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Abstract

High-throughput sequencing assays such as RNA-Seq, ChIP-Seq or barcode counting provide quantitative readouts
in the form of count data. To infer differential signal in such data correctly and with good statistical power,
estimation of data variability throughout the dynamic range and a suitable error model are required. We propose a
method based on the negative binomial distribution, with variance and mean linked by local regression and
present an implementation, DESeq, as an R/Bioconductor package.

Background
High-throughput sequencing of DNA fragments is used
in a range of quantitative assays. A common feature
between these assays is that they sequence large
amounts of DNA fragments that reflect, for example, a
biological system’s repertoire of RNA molecules (RNA-
Seq [1,2]) or the DNA or RNA interaction regions of
nucleotide binding molecules (ChIP-Seq [3], HITS-CLIP
[4]). Typically, these reads are assigned to a class based
on their mapping to a common region of the target gen-
ome, where each class represents a target transcript, in
the case of RNA-Seq, or a binding region, in the case of
ChIP-Seq. An important summary statistic is the num-
ber of reads in a class; for RNA-Seq, this read count has
been found to be (to good approximation) linearly
related to the abundance of the target transcript [2].
Interest lies in comparing read counts between different
biological conditions. In the simplest case, the compari-
son is done separately, class by class. We will use the
term gene synonymously to class, even though a class
may also refer to, for example, a transcription factor
binding site, or even a barcode [5].
We would like to use statistical testing to decide

whether, for a given gene, an observed difference in
read counts is significant, that is, whether it is greater
than what would be expected just due to natural
random variation.
If reads were independently sampled from a popula-

tion with given, fixed fractions of genes, the read counts

would follow a multinomial distribution, which can be
approximated by the Poisson distribution.
Consequently, the Poisson distribution has been used

to test for differential expression [6,7]. The Poisson dis-
tribution has a single parameter, which is uniquely deter-
mined by its mean; its variance and all other properties
follow from it; in particular, the variance is equal to the
mean. However, it has been noted [1,8] that the assump-
tion of Poisson distribution is too restrictive: it predicts
smaller variations than what is seen in the data. There-
fore, the resulting statistical test does not control type-I
error (the probability of false discoveries) as advertised.
We show instances for this later, in the Discussion.
To address this so-called overdispersion problem, it has

been proposed to model count data with negative bino-
mial (NB) distributions [9], and this approach is used in
the edgeR package for analysis of SAGE and RNA-Seq
[8,10]. The NB distribution has parameters, which are
uniquely determined by mean μ and variance s2. How-
ever, the number of replicates in data sets of interest is
often too small to estimate both parameters, mean and
variance, reliably for each gene. For edgeR, Robinson
and Smyth assumed [11] that mean and variance are
related by s2 = μ + aμ2, with a single proportionality
constant a that is the same throughout the experiment
and that can be estimated from the data. Hence, only
one parameter needs to be estimated for each gene,
allowing application to experiments with small numbers
of replicates.
In this paper, we extend this model by allowing more

general, data-driven relationships of variance and mean,
provide an effective algorithm for fitting the model to
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data, and show that it provides better fits (Section
Model). As a result, more balanced selection of differen-
tially expressed genes throughout the dynamic range of
the data can be obtained (Section Testing for differential
expression). We demonstrate the method by applying
it to four data sets (Section Applications) and discuss
how it compares to alternative approaches (Section
Conclusions).

Results and Discussion
Model
Description
We assume that the number of reads in sample j that
are assigned to gene i can be modeled by a negative
binomial (NB) distribution,

Kij ij ij~ ( , ),NB   2 (1)

which has two parameters, the mean μij and the
variance  ij

2 . The read counts Kij are non-negative
integers. The probabilities of the distribution are given
in Supplementary Note A. (All Supplementary Notes are
in Additional file 1.) The NB distribution is commonly
used to model count data when overdispersion is
present [12].
In practice, we do not know the parameters μij and

 ij
2 , and we need to estimate them from the data.

Typically, the number of replicates is small, and further
modelling assumptions need to be made in order to
obtain useful estimates. In this paper, we develop a
method that is based on the following three assumptions.
First, the mean parameter μij, that is, the expectation

value of the observed counts for gene i in sample j, is
the product of a condition-dependent per-gene value qi,
r(j) (where r(j) is the experimental condition of sample
j) and a size factor sj,

 ij i j j
q S=

, ( )
. (2)

qi,r(j) is proportional to the expectation value of the
true (but unknown) concentration of fragments from
gene i under condition r(j). The size factor sj represents
the coverage, or sampling depth, of library j, and we will
use the term common scale for quantities, such as qi, r(j),
that are adjusted for coverage by dividing by sj.

Second, the variance  ij
2 is the sum of a shot noise

term and a raw variance term,

  ij ij j i js v2 2= +
shot noise raw variance

 
   , ( ) .

(3)

Third, we assume that the per-gene raw variance
parameter vi, r is a smooth function of qi, r,

v v qi j i j, ( ) , ( )( ).  = (4)

This assumption is needed because the number of
replicates is typically too low to get a precise estimate of
the variance for gene i from just the data available for
this gene. This assumption allows us to pool the data
from genes with similar expression strength for the pur-
pose of variance estimation.
The decomposition of the variance in Equation (3) is

motivated by the following hierarchical model: We
assume that the actual concentration of fragments from
gene i in sample j is proportional to a random variable
Rij, such that the rate that fragments from gene i are
sequenced is sjrij. For each gene i and all samples j of
condition r, the Rij are i.i.d. with mean qir and variance
vir. Thus, the count value Kij, conditioned on Rij = rij, is
Poisson distributed with rate sjrij. The marginal distribu-
tion of Kij - when allowing for variation in Rij - has the
mean μij and (according to the law of total variance) the
variance given in Equation (3). Furthermore, if the
higher moments of Rij are modeled according to a
gamma distribution, the marginal distribution of Kij is
NB (see, for example, [12], Section 4.2.2).
Fitting
We now describe how the model can be fitted to data. The
data are an n × m table of counts, kij, where i = 1,..., n
indexes the genes, and j = 1,..., m indexes the samples. The
model has three sets of parameters:
(i) m size factors sj; the expectation values of all

counts from sample j are proportional to sj.
(ii) for each experimental condition r, n expression

strength parameters qir; they reflect the expected abun-
dance of fragments from gene i under condition r, that
is, expectation values of counts for gene i are propor-
tional to qir.
(iii) The smooth functions vr : R+ ® R+; for each con-

dition r, vr models the dependence of the raw variance
vir on the expected mean qir.
The purpose of the size factors sj is to render

counts from different samples, which may have been
sequenced to different depths, comparable. Hence, the
ratios (  Kij)/(  Kij’) of expected counts for the same
gene i in different samples j and j’ should be equal to
the size ratio sj/sj ’ if gene i is not differentially
expressed or samples j and j’ are replicates. The total
number of reads, Σi kij, may seem to be a good measure
of sequencing depth and hence a reasonable choice for
sj. Experience with real data, however, shows this not
always to be the case, because a few highly and differ-
entially expressed genes may have strong influence on
the total read count, causing the ratio of total read
counts not to be a good estimate for the ratio of
expected counts.
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Hence, to estimate the size factors, we take the median of
the ratios of observed counts. Generalizing the procedure
just outlined to the case of more than two samples, we use:
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The denominator of this expression can be interpreted
as a pseudo-reference sample obtained by taking the
geometric mean across samples. Thus, each size factor
estimate s j

^ is computed as the median of the ratios of
the j-th sample’s counts to those of the pseudo-reference.
(Note: While this manuscript was under review, Robinson
and Oshlack [13] suggested a similar method.)
To estimate qir, we use the average of the counts from

the samples j corresponding to condition r, transformed
to the common scale:
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where mr is the number of replicates of condition r and
the sum runs over these replicates. the functions vr, we
first calculate sample variances on the common scale

w
m

k

s
qi

ij

j
i

j j





 

=
−

−
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟=

∑1

1

2

^
^

: ( )

(7)

and define

z
q

m s
i

i

jj j




  

=
=

∑
^

^
: ( )

.
1 (8)

In Supplementary Note B in Additional file 1 we show
that wir - zir is an unbiased estimator for the raw variance
parameter vir of Equation (3).
However, for small numbers of replicates, mr, as is

typically the case in applications, the values wir are highly
variable, and wir - zir would not be a useful variance
estimator for statistical inference. Instead, we use local
regression [14] on the graph ( , )q̂ wi i 

to obtain a
smooth function wr(q), with

v q w q zi i i
^ ^ ^( ) ( )    = − (9)

as our estimate for the raw variance.
Some attention is needed to avoid estimation biases in

the local regression. wir is a sum of squared random
variables, and the residuals w w qi i − ( )^ are skewed.
Following References [15], Chapter 8 and [14], Section

9.1.2, we use a generalized linear model of the gamma
family for the local regression, using the implementation
in the locfit package [16].

Testing for differential expression
Suppose that we have mA replicate samples for biologi-
cal condition A and mB samples for condition B. For
each gene i, we would like to weigh the evidence in the
data for differential expression of that gene between
the two conditions. In particular, we would like to test
the null hypothesis qiA = qiB, where qiA is the expression
strength parameter for the samples of condition A, and
qiB for condition B. To this end, we define, as test statis-
tic, the total counts in each condition,

K K K Ki ij

j j

i ij

j j
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and their overall sum KiS = KiA + KiB. From the error
model described in the previous Section, we show below
that - under the null hypothesis - we can compute the
probabilities of the events KiA = a and KiB = b for any
pair of numbers a and b. We denote this probability by
p(a, b). The P value of a pair of observed count sums
(kiA, kiB) is then the sum of all probabilities less or equal
to p(kiA, kiB), given that the overall sum is kiS:

p
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The variables a and b in the above sums take the
values 0,..., kiS. The approach presented so far follows
that of Robinson and Smyth [11] and is analogous to
that taken by other conditioned tests, such as Fisher’s
exact test. (See Reference [17], Chapter 3 for a discus-
sion of the merits of conditioning in tests.)
Computation of p(a, b). First, assume that, under the

null hypothesis, counts from different samples are inde-
pendent. Then, p(a, b) = Pr(KiA = a) Pr(KiB = b). The
problem thus is computing the probability of the event
KiA = a, and, analogously, of KiB = b. The random vari-
able KiA is the sum of mA

NB-distributed random variables. We approximate its
distribution by a NB distribution whose parameters we
obtain from those of the Kij. To this end, we first com-
pute the pooled mean estimate from the counts of both
conditions,

q k si ij

j j A B
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which accounts for the fact that the null hypothesis
stipulates that qiA = qiB. The summed mean and var-
iance for condition A are

̂ ^ ,i j

j

is qA
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∑ 0 (13)
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Supplementary Note C in Additional file 1 describes
how the distribution parameters of the NB for KiA can
be determined from ̂ iA

and ̂ iA
2 . (To avoid bias, we

do not match the moments directly, but instead match a
different pair of distribution statistics.) The parameters
of KiB are obtained analogously.
Supplementary Note D in Additional file 1 explains

how we evaluate the sums in Equation (11).

Applications
Data sets
We present results based on the following data sets:
RNA-Seq in fly embryos. B. Wilczynski, Y.-H. Liu,
N. Delhomme and E. Furlong have conducted RNA-Seq
experiments in fly embryos and kindly shared part of their
data with us ahead of publication. In each sample of this
data set, a gene was engineered to be over-expressed, and
we compare two biological replicates each of two such
conditions, in the following denoted as ‘A’ and ‘B’.
Tag-Seq of neural stem cells. Engström et al. [18] per-
formed Tag-Seq [19] for tissue cultures of neural cells,
including four from glioblastoma-derived neural stem-
cells (’GNS’) and two from non-cancerous neural stem
(’NS’) cells. As each tissue culture was derived from a
different subject and so has a different genotype, these
data show high variability.
RNA-Seq of yeast. Nagalakshmi et al. [1] performed
RNA-Seq on replicates of Saccharomyces cerevisiae cul-
tures. They tested two library preparation protocols, dT
and RH, and obtained three sequencing runs for each
protocol, such that for the first run of each protocol,
they had one further technical replicate (same culture,
replicated library preparation) and one further biological
replicate (different culture).
ChIP-Seq of HapMap samples. Kasowski et al. [20]
compared protein occupation of DNA regions between
ten human individuals by ChIP-Seq. They compiled
a list of regions for polymerase II and NF-�B, and
counted, for each sample, the number of reads that
mapped onto each region. The aim of the study was to
investigate how much the regions’ occupation differed
between individuals.

Variance estimation
We start by demonstrating the variance estimation.
Figure 1a shows the sample variances wir (Equation (7))

plotted against the means qi
^


(Equation (6)) for condi-

tion A in the fly RNA-Seq data. Also shown is the local
regression fit wr(q) and the shot noise s qj i

^ ^

. In Figure

1b, we plotted the squared coefficient of variation
(SCV), that is the ratio of the variance to the mean
squared. In this plot, the distance between the orange
and the purple line is the SCV of the noise due to biolo-
gical sampling (cf. Equation (3)).
The many data points in Figure 1b that lie far above

the fitted orange curve may let the fit of the local
regression appear poor. However, a strong skew of the
residual distribution is to be expected. See Supplemen-
tary Note E in Additional file 1 for details and a discus-
sion of diagnostics suitable to verify the fit.
Testing
In order to verify that DESeq maintains control of type-I
error, we contrasted one of the replicates for condition
A in the fly data against the other one, using for both
samples the variance function estimated from the two
replicates. Figure 2 shows the empirical cumulative dis-
tribution functions (ECDFs) of the P values obtained
from this comparison. To control type-I error, the pro-
portion of P values below a threshold a has to be ≤ a,
that is, the ECDF curve (blue line) should not get above
the diagonal (gray line). As the figure indicates, type-I
error is controlled by edgeR and DESeq, but not by a
Poisson-based c2 test. The latter underestimates the
variability of the data and would thus make many false
positive rejections. In addition to this evaluation on real
data, we also verified DESeq’s type-I error control on
simulated data that were generated from the error
model described above; see Supplementary Note G in
Additional file 1. Next, we contrasted the two A samples
against the two B samples. Using the procedure
described in the previous Section, we computed a
P value for each gene. Figure 3 shows the obtained fold
changes and P values. 12% of the P values were below
5%. Adjustment for multiple-testing with the procedure
of Benjamini and Hochberg [21] yielded significant dif-
ferential expression at false discovery rate (FDR) of 10%
for 864 genes (of 17,605). These are marked in red in
the figure. Figure 3 demonstrates how the ability to
detect differential expression depends on overall counts.
Specifically, the strong shot noise for low counts causes
the testing procedure to call only very high fold changes
significant. It can also be seen that, for counts below
approximately 100, even a small increase in count levels
reduces the impact of shot noise and hence the fold-
change requirement, while at higher counts, when
shot noise becomes unimportant (cf. Figure 1b), the
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Figure 1 Dependence of the variance on the mean for condition A in the fly RNA-Seq data. (a) The scatter plot shows the common-scale
sample variances (Equation (7)) plotted against the common-scale means (Equation (6)). The orange line is the fit w(q). The purple lines show the
variance implied by the Poisson distribution for each of the two samples, that is, s qj i A

^ ^
,
. The dashed orange line is the variance estimate used by

edgeR. (b) Same data as in (a), with the y-axis rescaled to show the squared coefficient of variation (SCV), that is all quantities are divided by the
square of the mean. In (b), the solid orange line incorporated the bias correction described in Supplementary Note C in Additional file 1. (The plot
only shows SCV values in the range [0, 0.2]. For a zoom-out to the full range, see Supplementary Figure S9 in Additional file 1.)
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Figure 2 Type-I error control. The panels show empirical cumulative distribution functions (ECDFs) for P values from a comparison of one
replicate from condition A of the fly RNA-Seq data with the other one. No genes are truly differentially expressed, and the ECDF curves (blue)
should remain below the diagonal (gray). Panel (a): top row corresponds to DESeq, middle row to edgeR and bottom row to a Poisson-based c2

test. The right column shows the distributions for all genes, the left and middle columns show them separately for genes below and above a
mean of 100. Panel (b) shows the same data, but zooms into the range of small P values. The plots indicate that edgeR and DESeq control type I
error at (and in fact slightly below) the nominal rate, while the Poisson-based c2 test fails to do so. edgeR has an excess of small P values for low
counts: the blue line lies above the diagonal. This excess is, however, compensated by the method being more conservative for high counts. All
methods show a point mass at p = 1, this is due to the discreteness of the data, whose effect is particularly evident at low counts.
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fold-change cut-off depends only weakly on count level.
These plots are helpful to guide experiment design: For
weakly expressed genes, in the region where shot noise
is important, power can be increased by deeper sequen-
cing, while for the higher-count regime, increased power
can only be achieved with further biological replicates.
Comparison with edgeR
We also analyzed the data with edgeR (version 1.6.0;
[8,10,11]). We ran edgeR with four different settings,
namely in common-dispersion and in tagwise-dispersion
mode, and either using the size factors as estimated by
DESeq or taking the total numbers of sequenced reads.
The results did not depend much on these choices, and
here we report the results for tag-wise dispersion mode
with DESeq-estimated size factors. (The R code required
to reproduce all analyses, figures and numbers reported
in this article is provided in Additional file 2; in addi-
tion, this supplement provides the results for the
other settings of edgeR. The raw data can be found in
Additional file 3.)
Going back to Figure 1 we see that edgeR’s single-

value dispersion estimate of the variance is lower than
that of DESeq for weakly expressed genes and higher for
strongly expressed genes. As a consequence, as we have
seen in Figure 2edgeR is anti-conservative for lowly

expressed genes. However, it compensates for this by
being more conservative with strongly expressed genes,
so that, on average, type-I error control is maintained.
Nevertheless, in a test between different conditions,

this behavior can result in a bias in the list of discov-
eries; for the present data, as Figure 4 shows, weakly
expressed genes seem to be overrepresented, while very
few genes with high average level are called differentially
expressed by edgeR. While overall the sensitivity of both
methods seemed comparable (DESeq reported 864 hits,
edgeR 1, 127 hits), DESeq produced results which were
more balanced over the dynamic range.
Similar results were obtained with the neural stem cell

data, a data set with a different biological background
and different noise characteristics (see Supplementary
Note F in Additional file 1). The flexibility of the var-
iance estimation scheme presented in this work appears
to offer real advantages over the existing methods across
a range of applications.
Working without replicates
DESeq allows analysis of experiments with no biological
replicates in one or even both of the conditions. While
one may not want to draw strong conclusions from
such an analysis, it may still be useful for exploration
and hypothesis generation.
If replicates are available only for one of the conditions,

one might choose to assume that the variance-mean
dependence estimated from the data for that condition
holds as well for the unreplicated one.
If neither condition has replicates, one can still per-

form an analysis based on the assumption that for most
genes, there is no true differential expression, and that a
valid mean-variance relationship can be estimated from
treating the two samples as if they were replicates. A
minority of differentially abundant genes will act as out-
liers; however, they will not have a severe impact on the
gamma-family GLM fit, as the gamma distribution for
low values of the shape parameter has a heavy right-
hand tail. Some overestimation of the variance may be
expected, which will make that approach conservative.
We performed such an analysis with the fly RNA-Seq

and the neural cell Tag-Seq data, by restricting both
data sets to only two samples, one from each condition.
For the neural cell data, the estimated variance function
was, as expected, somewhat above the two functions
estimated from the GNS and NS replicates.
Using it to test for differential expression still found

269 hits at FDR = 10%, of which 202 were among the
612 hits from the more reliable analysis with all avail-
able samples. In the case of the fly RNA-Seq data, how-
ever, only 90 of the 862 hits (11%) were recovered (with
two new hits). These observations are explained by
the fact that in the neural cell data, the variability
between replicates was not much smaller than between

Figure 3 Testing for differential expression between conditions
A and B: Scatter plot of log2 ratio (fold change) versus mean.
The red colour marks genes detected as differentially expressed at
10% false discovery rate when Benjamini-Hochberg multiple testing
adjustment is used. The symbols at the upper and lower plot
border indicate genes with very large or infinite log fold change.
The corresponding volcano plot is shown in Supplementary Figure
S8 in Additional file 2.
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conditions, making the latter a usable surrogate for the
former. On the other hand, for the fly data, the variabil-
ity between replicates was much smaller than between
the conditions, indicating that the replication provided
important and otherwise not available information on
the experimental variation in the data (see also next
Section).
Variance-stabilizing transformation
Given a variance-mean dependence, a variance-stabiliz-
ing transformation (VST) is a monotonous mapping
such that for the transformed values, the variance is
(approximately) independent of the mean. Using the
variance-mean dependence w(q) estimated by DESeq, a
VST is given by

 


( )
( )

.= ∫ dq
w q

(15)

Applying the transformation τ to the common-scale
count data, kij/sj, yields values whose variances are
approximately the same throughout the dynamic range.
One application of VST is sample clustering, as in
Figure 5; such an approach is more straightforward
than, say, defining a suitable distance metric on the
untransformed count data, whose choice is not obvious,
and may not be easy to combine with available cluster-
ing or classification algorithms (which tend to be
designed for variables with similar distributional
properties).
ChIP-Seq
DESeq can also be used to analyze comparative ChIP-
Seq assays. Kasowski et al. [20] analyzed transcription
factor binding for HapMap individuals and counted for
each sample how many reads mapped to pre-determined
binding regions. We considered two individuals from
their data set, HapMap IDs GM12878 and GM12891,

for both of which at least four replicates had been done,
and tested for differential occupation of the regions. The
upper left two panels of Figure 6 which show compari-
sons within the same individual, indicate that type-I
error was controlled by DESeq. No region was signifi-
cant at 10% FDR using Benjamini-Hochberg adjustment.
Differential occupation was found, however, when con-
trasting the two individuals, with 4,460 of 19,028 regions
significant when only two replicates each were used and
8,442 when four replicates were used (upper right two
panels).
Using an alternative approach, Kasowski et al. fitted

generalized linear models (GLMs) of the Poisson family.
This (lower row of Figure 6) resulted in an enrichment
of small P values even for comparisons within the same
individual, indicating that the variance was underesti-
mated by the Poisson GLM, and literal use of the P
values would lead to anti-conservative (overly optimistic)
bias. Kasowski et al. addressed this and adjusted for the
bias by using additional criteria for calling differential
occupation.

Conclusions
Why is it necessary to develop new statistical metho-
dology for sequence count data? If large numbers of
replicates were available, questions of data distribution
could be avoided by using non-parametric methods,
such as rank-based or permutation tests. However, it
is desirable (and possible) to consider experiments
with smaller numbers of replicates per condition.
In order to compare an observed difference with an
expected random variation, we can improve our pic-
ture of the latter in two ways: first, we can use distri-
bution families, such as normal, Poisson and negative
binomial distributions, in order to determine the
higher moments, and hence the tail behavior, of statis-
tics for differential expression, based on observed low
order moments such as mean and variance. Second,
we can share information, for instance, distributional
parameters, between genes, based on the notion that
data from different genes follow similar patterns of
variability. Here, we have described an instance of
such an approach, and we will now discuss the choices
we have made.

Choice of distribution
While for large counts, normal distributions might
provide a good approximation of between-replicate
variability, this is not the case for lower count values,
whose discreteness and skewness mean that probability
estimates computed from a normal approximation
would be inadequate.
For the Poisson approximation, a key paper is the

work by Marioni et al. [6], who studied the technical
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Figure 4 Distribution of hits through the dynamic range. The
density of common-scale mean values qi for all genes in the fly
data (gray line, scaled down by a factor of seven), and for the hits
reported by DESeq (red line) and by edgeR at a false discovery rate
of 10% (dark blue line: with tag-wise dispersion estimation; light
blue line: common dispersion mode).
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reproducibility of RNA-Seq. They extracted total RNA
from two tissue samples, one from the liver and one
from the kidneys of the same individual. From each
RNA sample they took seven aliquots, prepared a library
from each aliquot according to the protocol recom-
mended by Illumina and sampled each library on one
lane of a Solexa genome analyzer. For each gene, they
then calculated the variance of the seven counts from
the same tissue sample and found very good agreement
with the variance predicted by a Poisson model. In line
with our arguments in Section Model, Poisson shot noise
is the minimum amount of variation to expect in a

counting process. Thus, Marioni et al. concluded that the
technical reproducibility of RNA-Seq is excellent, and
that the variation between technical replicates is close to
the shot noise limit. From this vantage point, Marioni
et al. (and similarly Bullard et al. [22]) suggested to use
the Poisson model (and Fisher’s exact test, or a likelihood
ratio test as an approximation to it) to test whether a
gene is differentially expressed between their two sam-
ples. It is important to note that a rejection from such a
test only informs us that the difference between the aver-
age counts in the two samples is larger than one would
expect between technical replicates. Hence, we do not
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know whether this difference is due to the different tissue
type, kidney instead of liver, or whether a difference of
the same magnitude could have been found as well if one
had compared two samples from different parts of the
same liver, or from livers of two individuals.
Figure 1 shows that shot noise is only dominant for

very low count values, while already for moderate
counts, the effect of the biological variation between
samples exceeds the shot noise by orders of magnitude.
This is confirmed by comparison of technical with bio-

logical replicates [1]. In Figure 7 we used DESeq to obtain
variance estimates for the data of Nagalakshmi et al. [1].
The analysis indicates that the difference between techni-
cal replicates barely exceeds shot noise level, while biolo-
gical replicates differ much more. Tests for differential
expression that are based on a Poisson model, such as
those discussed in References [6,7,20,22,23] should thus

be interpreted with caution, as they may severely under-
estimate the effect of biological variability, in particular
for highly expressed genes.
Consequently, it is preferable to use a model

that allows for overdispersion. While for the Poisson
distribution, variance and mean are equal, the negative
binomial distribution is a generalization that allow for
the variance to be larger. The most advanced of the
published methods using this distribution is likely edgeR
[8]. DESeq owes its basic idea to edgeR, yet differs in
several aspects.

Sharing of information between genes
First, we discovered that the use of total read counts as
estimates of sequencing depth, and hence for the adjust-
ment of observed counts between samples (as recom-
mended by Robinson et al. [8] and others) may result in
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high apparent differences between replicates, and hence
in poor power to detect true differences.
DESeq uses the more robust size estimate Equation

(5); in fact, edgeR’s power increases when it is supplied
with those size estimates instead. (Note: While this
paper was under review, edgeR was amended to use the
method of Oshlack and Robinson [13].)
For small numbers of replicates as often encountered

in practice, it is not possible to obtain simultaneously
reliable estimates of the variance and mean parameters
of the NB distribution. EdgeR addresses this problem by
estimating a single common dispersion parameter. In our
method, we make use of the possibility to estimate a
more flexible, mean-dependent local regression. The
amount of data available in typical experiments is large
enough to allow for sufficiently precise local estimation
of the dispersion. Over the large dynamic range that is
typical for RNA-Seq, the raw SCV often appears to
change noticeably, and taking this into account allows
DESeq to avoid bias towards certain areas of the

dynamic range in its differential-expression calls (see
Figure 2 and 4).
This flexibility is the most substantial difference

between DESeq and edgeR, as simulations show that
edgeR and DESeq perform comparably if provided
with artificial data with constant SCV (Supplementary
Note G in Additional file 1). EdgeR attempts to make
up for the rigidity of the single-parameter noise
model by allowing for an adjustment of the model-
based variance estimate with the per-gene empirical
variance. An empirical Bayes procedure, similar to
the one originally developed for the limma package
[24-26], determines how to combine these two
sources of information optimally. However, for typical
low replicate numbers, this so-called tagwise disper-
sion mode seems to have little effect (Figure 4) or
even reduces edgeR’s power (Supplementary Note F in
Additional file 1).
Third, we have suggested a simple and robust way of

estimating the raw variance from the data. Robinson
and Smyth [11] employed a technique they called
quantile-adjusted conditional maximum likelihood to
find an unbiased estimate for the raw SCV. The quan-
tile adjustment refers to a rank-based procedure that
modifies the data such that the data seem to stem from
samples of equal library size. In DESeq, differing library
sizes are simply addressed by linear scaling (Equations
(2) and (3)), suggesting that quantile adjustment is an
unnecessary complication. The price we pay for this is
that we need to make the approximation that the sum
of NB variables in Equation (10) is itself NB distribu-
ted. While it seems that neither the quantile adjust-
ment nor our approximation pose reason for concern
in practice, DESeq’s approach is computationally faster
and, perhaps, conceptually simpler.
Fourth, our approach provides useful diagnostics.

Plots such as Supplementary Figure S3 in Additional
file 2 are helpful to judge the reliability of the tests. In
Figure 1b and 7, it is easy to see at which mean value
biological variability dominates over shot noise; this
information is valuable to decide whether the sequen-
cing depth or the number of biological replicates is the
limiting factor for detection power, and so helps in
planning experiments. A heatmap as in Figure 5 is use-
ful for data quality control.

Materials and methods
The R package DESeq
We implemented the method as a package for the
statistical environment R [27] and distribute it within
the Bioconductor project [28]. As input, it expects a
table of count data. The data, as well as meta-data,
such as sample and gene annotation, are managed with
the S4 class CountDataSet, which is derived from eSet,
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Figure 7 Noise estimates for the data of Nagalakshmi et al. [1].
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2 (see Equation (9)) for technical replicates, the red
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RH data set). The data density is shown by the histogram in the top
panel. The purple area marks the range of the shot noise for the
range of size factors in the data set. One can see that the noise
between technical replicates follows closely the shot noise limit,
while the noise between biological replicates exceeds shot noise
already for low count values.
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Bioconductor’s standard data type for table-like data.
The package provides high-level functions to perform
analyses such as shown in Section Application with
only a few commands, allowing researchers with little
knowledge of R to use it. This is demonstrated with
examples in the documentation provided with the
package (the package vignette). Furthermore, lower-
level functions are supplied for advanced users who
wish to deviate from the standard work flow. A typical
calculation, such as the analyses shown in Section
Applications, takes a few minutes of time on a perso-
nal computer.
All the analyses presented here have been performed

with DESeq. Readers wishing to examine them in detail
will find a Sweave document with the commented
R code of the analysis code as Additional file 2 and the
raw data in Additional file 3.
DESeq is available as a Bioconductor package from the

Bioconductor repository [28] and from [36].

Additional material

Additional file 1: Supplement. Contains all Supplementary Notes and
Supplementary Figures.

Additional file 2: Supplement II. PDF file presenting the source code of
all the analyses presented in this paper, with comments, as a Sweave
document.

Additional file 3: Raw data. Tarball containing the raw data for the
presented analyses.
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