate). The
transfer cost approximately $11: about $6.40 ($7.20 in
Europe and parts of the US) in cluster rental fees and
about $4.30 in data transfer fees.
Transfer time depends heavily on both the size of the

data and the speed of the Internet uplink at the source.
Public archives like National Center for Biotechnology
Information (NCBI) and the European Bioinformatics
Institute (EBI) as well as many universities have very
high bandwidth uplinks to Internet backbones, making
it efficient to copy data between those institutions and
S3. However, depending on the uplink speed at the
point of origin of the sequencing data, it may be more
desirable to run Myrna in either Hadoop mode or Sin-
gleton mode (see Materials and methods) on a compu-
ter or cluster located on the same local network with
the sequencing instruments.
To measure scalability, separate experiments were per-

formed using 10, 20 and 40 EC2 Extra Large High CPU
worker nodes (plus one master node). Table 1 presents
the wall clock running time and approximate cost for
each experiment. The experiment was performed once
for each cluster size. The results show that Myrna is
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capable of calculating differential expression from 1.1
billion RNA-Seq reads in less than 2 hours of wall clock
time for about $66 ($74 in Europe and parts of the US).
Figure 4 illustrates scalability as a function of the num-
ber of processor cores allocated. Units on the vertical
axis are the reciprocal of the wall clock time. Whereas
wall clock time measures elapsed hours per experiment,
its reciprocal measures experiments per hour. The
straight line extending from the 80-core point represents
hypothetical linear speedup, extrapolated assuming that
doubling the number of processors also doubles
throughput. In practice, parallel algorithms usually exhi-
bit worse-than-linear speedup because portions of the

computation are not fully parallel. For Myrna, deviation
from linear speedup is primarily due to load imbalance
among processors in the Align stage, but also due to a
deficit of parallelism in some downstream stages (for
example, Normalize and Postprocess).

Materials and methods
Myrna computational design
Myrna is designed to run in one of three modes: ‘Cloud
mode’ using Amazon Elastic MapReduce; ‘Hadoop
mode’ using a Hadoop cluster; or ‘Singleton mode’ using
a single computer. Cloud mode requires that the user
have appropriate accounts and credentials set up before-
hand. Cloud mode does not require any special software
installation; the appropriate software is either pre-
installed or automatically installed on the EC2 instances
before Myrna is run. Hadoop mode requires a function-
ing Hadoop cluster, with Bowtie, R and Bioconductor
installed on all nodes. Singleton mode requires Bowtie,
R and Bioconductor to be installed on the computer,
but does not require Hadoop. Singleton mode is also
parallelized and can exploit a user-specified number of
processors.
Myrna is designed with the Apache Hadoop [33] open

source implementation of the MapReduce [34] program-
ming model in mind. The pipeline is expressed as a ser-
ies of map and reduce stages operating on ‘tuples’ of
data. A tuple is a key/value pair, roughly analogous to a
row in a database table. A map stage takes a stream of
input tuples, performs a computation and outputs a
stream of tuples. A reduce stage takes a stream of bun-
dles of ‘alike’ tuples, where tuples are alike if their pri-
mary keys are equal. The reduce stage then performs a
computation and outputs a stream of tuples. Between
the map and reduce phases, the infrastructure (Hadoop
in the case of the Cloud or Hadoop modes, Myrna in
the case of Singleton mode) automatically executes a
sort/shuffle phase that bins and sorts tuples according

Figure 4 Scalability of Myrna. Number of worker CPU cores
allocated from EC2 versus throughput measured in experiments per
hour: that is, the reciprocal of the wall clock time required to
conduct a whole-human experiment on the 1.1 billion read Pickrell
et al. dataset [32]. The line labeled ‘linear speedup’ traces
hypothetical linear speedup relative to the throughput for 80
processor cores.

Table 1 Myrna runtime, cost for 1.1 billion reads from the Pickrell et al. study [32]

EC2 nodes 1 master, 10 workers 1 master, 20 workers 1 master, 40 workers

Worker processor cores 80 160 320

Wall clock time 4h:20m 2h:32m 1h:38m

Cluster setup 4m 4m 3m

Align 2h:56m 1h:31m 54m

Overlap 52m 31m 16m

Normalize 6m 7m 6m

Statistics 9m 6m 6m

Summarize and Postprocess 13m 14m 13m

Approximate cost (location dependant) $44.00/$49.50 $50.40/$56.70 $65.60/$73.80

Timing and cost for a Myrna experiment with 1.1 billion 35-bp unpaired reads from the Pickrell et al. study [32] as input. Costs are approximate and based on
the pricing as of this writing, that is, $0.68 per High-CPU Extra Large instance per hour in the Northern Virginia zone and $0.78 elsewhere, plus a $0.12 per-node-
per-hour surcharge for Elastic MapReduce. The table does not include the transfer of the read data from University of Chicago servers to S3, which takes a wall
clock time of 1h:15 m and costs about $12. Other charges may apply and times may vary subject to, for example, congestion and Internet traffic conditions.

Langmead et al. Genome Biology 2010, 11:R83
http://genomebiology.com/content/11/8/R83

Page 7 of 11



to primary and secondary keys, respectively, and passes
the sorted bins on to the reducers. Map and reduce
stages must be simple and self-contained. They cannot
communicate extensively or make heavy use of global
data structures. This leaves Hadoop/Myrna with signifi-
cant freedom in how it distributes parallel tasks across
cluster nodes and/or processors.

Myrna workflow
Preprocess
Myrna’s workflow is depicted in Figure 1. Each stage
exploits a different type of parallelism with the aim of
maximizing scalability. The first stage (’Preprocess’) pre-
processes a list of FASTQ files containing the input
reads and installs the result on a filesystem visible to the
cluster. Reads are also annotated with metadata, includ-
ing the read’s user-assigned sample name and the name
of the file where it originated. This stage is parallel
across input files, that is, files are downloaded and pre-
processed simultaneously in parallel where possible.
Align
The second stage (‘Align’; Figure 1a) aligns reads to a
reference genome using Bowtie [24]. Bowtie employs a
compact index of the reference sequence, requiring
about 3 gigabytes of memory for the human genome.
Each computer in the cluster independently obtains the
index from a local or shared filesystem. When running
on EC2, the index obtained here will typically be one of
the pre-built indexes available publicly in S3. The user
may specify options to be passed to Bowtie in this stage;
the default is ‘-m 1’, which discards alignments for reads
that align multiple places. The alignment stage is paral-
lel across reads; that is, reads are aligned simultaneously
in parallel where possible.
Overlap
The third stage (’Overlap’; Figure 1b) calculates overlaps
between alignments from the Align stage and a pre-
defined collection of gene interval sets. In each instance
where the 3′-most base of an alignment overlaps any
base of a gene interval set, an overlap record associating
the (labeled) alignment with the gene is output. By
default, Myrna defines a gene interval set as the minimal
set of intervals such that all contained bases are covered
by all transcripts annotated for the gene. Intervals where
two or more genes overlap are omitted from all gene
interval sets. This is equivalent to the ‘union intersec-
tion’ model proposed previously [4]. Myrna allows the
user to specify other models, such as the ‘union’ model
whereby the interval set consists of the minimal set of
intervals such that all contained bases are included in
any exon annotation for the gene. Also, Myrna allows
the user to specify which portion of the alignment to
consider when overlapping with the gene interval set;

for instance, instead of the 3′-most base the user can
specify that the 5′-most five bases be used. The Overlap
stage is parallel across alignments; that is, overlaps for
distinct alignments are calculated simultaneously and in
parallel where possible.
Normalize
The fourth stage (’Normalize’; Figure 1c) constructs a
sorted vector of per-gene overlap counts for each label.
A normalization factor is then calculated for each label -
typically a quantile of the sample-specific gene count
distribution. By default, Myrna sets the factor to the
75th percentile of the distribution of non-zero gene
counts, as suggested previously [4]. Alternatively, the
user may specify that Myrna use a different quantile or
value, such as the median or total, as the normalization
factor. The Normalize stage is parallel across labels.
Statistical analysis
The fifth stage (’Statistics’; Figure 1d) examines counts
for each gene and calculates and outputs a P-value
describing the probability that differences in counts
observed between groups are due to chance. The Align
and Overlap stages already calculated a count, cij repre-
senting the number of times a read from sample j over-
lapped gene i. The differential expression test relates the
counts to an outcome yj for the jth sample. The Nor-
malization stage already calculated the 75th percentile,
qj
75, or another suitable summary of the count distribu-

tion for each sample.
The basic approach to differential expression is to fit a

generalized linear model relating the counts cij to the
outcome yj:

g E f c y b q b s yij j i i ik k j

k

K

( [ ( ) | ]) log( ) ( )= + +
=

∑0

1



where g(·) specifies a link function (identity for Normal
models, log for Poisson models) and f(·) is a transforma-
tion of the raw count data (identity for Poisson models,
log for Normal models). The functions sk(·) can be used
to specify: (1) a continuous relationship between the
counts and the outcome, by setting K = 1 and sk(·) to be
the identify function; or (2) a factor model by setting K =
# of groups and sk(·) = 1(yj = k). Myrna allows the user to
specify either the Gaussian or Poisson family of distribu-
tions for the generalized linear model. The normalization
term, log(q), can be included as an offset [4], in which
case hi = 1 for all i. The default setting of Myrna is to use
the 75th percentile of the count distribution for each
sample as the normalization factor so q = qj

75.
Myrna tests the hypotheses:

H b b H b for some ki i iK i ik0 0 0: 1 1: := = = ≠  vs.    
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The hypothesis test can be performed using an asymp-
totic likelihood ratio test, or a permutation procedure.
The permutation test is performed by first calculating
the likelihood ratio statistic, Di, for testing H0i versus
H1i for each gene. The outcome yj is randomly per-
muted B times; for each permutation the same proce-
dure is applied to calculate null statistics Di

0b, b = 1,...,B
and i = 1,...,m where m is the total number of genes.
Alternative statistics, like the trimmed mean statistic [9],
can be implemented to try to address well known issues
in RNA-Seq analysis, such as transcript length bias [27].
The Statistics stage is parallel across genes; that is, dif-

ferential-expression P-values (both observed and null)
for distinct genes are calculated simultaneously and in
parallel where possible.
Summarize
The sixth stage (‘Summarize’) examines a sorted list of
all P-values generated in the Statistics stage and com-
piles a list of the top N genes ranked by false discovery
rate, where the parameter N is set by the user. In addi-
tion to the global significance results, more detailed sta-
tistical results and figures (see Postprocessing) are
returned for the top N genes.
If a permutation test is used, the Summarize stage

additionally calculates the permutation P-values. Permu-
tation P-values are calculated as follows:

p
D j

b Di b B j m

m Bi =
> = = +

+

{# ; , , & , , }0 1 1 1

1

 



This is accomplished over the course of a single linear
scan of the list of observed and null statistics, sorted by
statistic. The parallel infrastructure (either Hadoop or
Myrna) takes care of the sorting.
Though there is a modest amount of exploitable paral-

lelism inherent in this task, Myrna performs the Sum-
marize stage serially (on a single processor). The lack of
parallelism is mitigated by the fact that there are typi-
cally only on the order of tens of thousands or hundreds
of thousands of observed and null P-values to examine
in this stage.
Postprocess
The seventh stage (‘Postprocess’) first discards all over-
lap records not belonging to any top genes, which it
does in parallel across all overlaps. Next, Myrna calcu-
lates per-gene Q-values, a false discovery rate analog of
P-values [35]. The user specifies N whereby the N genes
with the smallest P-values are considered ‘top’ genes.
Finally, Myrna outputs a series of output files, including:
(a) files listing all overlaps for each top gene, including
alignment information that might indicate the presence
of sequence variants, such as single-nucleotide poly-
morphisms; (b) a table with estimated RPKM values for

each gene in the annotation; (c) a sorted table of all
P-values for all genes, along with a histogram plot; (d) a
sorted table of all q-values for all genes; and (e) a series
of plots showing the coverage for each of the top
N genes, broken down by replicate and by group. These
results are then compressed and stored in the user-spe-
cified output directory.
Some stages of the Myrna pipeline may be run sepa-

rately. For instance, a user may wish to preprocess a set
of input reads once, then re-analyze them several times,
in which case the Preprocess phase need be run only
once, and the Align through Post-process stages can be
re-run for subsequent analyses.

Discussion
Myrna is a computational pipeline for RNA-Seq differ-
ential expression analysis using cloud computing. We
used Myrna to analyze a large publicly available RNA-
Seq dataset with over 1 billion reads. The efficiency of
our pipeline allowed us to test a number of different
models rapidly on even this large data set. We showed
that under random labeling, a Gaussian or permutation-
based testing strategy, including a normalization con-
stant as a term in the model showed the least bias, and
that the often used Poisson model vastly overestimates
the amount of differential expression when biological
variation is assessed. We have implemented both Gaus-
sian and parallelized permutation tests for differential
expression in Myrna.
The Myrna pipeline is complementary to existing

approaches for RNA-Seq analysis - like ERANGE and
Cufflinks. ERANGE attempts to recover junction reads
based on the uniquely aligned reads, but only reports
RPKM and does not calculate a measure of statistical
significance [36]. Cufflinks is more ambitious in its
attempt to fully assemble the transcriptome, but bases
its differential expression statistics on the Poisson
model, which we have shown may not be appropriate
for biological replicates [8]. Myrna focuses on the some-
what simpler problem of differential expression analysis
between genes, but uses more sophisticated statistical
models and integrates the analysis in a computationally
efficient pipeline.
The version of Myrna described here does not make

any special attempt to align reads across exon junctions,
but this is important future work. Expression signal may
be lost by failing to align junction reads; Myrna’s focus
on just the constitutive portions of genes avoids
between-sample or between-gene biases due to this pol-
icy. Users can trade off between loss of signal due to
junction reads and loss of signal due to repetitive reads
by adjusting the -truncate-reads option, which trims all
input reads down to a given fixed length before passing
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them on to the alignment step. We expect that future
support for counting junction reads will not severely
impact Myrna’s performance characteristics; its chief
impact will be to add computation to the Align stage,
which is currently both the biggest bottleneck and the
most easily parallelizable step.
Myrna exploits the availability of multiple computers

and processors where possible and can be run on the
cloud using Amazon Elastic MapReduce, on any
Hadoop cluster, or on a single computer (bypassing
Hadoop entirely). While cloud mode allows Myrna users
to tap into the vast economies of scale afforded by
cloud providers, users may nonetheless prefer to run in
Hadoop or Singleton mode. This may be because: cloud
data transfers are inconvenient and sometimes too slow;
Singleton mode is easier to use and debug when things
go wrong; large, free, local Hadoop resources may be a
better alternative; or privacy concerns (for example,
internal review board requirements) may disallow use of
the cloud. Users considering the appropriateness of the
cloud for their work can also consult recent reviews and
commentaries on this topic [13,14,16].
Myrna is freely available, open source software that

can be downloaded from our website [37]. The RNA-
Seq data used in this analysis are available from eQTL
resources at the Pritchard lab [32].

Abbreviations
BP: base pair; CPU: central processing unit; EC2: Elastic Compute Cloud;
RPKM: reads per kilobase of exon model per million mapped reads; S3:
Simple Storage Service.
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