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Abstract

Background: The goal of the gene normalization task is to link genes or gene products mentioned
in the literature to biological databases. This is a key step in an accurate search of the biological
literature. It is a challenging task, even for the human expert; genes are often described rather than
referred to by gene symbol and, confusingly, one gene name may refer to different genes (often
from different organisms). For BioCreative II, the task was to list the Entrez Gene identifiers for
human genes or gene products mentioned in PubMed/MEDLINE abstracts. We selected abstracts
associated with articles previously curated for human genes. We provided 281 expert-annotated
abstracts containing 684 gene identifiers for training, and a blind test set of 262 documents
containing 785 identifiers, with a gold standard created by expert annotators. Inter-annotator
agreement was measured at over 90%.
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Results: Twenty groups submitted one to three runs each, for a total of 54 runs. Three systems
achieved F-measures (balanced precision and recall) between 0.80 and 0.81. Combining the system
outputs using simple voting schemes and classifiers obtained improved results; the best composite
system achieved an F-measure of 0.92 with 10-fold cross-validation. A 'maximum recall' system
based on the pooled responses of all participants gave a recall of 0.97 (with precision 0.23),
identifying 763 out of 785 identifiers.

Conclusion: Major advances for the BioCreative II gene normalization task include broader
participation (20 versus 8 teams) and a pooled system performance comparable to human experts,
at over 90% agreement. These results show promise as tools to link the literature with biological
databases.

Background
The goal of the gene normalization (GN) task is to determine
the unique identifiers of genes and proteins mentioned in sci-
entific literature. For the BioCreative II GN task, the identifi-
ers are Entrez Gene IDs, the genes and proteins are associated
with humans, and the targeted literature is a collection of
abstracts taken from PubMed/MEDLINE. Gene normaliza-
tion is a challenging task even for the human expert; despite
the existence of various standards bodies, there is great vari-
ability in how genes and gene products are mentioned in the
literature. There are two problems. First, genes are often
described, rather than referred to by gene name or symbol, as
in 'p65 subunit of NF-kappaB' or 'light chain-3 of microtu-
bule-associated proteins 1A and 1B.' This can make correct
association with the Entrez Gene identifier difficult. Second,
gene mentions can be ambiguous. Figure 1 shows a sample
PubMed/MEDLINE abstract that discusses the gene
'Humly9'. However, a search on 'Humly9' in Entrez Gene
returns no hits; a search on 'Ly9' returns hits from multiple

organisms (mouse, human, dog, and so on) as well as from
multiple genes, including Slamf7 (mouse), which has 'novel
Ly9' as a synonym, and SLAMF7 (human, identifier 57823),
with synonym 'novel LY9 (lymphocyte antigen 9) like
protein'.

This example illustrates the difficulty in resolving even seem-
ingly straightforward mentions of genes to their unique iden-
tifiers. However, the linkages that can be created when this
resolution is accomplished are critical to accurate search of
the literature, which contains the records of experimental evi-
dence needed for characterization of the gene and associated
gene products. The GN task was inspired by a step in a typical
curation pipeline for model organism databases: once an arti-
cle has been selected for curation, a curator will list the genes
or proteins of interest in the article. This is a time-consuming
step - both curators and researchers would benefit from tools
to speed up the process of linking literature to biological
databases.

Sample PubMed/MEDLINE abstract and extracted Entrez Gene identifiersFigure 1
Sample PubMed/MEDLINE abstract and extracted Entrez Gene identifiers.

PUBMED ID 8537117 

Isolation and characterization of cDNA clones for Humly9: the human homologue of 

mouse Ly9.

Ly9 is a mouse cell membrane antigen found on all lymphocytes and coded for by a gene 

that maps to chromosome 1. We previously described the isolation and characterization 

of a full-length cDNA clone for mouse Ly9. Using cross-species hybridization we 

isolated cDNA clones encoding the human homologue Humly9.  

System output: 

PMID  Entrez Gene ID Text evidence 

8537117 4063     Humly9 
Genome Biology 2008, 9(Suppl 2):S3
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The first BioCreative shared task [1,2] stimulated significant
subsequent research. For example, Cohen [3] and Xu and
coworkers [4] showed how existing knowledge sources could
be efficiently leveraged to improve performance on the GN
problem itself. Other researchers have shown the relevance of
the GN task to pervasive problems in retrieving relevant doc-
uments. Sehgal and Srinivasan [5] presented a detailed anal-
ysis of the interactions between gene normalization and
information retrieval, and presented an effective technique
for using data from Entrez Gene summary and product infor-
mation fields for solving ambiguity issues in the latter. Fang
and coworkers [6] presented a detailed analysis of various
approaches to the normalization of human genes, which are
the target of their group's FABLE information retrieval appli-
cation for human-gene-specific publications.

In the first BioCreative, the focus was on extraction of unique
gene identifiers from the fly, mouse and yeast model organ-
ism databases. For BioCreative II we chose to focus on human
gene and protein names, motivated in part by a desire to align
more closely with the protein-protein interaction (PPI) task
[7], in which a normalization step is required to map interac-
tor proteins to UniProt IDs.

In contrast with genomic data for fly, mouse, and yeast, data
for the human genome is not organized into a single model
organism database. This made collection of resources some-
what more complicated. To provide a pool of articles contain-
ing information on human genes and gene products, we drew
from expert-annotated data created by the Gene Ontology
Annotation (GOA) team at the European Bioinformatics
Institute. From this set, we provided 281 expert-annotated
abstracts for training, and a blind test set of 262 documents,
with a gold standard created by expert annotators; inter-
annotator agreement was measured at over 90%.

As constructed, the GN task for BioCreative II represents a
simplification of the real curation task. In the real process, the
curator generally works from the full text of the articles, and
identifies only particular kinds of genes of interest (for exam-
ple, only genes for a specific organism or only genes that have
experimental evidence for their function). We simplified the
BioCreative GN task in three respects: we used only freely
available abstracts from PubMed/MEDLINE, rather than
full-text articles; we chose a set of abstracts known to be
'enriched' for human genes; and we required that every
human gene or protein mentioned in the abstract be associ-
ated with an Entrez Gene identifier (and only human genes or
proteins). These simplifications may help to explain discrep-
ancies in performance on the 'idealized' GN task described
here and the performance of systems on a more realistic pro-
tein normalization task performed in the context of the PPI
task [7]. This latter task required normalization of proteins
from full-text articles discussing multiple species - a much
more challenging problem.

Results
Overview
We received a total of 54 runs from 20 participating teams.
For each run we computed the results based on a simple
matching of gene identifiers against the gold standard for
each abstract. Identifiers that matched the answer key consti-
tuted true positives (TP), identifiers that did not match were
false positives (FP), and gold standard identifiers that were
not matched were false negatives (FN). Recall, precision, and
F-measure were computed in the usual way:

• Recall = TP/(TP+FN)

• Precision = TP/(TP+FP)

• F-measure = (2*P*R)/(P+R)

We computed two sets of results: the micro-averaged results,
which combined the results across identifiers in all docu-
ments to provide recall and precision scores, and the associ-
ated F-measure; and the macro-averaged results, computed
on a per-document basis and then averaged across docu-
ments to obtain precision, recall and F-measure. The micro-
average weights each gene identifier equally; the macro-aver-
age weights each document equally, regardless of how many
genes are found in the document. Macro-averaged results
provide a straightforward way to compute statistical signifi-
cance. Table 1 shows the results of the top-scoring run for
each team, including recall, precision, and F-measure for the
best (micro-averaged) run of each system. In addition, the
table shows the macro-averaged F-measure and rank, as well
as the rank of the systems that had a significant difference in
performance (at the 0.10 level for a one-sided t-test). The
ranking of the top seven systems did not change between the
macro-averaged scores and the micro-averaged scores. In
three cases, the top-scoring run for the system changed for
the macro-averaged scores.

To further evaluate the significance of the difference between
system performances, we performed a bootstrap resampling
analogous to that performed by Wilbur and colleagues [8].
We selected a series of 10,000 random sets of 250 PubMed/
MEDLINE identifiers with replacement from the test set of
262 PubMed/MEDLINE abstracts. For each team, we chose
the best-performing macro-averaged run. We then computed
the micro-averaged precision, recall, and F-measure and
rankings for that team, for that resampled corpus. The 10,000
resampling runs provide a distribution of rankings for each
team. Figure 2 shows box plots for the distribution of F-meas-
ure rank for each submission. The dark line is the median
rank, the boxes are quartiles, the whiskers correspond
roughly to the 95% confidence interval for these average
rankings, and the circles are outliers. From the table and the
box plot, we can see the overlap in distributions. For example,
team T042 is ranked first and T034 is ranked second, but
there is substantial overlap in distribution; similarly, the
Genome Biology 2008, 9(Suppl 2):S3
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distributions of the second- and third-ranked systems (T034
and T013) overlap, and the next two systems (T004, T109) are
tied for fourth/fifth place. The top 7 systems were separated
by 0.039 points of micro-averaged F-measure (0.810 to
0.771). In general, differences of less than 0.03 points of F-
measure were not statistically significant at the 90% confi-
dence level, while differences of 0.04 points or greater were
significant.

Figure 3 shows the micro-averaged results as a scatter plot of
precision versus recall for all 54 runs (red diamonds). The
highest recall reported on an official run (T42_2) was 0.875,
with a precision of 0.496, and an F-measure of 0.633. In addi-
tion, the figure shows results from the mouse, fly, and yeast
results from BioCreative I (blue triangles, stars and circles)
for comparison.

Comparison with the first BioCreative challenge 
evaluation's GN task
One advantage of running a series of evaluations is to be able
to answer the question: Is the research community making
progress? To do so, it is useful to compare the results for GN
in BioCreative II with the results from the first BioCreative.
Table 2 shows a set of statistics for the four tasks. The top row
is for human gene/proteins from BioCreative II, and the other
three rows are from the first BioCreative. These statistics give

Table 1

Recall, precision, F-measure and rank for best gene normalization run per team

Team/run Recall Precision F-measure micro-average Rank micro F-measure macro-average Rank macro Significance range

T042_1 0.833 0.789 0.810 1 0.811 1 3-20

T034_1 0.815 0.792 0.804 2 0.782 2 8-20

T013_1 0.768 0.833 0.799 3 0.779 3 8-20

T004_1 0.734 0.841 0.784 4 ‡0.777 4 8-20

T109_1 0.824 0.743 0.781 5 0.775 5 8-20

T104_1 0.743 0.807 0.774 6 0.773 6 9-20

T101_2 0.743 0.801 0.771 7 0.755 7 10-20

T107_1 0.740 0.784 0.761 8 0.739 *9 12-20

T113_2 0.761 0.752 0.756 9 0.745 *8 11-20

T108_3 0.749 0.726 0.737 10 0.724 10 13-20

T007_2 0.703 0.746 0.724 11 0.694 *12 16-20

T017_1 0.708 0.720 0.714 12 ‡0.710 *11 15-20

T110_1 0.629 0.783 0.698 13 0.685 *14 16-20

T111_3 0.664 0.717 0.689 14 0.664 *15 17-20

T030_1 0.661 0.716 0.687 15 0.649 *16 17-20

T006_2 0.606 0.767 0.677 16 ‡0.686 *13 19-20

T036_1 0.713 0.520 0.602 17 0.595 17 19-20

T014_1 0.485 0.762 0.593 18 0.584 18 20

T102_3 0.790 0.425 0.552 19 0.559 19 20

T058_2 0.415 0.375 0.394 20 0.398 20

Columns include recall, precision, F-measure and rank for micro-averaged scores, F-measure and rank for macro-averaged scores, and significance 
based on macro-averaged score distributions. Bold * indicates that rank for micro-average and macro-average are different; ‡ indicates that a 
different run was used as the high-scoring run in macro-averaged versus micro-averaged results.

Distribution of F-measure rank computed by resampling test data over 10,000 runsFigure 2
Distribution of F-measure rank computed by resampling test data over 
10,000 runs. The dark line in each box plot is the median rank based on 
the resampling results, the boxes are quartiles around the median, the 
whiskers correspond roughly to the 95% confidence interval for the 
average rankings, and the circles are outliers.
Genome Biology 2008, 9(Suppl 2):S3
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some points of comparison for the complexity of the tasks.
For example, yeast has a smaller genome than mouse or
human, with fewer gene names, and the names are shorter
than those of other species: one word on average. In addition,
the yeast lexicon listed fewer synonyms on average (1.86).
These factors may account, in part, for the better performance
of systems on yeast gene identifiers. However, the statistics
on synonym length, number of synonyms per identifier, and
number of identifiers per synonym were all computed relative
to the lexicons supplied by the task organizers. These lexicons

were derived automatically from the appropriate model
organism database or other resource (for example, Entrez
Gene) and varied in quality and completeness. Many groups,
particularly the top-scoring groups, compensated for this by
enriching the lexicon, or pruning it of ambiguous terms, or
both. The statistics for human genes appear roughly compa-
rable to those for fly and mouse in complexity, although the
human gene lexicon contained approximately twice as many
synonyms as mouse or fly, which can increase coverage
(recall) but hurt precision, by increasing ambiguity.

Precision versus recall scatter plot with F-measure isobars for GN micro-averaged results for human, mouse, fly and yeast dataFigure 3
Precision versus recall scatter plot with F-measure isobars for GN micro-averaged results for human, mouse, fly and yeast data. GN, gene normalization.

Table 2

Statistics comparing BioCreative II gene normalization task (human) with BioCreative I tasks (mouse, fly, and yeast).

Number of 
unique IDs

Average synonym 
length in words

Average synonyms 
per identifier

Average identifiers per 
synonym (ambiguity)

BioCreative maximum 
recall @ precision

BioCreative 
maximum F-
measure

Human 32,975 2.17 5.55 1.12 0.88 @ 0.50 0.81

Mouse 52,494 2.77 2.48 1.02 0.90 @ 0.43 0.79

Yeast 7,928 1.00 1.86 1.01 0.96 @ 0.65 0.92

Fly 27,749 1.47 2.94 1.09 0.84 @ 0.73 0.82

Statistics on synonyms are based on lexical resources provided by the task organizers.
Genome Biology 2008, 9(Suppl 2):S3
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An interesting statistic is the maximum recall reported
among the systems. This number gives some indication of
whether there is a 'recall ceiling' inhibiting progress - that is,
whether there are mentions that are hard to map to their full
forms or their identifiers. There are multiple sources of recall
problems.

• Conjoined expressions and range expressions where there
may be no explicit trace of a gene mention. For example, the
expression freac-1 to freac-7 implies mention of freac-2, but
this must be deduced by the processing of the range
expression.

• Short, highly ambiguous symbols that can stand for multiple
genes, e.g., AMP.

• Long names that are descriptions of the gene or paraphrases
or permutations of the gene name found in the lexicon - for
example, 'receptor for ciliary neurotrophic factor' as com-
pared with the form in the lexicon, namely 'ciliary neuro-
trophic factor receptor'. Many of the BioCreative II teams
used various kinds of fuzzy matching to address this last
problem.

The highest recall on an official result for human genes was
0.875. However, an analysis of all of the submitted results
reveals that there were only 22 out of 785 identifiers that were
missed by all of the systems (2.7%), for a surprisingly high
'pooled maximum recall' of 97.2% (at 23.2% precision). This
is important, because it indicates that there is no 'recall ceil-
ing'. Further progress will come from better disambiguation,
to improve precision without losing recall.

These 22 'missing' gene identifiers are shown in Additional
data file 3, together with a short description or diagnosis of
the problem. Of the 22 missing genes, which were distributed
across 16 abstracts, four genes were mentioned with limited
local context (for example, 'cofactor A'), four were mentioned
using complex descriptions, 11 were problematic because of
missing synonyms in the lexicon, four were problematic
because of name ambiguity (sometimes together with missing
synonyms), and one was due to a conjoined expression (insu-
lin- and EGF-receptor).

Improvement through combining multiple systems
Table 3 shows the tabulation of results for different levels of
consensus, using each team's top micro-averaged run. Each
identifier/PMID pair was tabulated based on the number of
systems that included it in their submission, and further clas-
sified based on whether it matched the gold standard (true
positive) or not (false positive). Column 1 is the level of con-
sensus (number of 'votes'), and columns 2 and 3 are the
number of false positives and true positives returned at that
level of consensus. For example, row 1 shows that one false
positive and 86 true positives were returned by all 20 runs.
Recall, precision and F-measure were calculated based on

identifiers returned with at least that many 'votes'. For a 50%
consensus level (10 or more 'votes'), the overall recall for the
composite system was 79.4%, the precision was 92.4%, and
the F-measure was an impressive 85.4%.

Analysis of these results gives some insight into what is easy
and what is hard. For example, of the 86 genes that all 20 sys-
tems identified, 62 were short forms (single words or sym-
bols). The single false positive identified by all runs was a
mention of Notch1, which described experimental results in
mouse (PMID 9315665).

Given these results from a simple voting procedure, the next
step was to determine whether overall performance could be
improved by combining results in a more sophisticated way.
To evaluate this, we trained two common binary classifiers:
naïve Bayesian classifiers and support vector machines
(SVMs). The classifiers used a Boolean feature vector for each
run, based on whether a particular pair of PubMed/
MEDLINE and Entrez Gene identifiers was part of that sub-

Table 3

Number of false positives and true positives at different levels of 
consensus from best micro-averaged runs of the 20 teams

Votes Count FP Count TP Precision Recall F-measure

20 1 86 0.989 0.110 0.197

19 3 204 0.986 0.260 0.411

18 7 288 0.976 0.367 0.533

17 8 359 0.978 0.457 0.623

16 11 421 0.975 0.536 0.692

15 13 470 0.973 0.599 0.741

14 15 513 0.972 0.654 0.781

13 19 555 0.967 0.707 0.817

12 30 572 0.950 0.729 0.825

11 42 599 0.934 0.763 0.840

10 51 623 0.924 0.794 0.854

9 77 644 0.893 0.820 0.855

8 103 667 0.866 0.850 0.858

7 130 685 0.840 0.873 0.856

6 160 704 0.815 0.897 0.854

5 221 714 0.764 0.910 0.830

4 304 721 0.703 0.918 0.797

3 435 743 0.631 0.946 0.757

2 713 751 0.513 0.957 0.668

1 2522 763 0.232 0.972 0.375

Total 785

The table shows cumulative number of false positives and true 
positives (columns 2 and 3) obtained for a given level of consensus 
(column 1) from the top micro-averaged run of each team. Recall, 
precision, and F-measure were calculated using the consensus level as 
the minimum number of votes needed to include an identifier as an 
'answer'. The total under True Positive Count indicates that there 
were 22 true positives that no system identified; see additional data file 
3 for a listing of these.
Genome Biology 2008, 9(Suppl 2):S3



http://genomebiology.com/2008/9/S2/S3 Genome Biology 2008,     Volume 9, Suppl 2, Article S3       Morgan et al. S3.7
mission. For this 'system combination' experiment, we
selected the best macro-averaged submission from each team
and performed 10-fold cross-validation on the test set, train-
ing the classifiers separately for precision, recall, and F-meas-
ure. The results are shown in Table 4 for both the naïve Bayes
classifier and the SVM (standard deviation given in parenthe-
ses). The SVM runs achieved an average F-measure of 0.92
(all systems combined) and 0.88 (top five systems com-
bined), both of which exceeded the best run reported for any
single system.

These results suggest that different systems are making dif-
ferent mistakes, and that a weighted combination of results
from multiple systems can yield a significant boost in per-
formance. It also suggests that lower-ranked systems are
making significant contributions. This observation is corrob-
orated by examining the list of gene identifiers identified cor-
rectly by only one out of 20 systems (Additional data file 4).
There were 12 such identifiers, contributed by 10 systems; 7 of
the 12 contributions came from systems in the bottom half of
the rankings.

Discussion
The different teams approached the GN task from a variety of
angles. The Materials and methods section (below) contains
brief overviews of the specific approaches of the different
teams; the workshop proceedings contain more extended
descriptions of the individual systems. In this section, we
highlight some of the commonalities and some of the success-
ful approaches that were used in the evaluation.

For overview purposes, we can break down the GN task into
three basic tasks.

• Preprocessing of the text to regularize it and to identify lin-
guistic units such as words and sentences, and even catego-
ries of words and phrases, such as mentions of genes and gene
products. This step could also include special handling for
prefixes, suffixes, and enumerations or conjunctions.

• Generation of candidate gene identifiers, generally by asso-
ciating text strings (sequences of words in the text) with iden-
tifiers, using a lexicon.

• Pruning of the list of candidate identifiers to remove false
positives and to disambiguate in cases where a mention could
be mapped to more than one identifier.

Not all teams followed this approach. For example, Team 14
[9] did no linguistic preprocessing; they generated candidate
gene identifiers using a text categorization approach, and fol-
lowed this step by identifying text evidence for the selected
gene/protein identifiers. Other teams (7 and 42) avoided the
tokenization step and relied on matching against a lexicon to
find candidate gene identifiers.

Preprocessing and linguistic processing
A number of teams built directly on their BioCreative GM sys-
tem (teams 4, 6, 104, 109, 110, and 111) to handle this process.
Several teams (teams 4, 36, 101, and 107) used 'off-the-shelf'
systems such as LingPipe [10] or ABNER [11] for recognition
of gene mentions, followed by various postprocessing steps,
and several teams also combined results from multiple gene
mention systems (teams 4 and 107).

Several teams incorporated a special-purpose module for
handling abbreviations and gene symbols (teams 4, 13, 34, 36,
and 104). In some systems, gene symbols were processed via
a separate pipeline; in others, any three-letter expression was
checked for an adjacent full form, and then both forms were
used in subsequent term matching.

Four teams (teams 4, 34, 42, and 109) discussed handling of
conjoined forms or enumerations, such as 'protein kinase C
isoforms alpha, epsilon, and zeta' or 'freac-1 to freac-7'. Team
4 noted in their write-up [12] that an estimated 8% of the
names in the development data involved some form of con-
junction. The explicit handling of conjoined forms repre-
sented a significant advance in BioCreative II, as compared
with the first BioCreative.

Table 4

Results of 10-fold cross-validation on classifiers trained on the pooled submissions

Recall Precision F-measure

Best macro averaged submission from each group

Naïve Bayes 0.92 (0.046) 0.75 (0.036) 0.83 (0.028)

Support vector machines 0.88 (0.049) 0.96 (0.026) 0.92 (0.031)

Best macro averaged from top 5 ranked groups

Naïve Bayes 0.91 (0.062) 0.75 (0.062) 0.82 (0.060)

Support vector machines 0.82 (0.054) 0.91 (0.041) 0.86 (0.040)
Genome Biology 2008, 9(Suppl 2):S3
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Candidate generation
This stage associates text strings with specific gene identifi-
ers, based on matching the strings against a lexicon. The lex-
icon contains, for each gene identifier, a set of associated
names for the gene, including the official name, the official
gene symbol, and other 'aliases' or synonyms. There are com-
plex trade-offs between enriching the lexicon and using a
loose or fuzzy matching procedure to associate gene identifi-
ers with text strings.

The organizers provided the participants with a 'starter' lexi-
con, as described in the Materials and methods section
(below). Many teams chose to expand the lexicon with addi-
tional resources, or to prune the lexicon by removing highly
ambiguous terms, or both. Lexicon expansion was done
through the addition of further synonyms (teams 13, 42, 101,
108, and 109) and pattern-based expansion of the lexicon,
such as adding variants for Greek as well as Roman suffixes;
see particularly teams 4, 7, 13, and 34, although other teams
handled this during preprocessing or through a fuzzy match-
ing stage. Some teams (13, 34, and 113) pruned the lexicon by
eliminating highly ambiguous terms or terms that generated
false positives, such as common English words or biological
terms that were not gene names but occurred in similar con-
texts, such as cell lines. Teams 4, 13, 34, 109, and 113 explored
performance results using different lexicon variants. Interest-
ingly, team 113 reported higher results (in particular, higher
precision) using a smaller, carefully edited lexicon.

Many teams paid particular attention to the procedure for
matching sequences of words in text against terms in the lex-
icon. Techniques included minimum edit distance (team
108), Dice coefficient (teams 4 and 36), Jaro and Jaro-Win-
kler distance (teams 6 and 111), and TFIDF and softTFIDF
(teams 42 and 111), as well as percentage of matching words
and matching against regular expressions. One team (107)
used trigram matching: each candidate gene mention was
reduced to character trigrams, which were matched against a
lexicon.

Disambiguation and removal of false positives
False positives can arise in several ways. Two identifiers can
have synonyms that match or partially match a mention in
text, as was discussed earlier for the terms 'Humly9' and 'Ly9'.
The mention can also be a word or phrase in English (or in
biology), in addition to being a gene name or symbol, for
example 'per' or 'period'. Another source of ambiguity is the
use of a single gene name used across multiple organisms (as
in the case of the false positive for 'Notch1' discussed above).
Compared with participants in BioCreative I, the systems
from BioCreative II focused much more on this stage. For sev-
eral teams (teams 6, 58, 101, 109, and 111), the disambigua-
tion and filtering step was implemented as a classification
step, where a classifier was trained to distinguish valid gene
identifiers from spurious ones, as done in BioCreative I [13].
Other groups used additional resources and vector-based

context models to select among ambiguous terms (teams 14,
34, 42, 107, and 108). Still other teams relied on heuristics to
remove potential false positives, including stop word lists for
ambiguous or non-gene terms, and filters for nonhuman gene
names (teams 4, 7, 13, 30, and 34).

Conclusion
Performance on the BioCreative II GN task demonstrates
progress since the first BioCreative workshop in 2004. The
results obtained for human gene/protein identification are
comparable to results obtained earlier for mouse and fly;
three teams achieved an F-measure of 0.80 or above for one
of their runs. However, there is significant progress along sev-
eral new dimensions. First, the assessment involved 20
groups, as compared with eight groups for BioCreative I. The
results achieved by combining input from all of the participat-
ing systems outperformed any single system, achieving F-
measures from 0.85 to 0.92, depending on the method of
combination.

The participating teams explored the 'solution space' for this
challenge evaluation well. Four teams incorporated explicit
handling of conjunction and enumeration; this no longer
seems to be a significant cause of loss in recall. The 'maximum
recall' system achieved a recall of 96.2% (precision 23.1%). A
number of groups did contrastive studies on the utility of add-
ing lexical resources and contextual resources, and on the
benefits of lexicon curation. The participants also explored
novel approaches to the matching of mentions and lexical
resources, and there was significant exploration of contextual
models for disambiguation and removal of false positives. An
interesting finding was that many groups did not feel the need
for large training corpora, especially those using lexicon-
based approaches.

What does this mean in terms of practical performance? Per-
formance depends on a number of factors: the quality and
completeness of the lexical resources; the selection criteria of
the articles, including date, journal, domain, and whether
they are likely to contain curatable information; the amount
of both intra-species and inter-species gene symbol ambigu-
ity; the types of textual input (abstract, full text) and the types
of preprocessing required in particular for full text articles;
and quantity of data to be handled (all of PubMed/MEDLINE
versus specialized subsets).

The formulation of the BioCreative II GN task is still quite
artificial. A more realistic task would be to extract and nor-
malize protein names across multiple species, from full text
articles, such as was required for the PPI task.

Despite these limitations, normalization technology is mak-
ing rapid progress. It has the potential to provide improved
annotation consistency for gene mention linkages to data-
bases, more efficient updating of existing annotations, and,
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when applied across large collections, more focused gene-
centric literature search.

It is always important to evaluate the evaluation. Criteria for
a successful evaluation include participation, progress, diver-
sity of approaches, exchange of scientific information, and
emergence of standards. We can see all of these happening in
the BioCreative evaluation. There is enthusiastic participa-
tion across the entire range of BioCreative tasks. The research
community is making significant progress, as shown by the
larger number of high-performing systems. There are more
groups engaged, and more teams are emerging that combine
skills from multiple disciplines, including biology, bioinfor-
matics, linguistics, machine learning, natural language
understanding, and information retrieval. There is a healthy
variety of approaches represented. We are seeing exploration
of ideas developed in the first BioCreative, such as use of a
high-recall gene mention 'nomination' process, following by a
filtering stage. Also, although the GN task was designed to
leverage existing standards, such as Entrez Gene identifiers,
we are seeing the emergence of reusable component-ware,
and a number of high-performing systems that are taking
advantage of this. As we go forward, the BioCreative Work-
shop will provide an opportunity to exchange insights and to
define the next set of challenges for this community to tackle.

Materials and methods
Data preparation
We handled the data preparation for this task following many
of the same procedures developed for the first BioCreative GN
task [2]. There were, however, some differences described in
greater detail in [14]. We used the GOA annotated records as
the basis for selecting documents rich in human genes and
proteins. However, the GOA annotators annotate from full
text, and we were using only abstracts; furthermore, the GOA
annotation process does not include every human gene men-
tioned in an article, but only specific genes of interest. Finally,
because we wished to provide a richer linguistic context for
the dataset, the BioCreative annotators were asked to flag one
string in the text that represented the mention of each anno-
tated gene. This had the effect of supplying a short 'evidence
passage' for each gene identifier in the abstract. For the eval-
uation, we required that submissions provide a text string
that gave rise to the selected Entrez Gene identifier in the
abstract.

As described in [15], we used the file
gene_association.goa_human (from the Gene Ontology
homepage [16] downloaded on 10 October 2005) to provide
11,073 PubMed/MEDLINE identifiers (and 10,730 abstracts)
associated with journal articles likely to have mentions of
human genes and proteins. We then used the file
gene2pubmed obtained from the National Center for Biotech-
nology Information (NCBI) [17] on 21 October 2005, along
with the Gene Ontology (GO) annotations, to create a large set

of partially annotated abstracts. We set aside 5,000 abstracts
as a noisy training set, which we made available to the partic-
ipants, along with a lexicon of gene identifiers and the corre-
sponding names and gene symbols. From the 5,730
remaining abstracts, we randomly selected 600 abstracts for
expert annotation. The resulting annotations consisted of the
list of unique Entrez Gene identifiers for the human genes
and gene products in each abstract, plus the text snippets.

To create the training and test sets, an expert annotator per-
formed a detailed manual annotation of the abstracts. The
annotator also flagged any annotations about which he had a
question. These were checked by the first author. To verify the
quality of the annotation, we performed a small inter-annota-
tor agreement study. It is important to understand the quality
of the annotated data, because this may limit performance of
the systems that train on the data. In addition, it provides a
ceiling for system performance. For the study, two annotators
independently annotated the first 30 abstracts in the training
set. There were 71 identifiers in common and 7 differences,
for an overall interannotator agreement of 91% [14]. The final
training set consisted of 281 abstracts; the blind test set con-
sisted of 262 abstracts.

We did further post hoc validation of the gold standard by
looking at gene identifiers for which a majority of system out-
puts differed from the gold standard. The submissions were
scored using the preliminary answer key (original gold stand-
ard); we then selected the results of the top-ranking (micro-
averaged) submission from each team. We pooled the results
and re-examined any annotation where over 50% of the
groups disagreed with the gold standard. This led us to reex-
amine 219 annotations in 126 abstracts. As a result, we added
32 annotations and removed 21 annotations. The final gold
standard contained 785 gene identifiers in 262 abstracts, with
an interannotator agreement of 96.7% compared to the origi-
nal gold standard.

Lexical resources
In addition to the annotated abstracts and the noisy training
data, we also provided participants with a lexicon. To create
the lexicon, we took the gene symbol and gene name informa-
tion for each human Entrez Gene identifier from the
gene_info file from NCBI [17]. We merged this with name,
gene and synonym entries taken from UniProt [18]. Suffixes
containing '_HUMAN', '1_HUMAN', 'H_HUMAN', 'protein',
'precursor', or 'antigen' were stripped from the terms and
added to the lexicon as separate terms, in addition to the orig-
inal term. The Hugo Gene Name Consortium (HGNC) sym-
bol, name, and alias entries were also added [19]. We then
identified the most often repeated phrases across identifiers
as well as those that had numerous matches in the 5,000
abstracts of noisy training data. We used these to create a
short (381 term) 'stop' list to remove the most common terms
that were unlikely to be gene or protein names but which had
entered the lexicon as full synonyms, for example 'recessive',
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'neural', 'Zeta', 'liver', and so on; see the BioCreative CVS
archive [20] for the full list. The result was a lexicon of 32,975
distinct Entrez Gene identifiers linked to a total of 163,478
unique terms. The majority of identifiers had more than one
term attached (average 5.5), although 8,385 had only one.

Scoring and revising the gold standard
Scoring was done with a Python script that matched the gene
identifiers returned for each abstract against the gold stand-
ard for that abstract. The script also checked for the presence
of a textual evidence string for each gene, although this did
not affect the actual score, and the textual evidence provided
by many submissions did not exactly match the original
abstracts. The scoring software was provided to the partici-
pants, along with the answer key for the training data.

System descriptions
This section contains brief system descriptions of the partici-
pating teams, presented in rank order of the micro-average
(see Table 1).

Team 42 (Jörg Hakenberg, Technische Universität Dresden)
The system [21] used the provided lexical resource plus addi-
tional synonyms found in Entrez Gene's 'Other designations'
field. Synonyms were sorted into four categories: database
identifiers ('Kiaa0958'), abbreviations ('ICAM-1'), compound
names ('RNA-helicase alpha'), and spurious names ('AA').
Spurious names were removed from the lexicon. Each
remaining synonym was preprocessed to generate a regular
expression that matched as many variations as possible.
Database identifiers (KIAA, HGNC, UniProt, and so on)
appeared in few variations, and fixed rules were used to trans-
form different types of database IDs into regular expressions.
Abbreviations were split at every transition between upper or
lower case letters, symbols, or digits; for example, 'CD95R'
became 'CD 95 R'. Following this, variations for every single
element were generated, for example 'CD, Cd, cd' and 'r,
Receptor, receptor', depending on the element and its posi-
tion. This also allowed for changes in Greek/English lettering
and Arabic/Roman numbering. Tokens of compound names
were handled like abbreviations. The resulting set of regular
expressions was matched against the text, with the require-
ment that a match be surrounded by word boundaries (inter-
punctuation, bracketing, quotation marks, hyphens, or
slashes). The system did not tokenize texts or stem words.
Every text was preprocessed to find abbreviated enumera-
tions of multiple (potential) gene names ('LERK-2 and -5'.)
Such occurrences were replaced with their respective fully
expanded forms ('LERK-2 and LERK-5').

After the initial recognition, which assigned candidate IDs to
each potential name, highly ambiguous and unspecific names
were filtered using TF*IDF scores and another regular
expression to remove general terms referring to tissues, func-
tions, molecules or a combination of those ('liver', 'calcium',
'anion', 'channel'). TF scores were based on the current

abstract, and IDF was based on the noisy training data; both
single and multiword names were removed if they fell below
a threshold (indicating highly ambiguous terms). Filtering
also took place to remove references to genes in other organ-
isms, based on an analysis of the immediate context of a gene
name for species and cell lines; this removed mentions like
'rat ATP synthase OSCP', but left phrases like 'human and
mouse fibulin-2'.

The final disambiguation of names used gene context models
extracted from the Entrez Gene entry for each gene, as well as
UniProt and GOA entries for proteins encoded by the gene. In
addition to each gene's Entrez Gene summary, a gene context
model stored information on GO annotations, functions, tis-
sue specificity, locations, mutations, GeneRIFs, domains,
interaction partners, UniProt keywords, and diseases
obtained from all three resources. Textual sources were
scored against the current abstract using either cosine simi-
larity or a normalized overlap count. For GO terms, GoP-
ubMed [22] was used to associate each abstract with GO
terms. This set was then compared with the set of GO terms
for each candidate gene. The similarity measure was based on
the absolute distance of two GO terms (path length via the
lowest common ancestor [LCA]) and the depth of the LCA;
low-level terms would thus score better than high-level terms.
The combination of all scores, with weights adjusting impor-
tance/reliability of data types, defined an overall confidence.
All candidate IDs were ranked according to this confidence
and the top ID was selected if it scored above a certain
threshold.

Team 34 (Katrin Fundel, Ludwig-Maximilians-Universität München)
Team 34 made use of a carefully curated synonym dictionary
and previously existing matching approaches [23], which
were expanded by rule-based post-filtering and a general
approach for disambiguation [24].

A large synonym dictionary for human gene names was com-
piled from Entrez Gene, Swiss-Prot, and HGNC. The diction-
ary was automatically curated to increase precision and to
obtain high recall. Gene and protein names were identified in
the texts by application of exact matching and approximate
matching as implemented in ProMiner [25,26] and merged
into one set of matches for the subsequent steps. Subse-
quently, matches were post-filtered based on their context. A
rule-based post-filter was used for resolving enumerations,
pruning matches of gene names occurring close to organism
names other than human, and pruning matches of gene
names where the text referred to cell lines, cell types, gene
families, pathways, chromosomal locations, amino acids, and
so on.

For term disambiguation with respect to non-gene terms and
within the synonym dictionary, a general approach was
applied based on the similarity between text fragments and
dictionary entries. A rule-based approach was applied to
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extract short form/long form pairs of abbreviations from the
texts; these abbreviations were combined with a public abbre-
viation dictionary and all non-gene, non-protein concepts of
the Unified Medical Language System (UMLS). Based on this
combined dictionary, a dictionary of 'alternative concepts'
(non-gene or non-protein concepts) was compiled by retain-
ing only entries that did not exceed a certain similarity with
any of the entries of the gene name dictionary. For this pur-
pose, the individual dictionary entries were represented as
feature vectors, in which the individual features represented
word-stems or character trigrams, weighted by their inverse
document frequency. Terms can have both gene and non-
gene meanings or can be ambiguous between two or more
genes. The same approach was used for resolving both types
of ambiguity; the similarity between all noun phrase chunks
from a given abstract and alternative synonyms of the possi-
ble genes/concepts was determined and the object yielding
the maximal cosine similarity was reported, provided this
similarity was achieved by only one gene/concept and was
above a certain threshold.

Given that many gene names are ambiguous and overlap with
non-gene terms and abbreviations, disambiguation plays an
important role in gene normalization. The results demon-
strate that the proposed disambiguation approach achieves
good performance. As the approach directly exploits the
information contained in the dictionaries, it does not require
annotated training data. Given the large number of ambigu-
ous terms and the constantly evolving nomenclature, this is
an important advantage.

Team 13 (Juliane Fluck, Fraunhofer Institute for Algorithms and 
Scientific Computing [SCAI])
The ProMiner system [25,26] relies on an approximate string
matching algorithm in conjunction with an automatically
curated dictionary. In an initial preprocessing step, addi-
tional spelling variants were added automatically to the dic-
tionary and external dictionaries were used for the removal of
non-gene names. To improve the precision of the search,
ambiguous names were detected using the dictionary, an
abbreviation dictionary, or the frequency of occurrence of
words in the text corpus.

The dictionary for human genes/proteins was extracted from
the description fields of human Entrez Gene entries as well as
human UniProt entries. All entries that mapped transitively
to each other in the International Protein Index were merged
into a single dictionary entry.

Automatic dictionary curation drew on several information
sources, including acronym expansion and addition of spell-
ing variants or filtering synonyms on the basis of regular
expressions. Additionally, a biomedical terminology diction-
ary was used for curation of the human dictionary; this was
extracted from OBO ontologies [27] for disease, tissue, organ-
ism, and protein family names and from a manually curated

list generated through inspection of various training corpora
in different former and ongoing projects. Finally, an acronym
dictionary with gene-specific short forms and non-gene long
forms was used as an additional dictionary for disambigua-
tion purposes.

In a compilation step, information such as frequency in a ref-
erence corpus, inclusion in a common word dictionary, or the
acronym dictionary was used to classify synonyms into one of
several classes.

The search system was based on an approximate string
matching algorithm supporting not only exact matches but
also small variations in spelling. The different synonym
classes were searched with specific parameter settings such as
case sensitive, exact, or permuted search. To recognize names
split by an insertion of acronyms, for example 'coenzyme A
(HMG-CoA) synthase', additional runs after removal of the
brackets or the full bracketed expression was done and the
results were merged. This led to improved performance on
the training set but not on the test set.

Synonyms contained in more than one Entrez Gene entry or
additionally found in the acronym dictionary were labeled as
ambiguous. Matches on ambiguous synonyms were only
accepted if an unambiguous synonym for the same entry was
found. The best results of the system were achieved with this
setting. Accepting ambiguous hits led to an increase in recall
but an overall decrease in F score. Using a co-occurrence filter
for organism names decreased the recall and the overall
performance.

Team 4 (Zhiyong Lu, University of Colorado School of Medicine)
Six gene mention (GM) tagging systems were combined using
a filter, designed for the GM task, that favors recall, using the
longest mention in case of overlaps. The systems were KeX
[28], AbGene [29], the team's BioCreative I GM system [30],
LingPipe [10], and ABNER (NLPBA and BioCreative models)
[11]. Heuristics removed false positives by identifying amino
acids, protein families or domains, and nonhuman proteins.
Tokenization included extracting individual gene names from
conjoined structures, for example from IL3/IL5 to IL3 and
IL5, and from freac1-freac7 to freac1, freac2 ... freac7.

For the lexicon, gene symbols, synonyms, and full names
were extracted from the Entrez Gene database for all human
genes. The contents were then regularized with a set of heu-
ristics, including Roman letters to Arabic numerals, Greek
letters to single letters, words to lowercase, removal of paren-
thesized text, removal of punctuation, removal of spaces, and
removal of terms only one character long.

Gene mentions found in the text were regularized using the
same set of heuristics used for dictionary construction. Exact
string matching was then used to find matches between the
gene mentions and the dictionary. If a single match was
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found, then the identifier was returned. Disambiguation was
performed if multiple matches were found. The first approach
used the Schwartz and Hearst algorithm [31] for detecting
abbreviation definitions in biomedical text. The second
approach used the five preceding and five trailing tokens sur-
rounding the gene mention. In both cases the Dice coefficient
between the extracted text (abbreviation or flanking tokens)
and the full name of each gene candidate as given in the lexi-
con was computed, and the gene with the highest nonzero
Dice coefficient was selected. Further removal of false posi-
tives was achieved through the use of custom stop lists: a list
containing 5,000 words derived by word frequency in the
Brown corpus; a list containing protein family terms; a list
containing non-protein-indicating terms; and a list of small
molecules.

Team 109 (Hongfang Liu, Georgetown University Medical Center)
The base gene/protein name normalization system included
three modules. The first module was lexicon-lookup, where
the lexicon consisted of terms associated with human Entrez
Gene records. The second module used machine learning to
integrate the results of the gene/protein name mention tagger
[32], name sources, name ambiguity, false positive rates, pop-
ularity, and token shape information. The third module used
a similarity-based method to associate Entrez Gene records
with long phrases detected by the gene/protein name men-
tion tagger.

The lexicon was compiled from terms for human genes from
Entrez Gene, Online Mendelian Inheritance in Man, HGNC,
and BioThesaurus [33]. The synonymy relationship was
based on rich cross-reference information provided by Entrez
Gene and UniProtKB. All terms were then normalized by
changing to lower case, ignoring punctuation marks, and
transferring words to their base forms according to the UMLS
Specialist Lexicon. The same normalization procedure was
applied to each document, followed by longest string match-
ing lookup. If the string contained specialized patterns, which
usually were abbreviated forms for several entities from the
same family (for example, 'HAP2, 3, 4' or 'HAP2-4', 'HAP-2, -
3, and -4', or 'HAP2/4'), then they were separated and reas-
sembled into distinct strings with their own mappings. For
example, 'HAP2/4' would become two strings, 'HAP2' and
'HAP4'. This stage returned a list of pairs (Phrase, EGID), in
which Phrase was a text string mapped to a lexicon entry and
EGID was the Entrez Gene identifier. Each pair (Phrase,
EGID) was then transformed into a feature vector, and
machine learning was used to classify the pair as valid or
invalid. The features included the following:

• Phrase-specific features: the gene/protein mention tagger
result, the ambiguity of Phrase, the number of occurrences of
Phrase in the document, the number of occurrences of Phrase
in the top one million words provided by MedPost, and some
typographic features.

• EGID-specific features: the number of different strings
mapped to EGID and their occurrences in the text.

• (Phrase, EGID)-specific features: a metric to measure the
association power between Phrase and EGID based on the
lexicon, a Boolean feature indicating whether Phrase could be
mapped to EGID through exact string matching, and the false
positive rate of the pair in the training set.

Names with multiple words in a lexicon may appear in the
text with some of the words missing, or in different word
orders or forms. The system incorporated a similarity-based
method for normalizing names detected by the gene/protein
mention tagger. The number of overlapping words was
counted between phrases detected as entity names in text and
names in the dictionary. If over 90% of the words in a name
from the dictionary were found in the names detected by the
gene/protein name tagger, the names in the text were nor-
malized to associated record(s) of the name.

Team 104 (Rafael Torres, Bioalma, Tres Cantos, Madrid, Spain)
TextDetective [34] distinguishes between functional gene
descriptions (names that describe the function of the gene/
protein, for example 'thyrotropin releasing hormone recep-
tor') and symbols (generally abbreviations, for example
'TRHR'). In the case of descriptions, the morphology and
semantics of the words are highly indicative. For symbols, the
system uses contextual information (the adjoining words that
are related to genes and proteins) to detect gene names.

First, sentence boundaries are detected and tokens are
assigned to specific classes, such as 'Keyword', 'Stop_word',
'Biological_locations', or 'Type', to select candidates for gene
names. For gene symbols, both the local context (the words
around a potential symbol) and global context (taking into
account all of the occurrences of a symbol in PubMed/
MEDLINE) are evaluated. The local context uses a general
model that distinguishes genes from non-genes. In the global
context, a specific model is generated for each potential sym-
bol. The model reflects how frequently a symbol is used to
refer to genes or to other types of entities. This allows us to
estimate the 'risk' of tagging a symbol as a gene. The system
then attempts to assign the candidate names to an entry in the
database. The TextDetective dictionary is used; it contains the
entries for human genes from both Entrez Gene and Uniprot.

For gene descriptions, a set of rules is applied to select the dic-
tionary definitions of genes that match the descriptions found
in the text. No further disambiguation is performed. If more
than one database entry is selectable, no results are returned.

For symbols, all of the entries in the dictionary that contain
this symbol are selected. Where there is more than one possi-
ble candidate, a disambiguation process is performed to
select the most suitable entry. This process uses a list of 'key-
words' for each gene with a weighting to represent its
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importance. These words are extracted from the functional
annotations, GeneRIFs, and summary sections in Entrez
Gene and UniProt. For each candidate, the system obtains the
sum of the keyword weightings that appear near the name in
the text, and selects the one with the highest score. However,
the detection is only considered to be correct if the value
exceeds the minimum risk value associated with the risk fac-
tor for the symbol.

The most relevant parameters controlling the trade-off
between precision and recall are as follows:

• The importance given to the risk factor: higher values
increase precision because more ambiguous symbols are
rejected; if the value is decreased, then recall takes priority.

• The number of words that are analyzed in the context of a
gene symbol: larger 'windows' increase recall because words
further away from the name are taken into account and 'good'
words are more likely to be found; smaller windows favor
precision.

• The keywords and their associated weightings: the higher
the threshold, the more keywords have to be present close to
the gene name to assign it to a specific database entity; high
values favor precision but decrease recall.

Team 101 (Heng-hui Liu, National Cheng Kung University)
The system [35] consisted of two major components. The first
component recognized candidate gene mentions in text, and
then matched these mentions against a lexicon to assign cor-
responding identifiers. If a mention was associated with more
than one identifier, then the ambiguous mention was for-
warded to the second component for removal of identifiers of
lower confidence.

The first component recognized candidate mentions in text.
Three available Named Entity Recognition packages were
evaluated on the BioCreative Named Entity training data,
namely LingPipe, ABNER, and BioNLP, and LingPipe was
selected.

Entrez Gene and BioThesaurus were used to establish the lex-
icon, extracting the entries for human genes/proteins from
these two resources and removing redundant entries.

To handle morphological variation, the system used several
normalization rules, including normalization of case, replace-
ment of hyphens with space, removal of punctuation, and
removal of parenthesized material.

The disambiguation component filtered out identifiers with a
lower degree of confidence. The degree of confidence was
determined by the relations between genes and key words in
text (such as MeSH terms or GO terms) and specific identifi-
ers. A maximum entropy model was used to learn the rela-

tionships from training data. Because of the insufficiency of
the BioCreative II training dataset to cover all human genes,
NCBI's 'gene2pubmed' was used to collect about 60,000 arti-
cles for training. After training, given a text and an ambiguous
gene mention, a model assigned probabilities to candidate
identifiers; these values could be used to rank these
identifiers. Two kinds of feature functions were considered
for training, each one with its own advantages. Therefore,
these models were combined. Using ideas of fuzzy set aggre-
gation, models act as membership functions that convert
observation (occurrence of key words) into membership
degrees (probabilities) of the context supporting a certain
identifier. For example, given a text c and a mention g, which
associates with identifiers id1 and id2, through model fm, g can
be represented as:

fm(c, g) = {id1(0.6), id2(0.4)}

where 0.6 and 0.4 are degrees of c supporting id1 and id2,
respectively. Finally, an ordered weighted averaging operator
was used to combine results from different models.

Team 107 (Michael Krauthammer, Yale University School of 
Medicine)
The approach [36] was based on the idea of reusing existing
programs for gene name recognition and classification (entity
recognition), with primary focus on the task of mapping those
names to Entrez Gene IDs. For entity recognition, the system
used ABNER [11] and LingPipe [37], two programs with
excellent recall and precision. The system handled lexical var-
iation by transforming gene names into their unique tri-
grams, and performing trigram matching against a gene
dictionary. For ambiguous gene names, an additional contex-
tual analysis was performed on the abstract containing the
name. The approach was formalized as a sequence of matrix
manipulations, allowing for a fast and coherent implementa-
tion of the algorithm.

A combination of two methods was used to map recognized
entities to their appropriate gene identifiers: the Trigram
Method, and the Network Method. Both methods required
preprocessing, using resources from Entrez Gene, to con-
struct a set of method-specific matrices.

The Trigram Method used an approximate representation of
a gene name, by transforming a string into the set of its
unique trigrams. The similarity between two gene names is
the number of their common trigrams (i.e. the intersection of
their sets of trigrams). This approach allowed for the fast
mapping of gene names to large gene dictionaries, associating
names to their gene identifiers.

Often, gene names are ambiguous, and an additional method
was needed to pinpoint the correct gene identifiers. To
accomplish this, the Network Method examined the words
(context) of the abstract in which an entity had been
Genome Biology 2008, 9(Suppl 2):S3
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recognized. The idea is as follows. Assume that the Trigram
Method determines that a recognized entity E, appearing in
abstract a, can be mapped to two different gene identifiers
(genes X and Y) with equal similarity scores. The network
method compares the abstract a with a collection of abstracts
in which gene X and Y have already been positively identified.
If the content of abstract a is closer to the set of abstracts
linked to gene X, then entity E is labeled with gene identifier
X.

There were several noteworthy features of this approach.
First, it separated the local (trigram-based) and contextual
mapping, enabling the experimental examination of both
processes individually. Second, the local analysis was fast and
efficient, avoiding the traditional string matching techniques,
which were replaced by simple matrix manipulations. The
system achieved an F-measure of 0.76 for the GN task.

Team 113 (Martijn Schuemie, Erasmus MC University Medical 
Center)
The Peregrine system [38] was tested in two separate runs:
with the lexicon provided by the BioCreative II organizers,
and with a lexicon constructed by combining five different
gene databases [39]. Four editing techniques were applied to
both: manually checking the 250 most frequently occurring
terms in a random subset of PubMed/MEDLINE for ambigu-
ous and erroneous terms; automatic generation of spelling
variations; automatic removal of terms consisting only of
nonspecific tokens, such as stop-words or numbers; and auto-
matic removal of family names.

Sequences of letters and/or numbers were considered tokens.
A term in the text was matched to the lexicon when all tokens
of a term were found in order.

Disambiguation was done by a set of simple rules. First of all,
a term was considered ambiguous if it was short, did not con-
tain a number, or referred to more than one gene in the lexi-
con. Ambiguous terms were only matched by the system if the
term was the preferred name of a gene, or if a synonym or a
highly specific part of a synonym was also detected in the text.

The Peregrine system was designed with two goals in mind.
First of all, it should be easy to maintain. There is only a single
step (manual check of highly frequent terms) that requires
human involvement when implementing a new lexicon. The
second goal was speed. Because Peregrine does not rely on
part-of-speech tagging or natural language parsing, it is very
fast: 100,000 PubMed/MEDLINE records can be processed
in 213 seconds on a single machine. The whole of PubMed/
MEDLINE can be processed within a single day.

Team 108 (William Lau, Center for Information Technology, 
National Institutes of Health)
The lexicon was created by combining data from the HUGO
and Entrez Gene databases without any additional pruning.

The algorithm [40] divided the GN task into two major steps.
The goal of the first step was high recall. Using a set of regular
expression rules, gene symbols were detected using pattern
matching. For gene names, an approximate term matching
technique was employed. A name was broken into individual
tokens, each matched independently. Subsequently, the
phrase containing the most tokens was identified. If the ratio
between the number of tokens in the candidate and the total
number of tokens to be matched exceeded a threshold, the
candidate was passed to the second step.

In the second step, a set of statistical and heuristic features
was used to measure the level of confidence for each mention
extracted. The goal of this step was to reduce the number of
false positives. 'Uniqueness' was an estimate of the probabil-
ity that the candidate was referring to something other than
the gene in question. If the mention had a very high frequency
of occurrence in the literature, then the score was reduced
accordingly, as frequently occurring terms were more likely to
have multiple meanings. Another important feature was
'inverse distance', which used edit distance to calculate the
similarity between the candidate mention and the corre-
sponding gene term in the database. The 'coverage' feature
preferred long mentions over shorter ones, in terms of both
the number of matched tokens and the character length of the
mention.

There were also several discrete features used to assist the
algorithm in selecting the correct identifier in case of ambigu-
ity. First, if more than one unique mention of a gene was
extracted from the text, then the confidence that the correct
identifier was selected increased. This feature was referred to
as 'number of mentions'. In addition, many genes in the Ent-
rez Gene database have not been approved by the HUGO
Gene Nomenclature Committee, indicating that the refer-
ences for these genes may be unstable and that few articles on
these genes have been written. Therefore, in the 'official sta-
tus' feature, preference was given to genes that had been
approved. A related feature was 'mention type,' which took
into consideration whether the mention was an officially
approved term. A 'boosting factor' was also incorporated, to
reward or punish a candidate when there was a contextual
clue in the citation suggesting whether the mention actually
referred to a gene.

The final confidence score was a weighted linear combination
of the feature scores, except that the boosting factor was
added to the equation as an exponent. In the evaluations, the
Nelder-Mead simplex method was used to optimize the set of
feature weights on the training data. Consequently, a confi-
dence score was calculated for each gene. If a gene had more
than one unique mention in the text, then the maximum score
was used. An acceptance threshold could be set to adjust the
trade-off between recall and precision.
Genome Biology 2008, 9(Suppl 2):S3
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Team 7 (Aaron M Cohen, Oregon Health & Science University)
The OHSU human GN system [41] used an approach similar
to the mouse and yeast species system previously reported
and evaluated on the BioCreAtIvE 1 dataset [3]. The system
used a lexicon automatically extracted from the Entrez Gene
database, along with automatically generated orthographic
variant expansion using manually generated rules. Because
many human gene names, synonyms, and symbols appear
orthographically similar to those of mouse genes, it was ini-
tially supposed that using the same variant expansion would
perform similarly. Unfortunately, human gene name entries
are represented differently from those of mouse genes within
Entrez. For human gene names, but not mouse, much more
information is included within the name and symbol fields.
Names often consisted of pairs of comma-separated clauses
along with parenthetical expressions. These needed special
handling in order to extract strings that would be useful in
identifying gene symbols within the biomedical literature.
Orthographic variant generation therefore included rules
similar to that for mouse, such as replacing spaces with
dashes and vice versa, as well as human-specific rules, such
as removing parenthetical expressions, inverting the order of
clauses around commas, and pre-pending an 'h' to short
symbols.

Input text was matched against the lexicon using an exact
match approach without prior tokenization. The system per-
formed post-match delimiter detection instead of tokeniza-
tion. This technique avoids some of the complexities of prior
tokenization, such as the difficulty of allowing gene symbols
to contain delimiters when tokenization is done before
matching. The default delimiters allowed included the white
space characters as well as single quote, double quote, slash,
backslash, parentheses, square brackets, curly brackets, and
the following characters:., = ?*!. Overlapping matches were
resolved to the longest match.

The default delimiters were all single characters. After exam-
ining the training data, it was determined that it would be
worth experimenting with multi-character delimiters. Two
types were created - inclusions and exclusions. Inclusions are
essentially sequences of characters that could delimit a gene
symbol. The training data yielded two potential candidates: '-
mediated' and '-induced'. Exclusions were text patterns
occurring near the matched text that indicated that the match
was a false positive. By examining system errors made on the
training data, 43 exclusion patterns were identified that
improved performance on the training data.

The final stage of the system performed ambiguity detection
and removal. Strings that mapped to more than one human
gene were resolved to the gene that had the most unambigu-
ous references within the input text (for BioCreative II, the
abstract + title). If none of the possible genes had a co-occur-
ring unambiguous reference, no normalized gene reference
was generated for that string. This improved precision at

some cost to recall. In the officially submitted runs, exclu-
sions improved precision a bit with no cost to recall, while
inclusions had little effect. Although better-than-average
results demonstrated the value of the overall approach, the
difficulty of manually creating effective variant generation
and exclusion rules for human genes suggests the possibility
of extracting both of these automatically, given a sufficient
amount of training data.

Team 111 (Chun-Nan Hsu, Academia Sinica)
The system [42] used a high-performing gene mention tagger
[43] based on conditional random field models to identify
possible gene names. Then TF/IDF and softTFIDF were
applied to compute the similarity between a tagged gene
name and a synonym in the dictionary. To improve the results
of dictionary lookup, an ensemble of classifiers was trained to
filter false positives, using string matching scores as the fea-
tures. The experiments showed that this post-filtering
method substantially boosted precision without modifying
the dictionary or using any additional external resources.

Before application of TF/IDF, a preprocessing step trans-
formed the string into a token vector and performed case nor-
malization, replacement of hyphens with blanks, and removal
of punctuation symbols and parenthesized strings. For softT-
FIDF, there was no need to perform the preprocessing step
because Jaro and Jaro-Winkler with TF/IDF tolerated slight
differences between terms in gene names. A list of top ten
match scores was returned with the identifier of the top
match. A threshold was assigned to filter the outputs of the
dictionary lookup.

Based on the match scores, an ensemble of classifiers was
applied to determine whether the top ID actually corre-
sponded to the entity. If positive, the ID with its score would
be returned; otherwise, the result would be discarded. The
feature vector for the ensemble classifier was derived from
the top ten match scores of synonyms of ten distinct genes.
AdaBoost [44] was used to train an ensemble classifier with
this feature set, stopping at 30 iterations. If a dictionary
lookup result had a small false negative rate but a large true
positive and false positive rate (low precision and high recall),
then the classification method would boost the precision as
well as the F score. When more than one entry in the diction-
ary shared a top match score, the system used a tie-breaking
strategy, returning the identifier of the entry that maximized
the occurrences where the entity appeared as a substring in
the synonyms of that entry.

Team 30 (Anna Divoli, University of California, Berkeley)
A version of an in-house gene recognition and normalization
tool, originally developed for the TREC 2003 Genomics
Track, was used for the gene normalization task [45],
restricted to the master list of human gene/protein IDs pro-
vided by the organizers.
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The biggest problem was ambiguity. For example, 'SYT' can
refer to two human genes with different identifiers, namely
SYT1 (ID 6857) and SS18 (ID 6760). This was addressed using
two principles for word sense disambiguation: one sense per
collocation (assign a single ID for each gene/protein
instance), and one sense per discourse (assign the same ID to
all instances of a given gene/protein within a document) [46].
To these was added a third (weak) principle: no synonyms,
which assumed that in case multiple names were possible in
the literature for a given gene/protein name, in a particular
document authors tended to stick to just one of them. This
meant that two different gene names/aliases were unlikely to
refer to the same gene/protein ID in the same text. One nota-
ble exception was when the gene/protein was mentioned for
the first time, in which case authors were likely to introduce
the correspondence between the full name and the abbrevia-
tion, for example 'The dopamine D4 receptor gene (DRD4)
shows considerable homology to DRD2.' This issue was not
addressed for BioCreative II.

The algorithm was as follows.

• Step 1: Assign the IDs for all unambiguous gene/protein
instances (the ones for which there is a single possible ID).

• Step 2: (a) Exclude all IDs recognized so far from all lists of
possible candidates. (b) Assign the corresponding ID for all
unambiguous gene/protein instances. (c) If there was at least
one new assignment, then go to 2(a).

• Step 3: (a) Exclude all IDs recognized so far from all lists of
possible candidates. (b) Assign the current instance an ID
from the set of the currently available IDs. (c) If there was at
least one new assignment, then go to 3(a).

Step 2 considered the instances sorted by length in descend-
ing order (long forms first), whereas step 3 sorted them by (1/
I + 0.001 × L), where I is the number of different possible IDs
for that instance, and L is the instance length (sorted by less
ambiguous instances, and then by length).

Team 6 (Xinglong Wang, University of Edinburgh)
Team 6 adapted a GN system used in its NLP pipeline [47] for
extracting protein-protein interactions from biomedical
texts. The system was developed for normalizing proteins but
it can also normalize other biological entities (drug com-
pounds, disease types, and experimental methods) without
requiring extensive knowledge of the new domain.

The system first uses a gene mention named entity compo-
nent to mark up entities of types gene and gene product. A
string-distance-based fuzzy matcher then searches the gene
lexicon and calculates scores of string similarity between the
mentions and lexicon entries using a formula similar to
JaroWinkler. The matcher takes into account the commonal-
ity and differences in string suffixes, such as Arabic and

Roman numbers. Sets of equivalent suffixes are defined (e.g.,
Roman I = Arabic 1). Strings with common suffixes are
rewarded whilst those with different ones are penalized. The
value is finally normalized by the length of the string. At the
end of the fuzzy-matching stage, each mention recognized by
named entity recognition is associated with the single
highest-scoring match from the gene lexicon, in terms of the
string similarity measure, where each match is associated
with one or more identifiers (in cases where ambiguity
occurs).

To resolve ambiguity, a machine learning algorithm learns a
model to predict the most probable identifier out of a pool of
candidates returned by the fuzzy matcher. The machine
learning algorithm uses contextual properties surrounding
gene mentions such as adjacent words, their part-of-speech
tags, and so on, as well as complex features such as NER con-
fidence and string similarity scores between all the mentions
in the document and the description associated with the gene
identifier. An SVM model was then trained to predict the
most probable identifiers for gene mentions.

Team 36 (Bob Leaman, Arizona State University)
The gene normalization system implemented for BioCreative
II [48] was a lightweight implementation that mixed well-
known systems with the initial implementation of new, rela-
tively nonstandard, ideas. Overall, the system relied heavily
on orthographic and syntactic information rather than
semantic knowledge, including biological domain knowledge.
The system had four distinct execution phases, namely
extraction, filtering, normalization, and disambiguation, with
most of the complexity residing in the normalization phase.

The system was intended primarily to test gene normalization
ideas and therefore employed ABNER for tagging gene men-
tions in each abstract, trained on the BioCreAtIvE 1a data.
After gene mentions were tagged and extracted, acronyms
were resolved using the Stanford Biomedical Abbreviation
database and the provided Java code. The list of gene men-
tions found was the only data passed from the underlying
abstract to the next phase.

In the filtering phase, mentions of generic words (such as
'gene' and 'protein') were dropped. Specifically, the system
removed gene mentions consisting entirely of generic words
such as organism names, protein types and descriptors such
as 'enzyme', 'amyloid', 'protein' and other terms such as 'DNA'
or 'alpha.'

The system compared the mention with each of the standard
gene names and computed a similarity score for each compar-
ison. This score was based on the Dice coefficient, which
weights matches twice and normalizes over the total number
of tokens. The baseline system added some weights based on
the frequency of token occurrence and origin, but these mod-
ifications proved to be detrimental to performance. Tokens
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were initially considered a match if they contained exactly the
same series of characters or represented synonymous ordinal
values, such as Arabic and Roman numerals and the letters of
the Greek alphabet. Matches with a low score were dropped
from further consideration.

Because the normalization phase returned a set of candidate
gene names from the standard list, it was necessary to deter-
mine which of the candidates was the most likely to be cor-
rect. Simple rules were used, removing gene mentions that
referred to the same gene by different names. Otherwise, the
best match was accepted. We believe that our results demon-
strate that metric-based methods are insufficient, even when
coupled with orthographic similarity between two tokens.

Team 14 (Patrick Ruch, University and Hospitals of Geneva)
For gene normalization, the GeneTeam system [9] used an
automatic text categorization framework for large multiclass
classification problems [49]. Unlike most automatic text cat-
egorization systems, which rely on data-intensive models
extracted from large sets of training data, the GeneTeam cat-
egorizer is largely data-independent and a small sample is
sufficient to tune the system. Approximately 3 person-days
were used for experiments in the GN task of BioCreative II.
The abstract, the title, and other fields of PubMed/MEDLINE
records were used to generate the runs. Each article was aug-
mented with its assigned Medical Subject Headings by query-
ing PubMed/MEDLINE. Synonyms were handled as if they
were different entities by the categorizer, but in the final out-
put only top-ranked synonyms were returned.

In addition to the lexicon provided by the organizers, some
synonyms were also added to this resource. The Categorizer
was based on two ranking modules: a pattern matcher and a
vector space retrieval engine [50]. For these experiments, the
vector space retrieval engine used a slightly modified dtu.dtn
formula (term frequency, document frequency, and pivoted
normalization). The system produced a score computed as a
linear combination between the retrieval status value of the
retrieval engine, the maximal length of the matching cate-
gory, and the number of matching features (Boolean scoring).
The pattern matcher module used both stems and linguisti-
cally motivated indexing units, in particular noun phrases. A
simple stemmer was used to handle plural English forms and
a list of task-specific stop words was used, together with a list
of stop categories. Stop words were removed before categori-
zation, while stop categories were removed after categoriza-
tion. These lists were established either manually using the
tuning data, or automatically using differential frequency lists
established on biomedical (PubMed/MEDLINE) and news-
paper (Wall Street Journal) corpora. Using a data-driven
argumentative classifier [49], we also attempted to augment
the weight of particular sentences (purpose and conclusion)
in the input abstract. The resulting output of the system pro-
duced a ranked list of categories.

To meet the requirements of the GN task, for every category
the system attempted to recover the string that best repre-
sented the text form of the predicted category. This passage
recovery was based on the computation of a string-to-string
edit distance between the predicted category and the input
text.

Team 58 (Chengjie Sun, Harbin Institute of Technology)
A Maximum Entropy binary classifier was used to distinguish
correct from incorrect synonym matches, where good
matches were positively labeled and bad matches negatively
labeled [51]. To create training data for the classifier, every
synonym in the lexicon provided by the organizers (entrez-
GeneLexicon.list file) was matched to each training document
using a strict matching criterion (although a looser matching
criterion might have been better). For each match, the system
extracted the matching text plus the three words preceding
and following the match and the normal form (unique identi-
fier) causing the match. For the training data, if the normal
form for a match was in the normalized gene list for that doc-
ument, then the match was labeled positive; otherwise, it was
labeled negative. This provided the large set of positive and
negative matches required to train a Maximum Entropy
classifier.

To classify a new abstract, the system first extracted all the
synonym matches that occurred within it. Then, for each
match, the classifier determined whether it was positive or
negative. For each positive match, the identifier associated
with the match was added to the document's normalized gene
list.

Additional data files
The following additional data are available with the online
version of this paper. Additional data file 1 contains a glossary
of terms. Additional data file 2 contains a table summarizing
scores from all gene normalization runs. Additional data file
3 contains a table summarizing genes missed by all systems.
Additional data file 4 contains a table listing of gene identifi-
ers found by only one system.
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